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ABSTRACT: Symmetries of a Place/Transition-net can be exploited during
the reachability analysis by considering only one representative marking in
each orbit induced by the symmetries. In this report, three new algorithms for
transforming a marking into a symmetric canonical representative marking
are described. All the algorithms depend on the precalculation of a Schreier-
Sims representation for the symmetry group of the net in question. The first
algorithm uses a black box graph canonizer algorithm to produce a canon-
ical version of the characteristic graph associated with a marking and then
derives the canonical representative marking from it. The second algorithm
is a backtrack search in the Schreier-Sims representation, pruning the search
with the marking in question and its stabilizers found during the search. The
third algorithm combines the first and second one by pruning the search in
the Schreier-Sims representation with an ordered partition obtained with a
standard preprocessing technique applied in graph isomorphism algorithms.

KEYWORDS: Reachability analysis, Place/Transition-nets, symmetry
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1 INTRODUCTION

Symmetries of a Place/Transition-net produce symmetries into its state space
[Starke 1991]. These state space symmetries can be exploited during the
reachability analysis by considering only one (or few) marking(s) in each set
of symmetric markings. This may result in substantial savings in both mem-
ory and time requirements of the reachability analysis. The main task dur-
ing the generation of the reduced reachability graph is to decide whether a
marking symmetric to the newly generated one is already visited during the
search. This can be accomplished by either (i) comparing the new marking
pairwisely with each already visited one, or (ii) transforming each generated
marking into a canonical representative marking and storing only these into
the reduced reachability graph. Some algorithms for these tasks are pre-
sented in [Schmidt 2000a; 2000b], while the computational complexity of
the tasks is analyzed in [Junttila 2001].

This report describes three new algorithms for producing canonical rep-
resentative markings. All the algorithms presented require that the automor-
phism group of the net is known. This is in contrast to some algorithms
described in [Schmidt 2000a; 2000b]. The fact that all the algorithms pre-
sented in this report depend on precalculation of a Schreier-Sims represen-
tation for the symmetry group of the net is not a serious drawback. This is
because it is beneficial to first compute the symmetry group of the net in
order to see if there are any non-trivial symmetries, i.e., to see whether the
symmetry reduction method can help at all. In addition, the performance
of symmetry reduction algorithms may depend on the size of the symmetry
group, see [Schmidt 2000b] and Sect. 6.2, and thus knowing it may help in
selecting an appropriate algorithm.

The first algorithm presented in Sect. 3 uses a black box graph canonizer
algorithm to produce a canonical representative for a marking. First, a char-
acteristic graph is assigned to the marking. Characteristic graphs have the
property that the characteristic graphs of two markings are isomorphic if and
only if the markings are symmetric. Furthermore, the isomorphisms between
the characteristic graphs correspond exactly to the symmetries transforming
the markings to each other. The canonical version of the characteristic graph
of a marking is then obtained by applying a black box graph canonizer, and
finally the canonical representative for the marking is obtained by using an
isomorphism between the characteristic graph and its canonical version. In
[Junttila 2002], a similar algorithm was described for high-level Petri nets and
related formalisms.

The second algorithm, presented in Sect. 4, is a backtrack search in the
Schreier-Sims representation of the symmetry group. The algorithm returns
the smallest marking produced by symmetries that are “compatible” with the
marking in question. The search is pruned (i) by considering only symme-
tries that are “compatible” with the marking, (ii) by using the smallest already
found symmetric marking, and (iii) by exploiting the stabilizers of the mark-
ing (which are found during the search). This algorithm is a variant of the
standard backtrack search algorithms developed in the computational group
theory, see e.g. [Butler 1991]. However, the compatibility definition between
symmetries and markings is, to author’s knowledge, novel.
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The third algorithm presented in Sect. 5 combines the techniques used
in Sects. 3 and 4 by “opening” the black box graph canonizer. A stan-
dard preprocessing technique of existing graph isomorphism algorithms (see
e.g. [McKay 1981; Kreher and Stinson 1999]) is used to produce an ordered
partition of the marking in question in a symmetry respecting way. The parti-
tion is then used to prune the backtrack search in the Schreier-Sims represen-
tation by considering only symmetries that are compatible with the partition.

1.1 Related Work

Some symmetry reduction algorithms for Place/Transition-nets are described
in [Schmidt 2000a; 2000b]. The first algorithm, “iterating the symmetries”,
applies all the symmetries to the new marking and checks whether the result-
ing marking has already been visited during the reduced reachability graph
construction. The facts that (i) the symmetries are stored in a Schreier-Sims
representation and (ii) the set of already visited markings is stored as a prefix
sharing decision tree, are exploited to prune the set of symmetries considered.
The second algorithm, “iterating the states”, pairwisely checks the newly
generated marking with each already visited marking for symmetry by using
the algorithm described in [Schmidt 2000a]. The set of necessary symmetry
checks is reduced by using symmetry respecting hash functions. The third
algorithm, “canonical representatives”, computes a (non-canonical) repre-
sentative for the newly generated marking. This is done by a limited search
with greedy heuristics in the Schreier-Sims representation of symmetries, try-
ing to find the lexicographically smallest symmetric marking. The second
algorithm in this report can be seen as a complete, canonical version of this
algorithm augmented with some pruning techniques.

In addition to Place/Transition-nets, symmetries are also exploited in the
state space analysis of other formalisms. For the symmetry reduction method
in general, see the papers in the volume 9, numbers 1–2, of the Formal
Methods in System Design journal. For temporal logic model checking un-
der symmetry, see [Emerson and Sistla 1996; 1997; Gyuris and Sistla 1999].

In [Clarke et al. 1996; Clarke et al. 1998], symmetries are defined to be
permutations acting on bit vectors by permuting the element positions. This
is very similar to the way the symmetries of Place/Transition-nets act on the
markings. The difference to the approach discussed in this report is that the
state sets are manipulated symbolically by using Binary Decision Diagrams
(BDDs). Thus the symmetry related calculations, such as computing a rep-
resentative for a state, are also performed by using BDDs. If explicit state
enumeration were used instead of BDDs, the algorithms presented in this
report could probably be applied.

In the Murϕ system [Ip and Dill 1996] and in high-level Petri nets [Chi-
ola et al. 1991; Jensen 1996; Junttila 1999], the symmetries are produced
by permuting the values of data types. Usually, the symmetries in these for-
malisms don’t have to be represented explicitly but are defined by declaring
some data types to be permutable (e.g., the scalar set data types in Murϕ).
Despite these differences to Place/Transition-nets, the algorithms proposed
in this report have some similarities to the existing ones for these formalisms.

1. An algorithm similar to the first algorithm in this report is described in
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[Junttila 2002]. In both algorithms, a characteristic graph for a mark-
ing is first constructed. A canonical form for the graph is then obtained
by using a black box graph canonizer, and the canonical representa-
tive marking is then obtained from it. The algorithms differ in the
way the characteristic graphs are defined and in the way the canonical
representative marking is obtained from the canonical version of the
characteristic graph.

2. The obvious state canonization algorithm enumerating through all the
states that are symmetric to the given state is not usually very effective
for the above mentioned formalisms, see e.g. [Ip 1996]. The second al-
gorithm in this report uses pruning techniques that make this approach
work reasonably well for Place/Transition-nets.

3. Partitions are used to prune the set of symmetries that have to be con-
sidered during the checking whether two states are symmetric or dur-
ing the canonization of states not only in the third algorithm in this
report but also in many other algorithms, e.g. [Huber et al. 1985; Ip
1996; Sistla et al. 2000; Junttila 2002]. They mainly differ in the
way the partitions are produced. The algorithm in this report is to
author’s knowledge the first one that can work under general symme-
tries (i.e., symmetries that are not produced by direct products of sym-
metric and/or cyclic groups like those induced by scalar sets). This
is achieved through the use of a Schreier-Sims representation for the
symmetry group and the novel compatibility definition between per-
mutations and partitions.

Some other canonical representative algorithms are also presented in [Chiola
et al. 1991; Lorentsen and Kristensen 2001].

2 PLACE/TRANSITION-NETS AND THEIR SYMMETRIES

First, some standard definitions of Place/Transition-nets are given. These are
based on [Starke 1991; Schmidt 2000a; 2000b]. Formally, a Place/Transition-
net (or simply a P/T-net) is a tuple

N = 〈P, T, F, W, M0〉,

where

1. P is a finite, nonempty set of places,
2. T is a finite, nonempty set of transitions such that P ∩ T = ∅,
3. F ⊆ (P × T ) ∪ (T × P ) is the flow-relation (the set of arcs),
4. W : F → N \ {0} associates each arc in F with a positive multiplicity

(weight), and
5. M0 : P → N is the initial marking of N . A marking of N is a multiset

on P , i.e., a function M : P → N, and the set of all markings of N is
denoted by M.

The multiplicity function W is implicitly extended to (P × T ) ∪ (T × P ) →
N by W (〈x, y〉) = 0 if 〈x, y〉 /∈ F . A marking M can also be denoted
by the formal sum

∑
p∈P M(p) ′p. For instance, if the set of places is P =
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{p1, p2, p3}, the marking M = {p1 7→ 1, p2 7→ 3, p3 7→ 0} can be denoted by
the formal sum 1 ′p1 + 3 ′p2 + 0 ′p3. Dropping the places with multiplicity 0
and omitting unit multiplicities, M can also be written as p1 + 3 ′p2. For two
markings, M and M ′, define that M ≤ M ′ if and only if M(p) ≤ M ′(p) for
each p ∈ P . A transition t ∈ T is enabled in a marking M if W (〈p, t〉) ≤
M(p) for each p ∈ P . If t is enabled in M , it may fire and transform M into
M ′ defined by M ′(p) = M(p)−W (〈p, t〉) + W (〈t, p〉) for each p ∈ P . This
is denoted by M [t〉 M ′.

A symmetry (an automorphism) of the net N is a permutation σ of P ∪ T
that

– respects the node type: σ(P ) = P and σ(T ) = T ,
– respects the flow relation: 〈x, y〉 ∈ F ⇔ 〈σ(x), σ(y)〉 ∈ F , and
– respects the arc multiplicities: W (〈x, y〉) = W (〈σ(x), σ(y)〉) for each
〈x, y〉 ∈ F .

The set of all symmetries of N (the automorphism group of N ) is denoted
by Aut(N) and forms a group under the function composition operator ◦.
A symmetry σ ∈ Aut(N) acts on the markings of N so that a marking M is
mapped to the marking σ(M) defined by (σ(M))(p) = M(σ−1(p)) for each
place p ∈ P . Equivalent definitions for the action are: (σ(M))(σ(p)) =
M(p) for each place p and σ(M) = M ◦ σ−1. Two markings, M1 and M2,
are symmetric under a subgroup G of Aut(N) if there is a symmetry σ ∈ G
such that σ(M1) = M2. This is denoted by M1 ≡G M2. By the group
properties of G, ≡G is an equivalence relation on the set M of all markings
and the equivalence class of a marking M is called the G-orbit of M and is
denoted by [M ]G. In the case G is understood from the context, one may
simply speak of symmetric markings and orbits, and omit the subscript G.

Symmetries of the net produce symmetries to the state space of the net
[Starke 1991]: for each symmetry σ it holds that

M1 [t〉 M2 ⇔ σ(M1) [σ(t)〉 σ(M2)

meaning that symmetric markings have symmetric successor markings. Thus
for many verification tasks, such as finding deadlocks, the successor mark-
ings can be “redirected” to symmetric ones during the reachability graph
generation, resulting in a quotient reachability graph that can be exponen-
tially smaller than the original reachability graph, see e.g. [Clarke et al.
1996; Ip and Dill 1996; Jensen 1996]. With some extensions, temporal logic
model checking by using quotient reachability graphs is also possible, see
e.g. [Emerson and Sistla 1996; 1997; Gyuris and Sistla 1999]. Formally, a
quotient reachability graph (QRG) is a labeled transition system 〈Q, ∆, M ′

0〉,
where (i) M ′

0 ≡ M0, and (ii) Q ⊆ M and ∆ ⊆ Q× T ×Q fulfill the follow-
ing:

1. M ′
0 is in Q,

2. if M ∈ Q and M [t〉 M ′, then (i) 〈M, t,M ′′〉 ∈ ∆ for one M ′′ such
that M ′′ ≡ M ′ and (ii) M ′′ ∈ Q, and

3. nothing else is in Q or in ∆.

Note that QRGs are not necessarily unique, i.e., there may be many QRGs
for a given net and symmetry group G. Alg. 2.1 gives a QRG generation
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Algorithm 2.1 A quotient reachability graph generation algorithm
1: Choose any M ′

0 such that M0 ≡ M ′
0

2: Set Q = {M ′
0}

3: Set W = {M ′
0}

4: Set ∆ = ∅
5: while W 6= ∅ do
6: Take any M ∈ W and set W = W \ {M}
7: for all M [t〉 M ′ do
8: Choose any M ′′ such that M ′ ≡ M ′′

9: Set ∆ = ∆ ∪ {〈M, t,M ′′〉}
10: if M ′′ /∈ Q then
11: Set Q = Q ∪ {M ′′}
12: Set W = W ∪ {M ′′}
13: Return 〈Q, T, ∆, M ′

0〉

algorithm. The crucial line in the algorithm is the line 8, where a marking
symmetric to the successor marking is selected. The goal is to obtain as
small QRGs as possible, i.e., QRGs containing only one marking from each
reachable orbit. There are two ways to achieve this.

1. The marking M ′ is pairwisely compared for symmetry with all mark-
ings in the set Q of already visited markings. If a marking symmetric to
M ′ is found in Q, then M ′′ is defined to be that marking, otherwise M ′′

is defined to be M ′. Symmetry respecting hash functions can be used
to pruned the set of markings in Q that have to be tested for symmetry
[Schmidt 2000a].

2. The marking M ′ is transformed into a canonical representative mark-
ing and M ′′ is defined to be that marking. Formally, a function repr :
M → M is a representative marking function if repr(M) ≡ M holds
for each marking M ∈ M. A representative marking function repr is
canonical if M1 ≡ M2 implies repr(M1) = repr(M2). In this case, the
marking repr(M) is called the canonical representative marking of M
(under repr). In this approach the initial marking has be canonized as
well, i.e., M ′

0 is defined to be repr(M0) in line 1.

This report contributes to the second approach. Since the problem of decid-
ing whether a marking is symmetric to another is as hard as the graph iso-
morphism problem [Junttila 2001], both of the approaches contain tasks for
which no polynomial time algorithms are currently known. Luckily, the ap-
proaches can be approximated by (i) using a sound but incomplete marking
symmetry check in the first one, and (ii) by using a non-canonical representa-
tive marking function in the second one. Using such an approximation may
result in that more than one marking in a reachable orbit is visited during
the search and thus the quotient reachability graph may not be of minimal
size. Hence the space consumption (and sometimes the time consumption,
too) may grow compared to an exact approach.

Another concept used in the rest of the report is that of a stabilizer. Given
a subgroup G of Aut(N), the stabilizer subgroup of a marking M in G is
Stab(G, M) = {σ ∈ G | σ(M) = M}, i.e., the set of all symmetries of N in
G that fix the marking M .

2 PLACE/TRANSITION-NETS AND THEIR SYMMETRIES 5
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Figure 1: A variant of Genrich’s railroad net.

Example 2.1 Consider the variant of Genrich’s railroad system net [Genrich
1991] shown in Fig. 1. The places of the net are drawn as circles, transitions
as rectangles, and the arcs between them as directed edges. All the arc mul-
tiplicities in the net equal to 1 and are not drawn here or in any subsequent
figures. The black filled circles (tokens) in the figure describe the initial
marking Ua0 + Ub3 + V1 + V4 of the net. The automorphism group Aut(N)
of the net is generated by the rotation

σrot =
(

Ua0 Ua1 Ua2 Ua3 Ua4 Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ua1 Ua2 Ua3 Ua4 Ua5 Ua0 Ub1 ··· Ub0 V1 ··· V0 ta1 ··· ta0 tb1 ··· tb0

)
of the railroad sections and the swapping of train identities a and b:

σswap =
(

Ua0 ··· Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ub0 ··· Ub5 Ua0 ··· Ua5 V0 ··· V5 tb0 ··· tb5 ta0 ··· ta5

)
.

The group Aut(N) has 12 elements. Now the initial marking M0 = Ua0 +
Ub3 + V1 + V4 is symmetric (under Aut(N)) to the marking M = Ua4 +
Ub1 + V2 + V5 as (σswap ◦ σrot)(M0) = σswap(σrot(M0)) = σswap(Ua1 + Ub4 +
V2 + V5) = M . The orbit [M0]Aut(N) of M0 consists of the markings

M0, Ua1 + Ub4 + V2 + V5,
Ua2 + Ub5 + V0 + V3, Ua3 + Ub0 + V1 + V4,
Ua4 + Ub1 + V2 + V5, and Ua5 + Ub2 + V0 + V3.

The reachability graph of the net is shown in Fig. 2, while Fig. 3 shows two
quotient reachability graphs for the net, the left one being minimal in the
sense that it contains only one marking from each orbit. The stabilizer group
of the initial marking M0 has two elements,

Stab(Aut(N), M0) = {I, σswap ◦ σrot ◦ σrot ◦ σrot},

where I denotes the identity permutation. ♣

6 2 PLACE/TRANSITION-NETS AND THEIR SYMMETRIES
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Figure 2: The reachability graph of the net in Fig. 1.

ta0 tb3

tb3

Ua1 + Ub3 + V4 + V5

Ua0 + Ub3 + V1 + V4

tb0ta3

ta1 ta2

ta4
tb1

Ua4 + Ub1 + V2 + V5

Ua1 + Ub5 + V2 + V3 Ua2 + Ub0 + V3 + V4

Ua3 + Ub0 + V1 + V4

Figure 3: Two quotient reachability graphs for the net in Figure 1.

2.1 The Schreier-Sims Representation

Although a permutation group on a set of n elements may have up to n! per-
mutations, there are representations for permutation groups that have size
polynomial in n. The following text describes one such standard representa-
tion that has some useful properties exploited later in this report. For more
on permutation group algorithms, see [Butler 1991]. The presentation here
is based on [Kreher and Stinson 1999].

Assume a finite set X and a permutation group G on X . For instance,
X may be the set P ∪ T and G the group Aut(N) for a P/T-net N =
〈P, T, F, W, M0〉. Assume that |X| = n and order the elements in X in
any order β = [x1, x2, . . . , xn]. Let

G0 = G

G1 = {g ∈ G0 | g(x1) = x1}
G2 = {g ∈ G1 | g(x2) = x2}

...
Gn = {g ∈ Gn−1 | g(xn) = xn}.

The groups G0, G1, . . . , Gn are subgroups of G such that

G = G0 ≥ G1 ≥ · · · ≥ Gn = {I}

where I denotes the identity permutation. Note that a permutation g ∈ Gi,
0 ≤ i ≤ n, fixes each element x1, . . . , xi. For each 1 ≤ i ≤ n, let [xi]Gi−1

=
{g(xi) | g ∈ Gi−1} denote the orbit of xi under Gi−1. Assume that [xi]Gi−1

=
{xi,1, xi,2, . . . , xi,ni

} for some 1 ≤ ni ≤ n. For each 1 ≤ j ≤ ni, choose
a hi,j ∈ Gi−1 such that hi,j(xi) = xi,j and let Ui = {hi,1, hi,2, . . . , hi,ni

}.

2 PLACE/TRANSITION-NETS AND THEIR SYMMETRIES 7



p1 p2

p3p4

t2,1

t3,4

t1,2

t4,3

t4,1 t3,2t1,4 t2,3

Figure 4: A toy example net.

Now Ui is a left transversal of Gi in Gi−1, i.e., hi,j ◦Gi 6= hi,k ◦Gi for j 6= k
and Gi−1 = hi,1 ◦Gi ∪ · · · ∪ hi,ni

◦Gi, where h ◦ Gi denotes the left coset
{h ◦ g | g ∈ Gi}. The structure ~G = [U1, U2, . . . , Un] is a Schreier-Sims
representation of the group G. Each element in g ∈ G, and only those,
can be uniquely written as a composition g = h1 ◦ h2 ◦ · · · ◦ hn, where
hi ∈ Ui, and thus the order of G equals to |U1| |U2| · · · |Un|. The ordering
β = [x1, x2, . . . , xn] is called the base of the representation. It can be and is
assumed from now on that each Ui contains the identity permutation I. As
each Ui contains at most n−i+1 permutations, there are at most n(n + 1)/2

permutations in the Schreier-Sims representation ~G = [U1, U2, . . . , Un].1

Many operations, such as testing whether a permutation belongs to the group,
can be performed in polynomial time by using Schreier-Sims representa-
tions. Furthermore, given a generating set of permutations for a group, the
Schreier-Sims representation for the group can be calculated in polynomial
time.

The ground sets in [Schmidt 2000a; 2000b] are actually Schreier-Sims
representations. Thus the algorithm for computing the symmetries of a net
presented in [Schmidt 2000a] produces a Schreier-Sims representation of the
symmetry group.

Example 2.2 Consider the net in Fig. 4. Its automorphism group, call it G,
under the base

β = [p1, p2, p3, p4, t1,2, t2,1, t2,3, t3,2, t3,4, t4,3, t4,1, t1,4]

has a Schreier-Sims representation ~G = [U1, U2, . . . , U|P |+|T |], where

U1 =



h1,1 = I

h1,2 =
(

p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p2 p3 p4 p1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4 t1,2 t2,1

)
h1,3 =

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p3 p4 p1 p2 t3,4 t4,3 t4,1 t1,4 t1,2 t2,1 t2,3 t3,2

)
h1,4 =

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p4 p1 p2 p3 t4,1 t1,4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3

)


,

U2 =

{
h2,1 = I

h2,2 =
(

p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t4,2 t3,2 t2,3 t2,1 t1,2

) }
, and

Ui = {I} for 3 ≤ i ≤ |P |+ |T |.
1A more compact representation consisting of at most n− 1 permutations could also be

used instead [Jerrum 1986].
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Therefore, |G| = 8. ♣

2.2 Place Valuations and Compatible Permutations

In addition to the standard Schreier-Sims representation definitions above,
some new concepts are needed in the rest of the article.

To facilitate the understanding of the following concepts, a Schreier-Sims
representation ~G = [U1, . . . , Un] of a permutation group G under a base
β = [x1, . . . , xn] can be seen as a tree. The levels of the tree correspond to
the base of the representation and each node at a level i has |Ui| children
at the level i + 1, the edges to the children being labeled with the permu-
tations in Ui. For instance, Fig. 5 shows (a prefix of) the tree correspond-
ing to the Schreier-Sims representation in Ex. 2.2. Consider a path in the

h1,1 h1,2

h2,1 h2,1 h2,2h2,2 h2,1 h2,2 h2,1 h2,2

h1,3 h1,4

p3

p2

p1

Figure 5: Schreier-Sims representation seen as a tree.

tree starting from the root and ending in a node v at a level i. Composing
the labels of the edges in the path defines the corresponding permutation in
g ∈ U1 ◦ · · · ◦ Ui−1. Thus the full paths ending in leaf nodes of the tree de-
fine exactly the permutations in the group. The node v has |Ui| child nodes,
and extending the path to any of them defines an extension permutation of g
which is in g ◦ Ui. The set {g(h(xi)) | h ∈ Ui} is now the set of |Ui| possible
images of the ith base element xi under all the permutations corresponding
to the paths going through the node v. If the elements in this set can be dis-
tinguished in some way, some of the child nodes can be pruned away during
a search in the tree. The concepts needed for the pruning process consid-
ered in this report are discussed below and the pruning itself is formulated in
Def. 2.3 of compatibility.

First, a place valuation is a function pval : P → N assigning each place a
natural number. Observe that the definition is exactly the same as for mark-
ings, a different name is only used in order to avoid confusions later. The
action of permutations in Aut(N) on place valuations is defined similarly to
that on markings.

Second, a multiset selector is a function from nonempty multisets over
natural numbers to nonempty sets of natural numbers such that each num-
ber in the image set has a non-zero multiplicity in the argument multiset.
That is, if select is a multiset selector and n ∈ select(m), then m(n) ≥
1. For instance, the trivial multiset selector is selecttrivial = {n | m(n) ≥
1}, e.g. selecttrivial(3

′2 + 2 ′4 + 2 ′5 + 4 ′7) = {2, 4, 5, 7}. For a better
example, define the minimal element multiset selector selectmin such that
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selectmin(m) = {n}, where n is the smallest number that has non-zero mul-
tiplicity in m. Now selectmin(3

′2 + 2 ′4 + 2 ′5 + 4 ′7) = {2}. Similarly,
the maximal element multiset selector selectmax would give selectmax(3

′2 +
2 ′4 + 2 ′5 + 4 ′7) = {7}. Also define the minimal element with minimal fre-
quency multiset selector selectminminfreq such that selectminminfreq(m) = {n},
where n is the smallest number among those that have the smallest non-zero
multiplicity in m. For example, selectminminfreq(3

′2 + 2 ′4 + 2 ′5 + 4 ′7) =
{4}. Similarly, the maximal element with minimal frequency multiset selec-
tor selectmaxminfreq would give selectmaxminfreq(3

′2 + 2 ′4 + 2 ′5 + 4 ′7) = {5}.
A function multiset selector is a multiset selector for which the image set
always contains exactly one element. All the other multiset selectors above
except selecttrivial clearly fulfill this condition.

In the following definition, the above discussed pruning procedure is for-
mulated by defining which permutations corresponding to the full paths in
the tree survive the pruning. Such permutations will be called compatible.
Formally, assume a fixed multiset selector select, a subgroup G of Aut(N),
and a Schreier-Sims representation ~G = [U1, . . . , U|P |+|T |] of G under a base
β = [pβ,1, . . . , pβ,|P |, tβ,1, . . . , tβ,|T |] in which the places are enumerated be-
fore the transitions.

Definition 2.3 A permutation g1 ◦ · · · ◦ g|P | ◦ g|P |+1 · · · ◦ g|P |+|T | ∈ G, where
gi ∈ Ui, is compatible with a place valuation pval if

pval((g1 ◦ · · · ◦ gi−1 ◦ gi)(pβ,i)) ∈ select

∑
h∈Ui

1 ′pval((g1 ◦ · · · ◦ gi−1 ◦ h)(pβ,i))


holds for each 1 ≤ i ≤ |P | (when i = 1, g1 ◦ · · · ◦ gi−1 = I).

The intuitive explanation for the above definition in the tree model is the
following. First, in a node at level i, the images of the ith base element in
the child nodes are computed. From the values assigned to these images by
the place valuation, a subset is then selected by the multiset selector. All the
child nodes in which the value assigned to the image of the ith base element
by the place valuation is not in the subset, are then pruned away. As each
node has at least one child that is not pruned away, there always is at least
one permutation compatible with the place valuation.

Example 2.4 Recall the net in Fig. 4 and the Schreier-Sims representation
of its automorphism group G described in Ex. 2.2. Assume a place valuation
pval = {p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 0} and the minimal element multiset
selector selectmin. Now

selectmin

(∑
h∈U1

1 ′pval(h(pβ,1))

)
=

selectmin (1 ′pval(p1) + 1 ′pval(p2) + 1 ′pval(p3) + 1 ′pval(p4)) =

selectmin (1 ′1 + 1 ′0 + 1 ′0 + 1 ′0) =

selectmin (3 ′0 + 1 ′1) = {0}

and thus pval(ĝ1(p1)) = 0 must hold for any permutation ĝ = ĝ1 ◦ · · · ◦ ĝ12,
ĝi ∈ Ui for each 1 ≤ i ≤ 12, that is compatible with pval. This requirement
is fulfilled by h1,2, h1,3 and h1,4.
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If ĝ1 = h1,2, then

selectmin

(∑
h∈U2

1 ′pval(h1,2(h(pβ,2)))

)
=

selectmin (1 ′pval(p3) + 1 ′pval(p1)) =

selectmin (1 ′1 + 1 ′0) = {0}

and thus pval(h1,2(ĝ2(p2))) = 0 must hold for any permutation ĝ = h1,2 ◦
ĝ2 · · · ◦ ĝ12 that is compatible with pval. This requirement is fulfilled by h2,1.
Because Ui = {I} for i ≥ 3, the symmetry h1,2 ◦ h2,1 =

(
p1 p2 p3 p4 t1,2 ...
p2 p3 p4 p1 t2,3 ...

)
is

compatible with pval.
Similar computations show that the other permutations compatible with

pval are

h1,3 ◦ h2,1 =
(

p1 p2 p3 p4 t1,2 ...
p3 p4 p1 p2 t3,4 ...

)
,

h1,3 ◦ h2,2 =
(

p1 p2 p3 p4 t1,2 ...
p3 p2 p1 p4 t3,2 ...

)
, and

h1,4 ◦ h2,2 =
(

p1 p2 p3 p4 t1,2 ...
p4 p3 p2 p1 t4,3 ...

)
.

To sum up, there are 4 permutations that are compatible with pval.
Note that if the maximal element with minimal frequency multiset selec-

tor were used instead, only 2 permutations, namely h1,1 ◦ h2,1 and h1,1 ◦ h2,2,
would be compatible with pval. ♣

The following property of compatibility is crucial in latter sections.

Theorem 2.5 Let g ∈ G. A permutation ĝ ∈ G is compatible with a place
valuation pval if and only if the permutation g ◦ ĝ ∈ G is compatible with
the permuted place valuation g(pval).

Furthermore, it is straightforward to see that if

– the place valuation pval is an injection, i.e., pval(p) = pval(p′) ⇒
p = p′ for all places p, p′ ∈ P , and

– select is a function multiset selector,

then there is exactly one element in G that is compatible with pval. Algo-
rithm 2.2 describes the obvious depth-first backtrack search algorithm enu-
merating all permutations compatible with a place valuation.

3 USING THE CANONICAL VERSION OF THE CHARACTERISTIC GRAPH

Consider a P/T-net N = 〈P, T, F, W, M0〉 and the stabilizer group G =

Stab(N, M̂) of a marking M̂ . Usually, M̂ is either the initial marking M0 or
the null marking (in the latter case, Stab(N, M̂) equals to Aut(N)). A char-
acteristic graph assigner (under G) is a function that assigns each marking M
a graph GM (in a fixed class of graphs) such that its vertex set contains P ∪ T
and for all markings M1, M2 of N it holds that
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Algorithm 2.2 Enumerating all compatible permutations
function compatible_permutations(pval)

1: Call backtrack(1, I)
function backtrack(l, ĝ)
Require: l is the backtracking level
Require: ĝ is the currently enumerated compatible permutation

2: if l = |P |+ 1 then
3: Report ĝ ◦ g′ for each g′ ∈ U|P |+1 ◦ · · · ◦ U|P |+|T |
4: return
5: evaluate S = select(Σh∈Ul

1 ′pval(ĝ(h(pβ,l))))
6: for all h ∈ Ul such that pval(ĝ(h(pβ,l))) ∈ S do
7: Call backtrack(l + 1, ĝ ◦ h)
8: return

1. if g ∈ G maps a marking M1 to M2, then there is an isomorphism γ
from GM1 to GM2 such that γ restricted to P ∪ T equals to g, and

2. if γ is an isomorphism from GM1 to GM2 , then (i) γ(P ) = P , (ii) γ(T ) =
T , and (iii) γ restricted to P ∪ T belongs to G and maps M1 to M2.

Then the graph GM is called the characteristic graph of M . Clearly, two
markings are symmetric under G if and only if their characteristic graphs are
isomorphic. Thus testing whether two markings are symmetric under G can
be done by (i) building their characteristic graphs, and (ii) testing whether
the characteristic graphs are isomorphic by using a tool for solving the graph
isomorphism problem. Furthermore, the stabilizer group Stab(G, M) can
be easily retrieved from the automorphism group of GM by simply restricting
it to P ∪ T .

Directed, vertex and edge labeled graphs. For this class of graphs, it is easy
to define a characteristic graph assigner function. One can simply define that
the characteristic graph of a marking M is the graph GM = 〈V, E, L〉 such
that

1. the vertex set is the set of nodes of the net: V = P ∪ T ,
2. the edges are the arcs of the net N : E = F , and
3. each place p ∈ P is labeled with the sequence of numbers defined by

the markings M̂ and M : L(p) = M̂(p).M(p)
4. each transition t ∈ T is labeled with the text string “T”, L(t) = “T”, so

that it is distinguished from the vertices representing the places, and
5. each edge f ∈ F is labeled with the arc multiplicity L(f) = W (f).

An isomorphism γ from a graph G1 = 〈V1, E1, L1〉 to G2 = 〈V2, E2, L2〉 is
now a bijection from V1 to V2 such that

1. 〈v, v′〉 ∈ E1 ⇔ 〈γ(v), γ(v′)〉 ∈ E2,
2. L1(v) = L2(γ(v)) for each vertex v ∈ V1, and
3. L1(〈v, v′〉) = L2(〈γ(v), γ(v′)〉) for each edge 〈v, v′〉 ∈ E1.

It is straightforward to see that the requirements for a characteristic graph
assigner are fulfilled by the above definition.
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Undirected, vertex labeled graphs. For this class of graphs, some extra ver-
tices and edges are inserted to compensate the lack of edge labels and di-
rection. One can define that the characteristic graph of a marking M is the
graph GM = 〈V, E, L〉 such that

1. the vertex set is V = P ∪ T ∪ F ,
2. for each arc 〈x, y〉 ∈ F , the edge set E contains the edges 〈x, 〈x, y〉〉

and 〈〈x, y〉, y〉, and these are the only edges in E,
3. for each place p ∈ P , L(p) = M̂(p).M(p),
4. for each transition t ∈ T , L(t) is the text string “T”, and
5. for each arc 〈p, t〉 ∈ F ∩ (P × T ), L(〈p, t〉) is the concatenation of the

text string “i” (for input arc) and the number W (〈p, t〉) and for each arc
〈t, p〉 ∈ F ∩ (T × P ), L(〈t, p〉) is the concatenation of the text string
“o” (for output arc) and the number W (〈t, p〉).

An isomorphism γ from a graph G1 = 〈V1, E1, L1〉 to G2 = 〈V2, E2, L2〉 is
now a bijection from V1 to V2 such that

1. 〈v, v′〉 ∈ E1 ⇔ 〈γ(v), γ(v′)〉 ∈ E2, and
2. L1(v) = L2(γ(v)) for each vertex v ∈ V1.

It is again straightforward to see that the requirements for a characteristic
graph assigner are fulfilled by the above definition.

Figure 6 shows a marked net and its characteristic graphs for both of the
graph classes mentioned above (the marking M̂ is assumed to be the empty
marking).
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Figure 6: A marked net and its characteristic graphs.

The characteristic graph assigners defined above can be improved in the
case the group G = Stab(N, M̂) is given. Assume that the set of nodes P ∪T
of the net is ordered. The orbits of the nodes under G, [x]G = {g(x) | g ∈ G}
for each x ∈ P ∪ T , inherit the same ordering by e.g. considering the first
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element in each orbit. Let orbitnum(x) = i if the node x ∈ P ∪ T belongs
to the ith orbit. Now the labels of the vertices in the characteristic graph
corresponding to the places and transitions can be replaced by (i) L(p) =
orbitnum(p).M(p) for each place p, and (ii) L(t) = orbitnum(t).“T” for
each transition t. Note that this construction requires that the group G is
the stabilizer group of a marking, it does not work for arbitrary subgroups of
Aut(N).

Graph canonizers. For a fixed class of graphs (closed under isomorphisms),
a function K from graphs to graphs in the class is a graph canonizer if for all
graphs G, G′ it holds that

– K(G) is isomorphic to G, and
– K(G) = K(G′) if and only if G and G′ are isomorphic.

The graph K(G) is the canonical version of G. It can be assumed that the
vertex set of the canonical version of a graph with n vertices is {1, 2, . . . , n}
and that a bijective canonization mapping, i.e., an isomorphism from G to
K(G), is provided, too.

A graph canonizer can be used for obtaining canonical representative
markings, as shown next. First, it is assumed that a Schreier-Sims repre-
sentation for the group G = Stab(N, M̂) is given. For a marking M ∈ M,
consider the following procedure.

1. Build the characteristic graph GM .
2. Compute the canonical versionK(GM) of GM and a canonization map-

ping γ from GM to K(GM) .
3. Define the place valuation pval by ∀p ∈ P : pval(p) = γ(p), i.e., the

place p is associated with the number of the vertex into which the ver-
tex p in the characteristic graph is mapped by γ. Clearly, pval is an
injection.

4. Take the unique element ĝ ∈ G that is compatible with pval (under a
fixed function multiset selector select).

5. Return ĝ−1(M) as the representative marking.

Denote the marking ĝ−1(M) above by KM(M). The fact that KM(M) is
unique for M despite the indefinite article at item 2 in the process described
above (i.e., any canonization mapping can be selected) is proven in the fol-
lowing theorem.

Theorem 3.1 The mapping KM is a canonical representative function.

Example 3.2 Consider the marked version of the net N in Fig. 4, shown
in the left hand side of Fig. 7. The characteristic graph GM of the marking
(when M̂ is the empty marking) is shown in the middle of Fig. 7.

Suppose a graph canonizer that produces the canonical version K(GM) of
GM shown in the right hand side of Fig. 7. There are two isomorphisms, i.e.,
canonization mappings, from the characteristic graph GM to its canonical
version K(GM), namely

γ1 =
(

p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

10 12 11 9 3 8 1 7 4 2 6 5

)
, and

γ2 =
(

p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

10 9 11 12 5 6 2 4 7 1 8 3

)
.

14 3 USING THE CANONICAL VERSION OF THE CHARACTERISTIC GRAPH



p1 p2

p3p4

t2,1

t3,4

t1,2

t4,3

t4,1 t3,2t1,4 t2,3

T

T

T

T

TTTT

0.0 0.0

0.1 0.0p1

p4 p3

p2

t1,4t4,1

t2,1

t1,2

t2,3t3,2

t3,4

t4,3

1

2

3

4

5

6

7

8

10

11

9

12

T

T

T

T

T

T

T

T

0.0

0.1

0.0

0.0

Figure 7: A marked net, its characteristic graph, and the canonical version of
the characteristic graph

The corresponding place valuations are

pval1 = {p1 7→ 10, p2 7→ 12, p3 7→ 11, p4 7→ 9}, and
pval2 = {p1 7→ 10, p2 7→ 9, p3 7→ 11, p4 7→ 12},

respectively. Assuming the Schreier-Sims representation of Aut(N) used in
Ex. 2.2 and that the minimal element multiset selector is applied,

ĝ1 = h1,4 ◦ h2,1 =
(

p1 p2 p3 p4 t1,2 ···
p4 p1 p2 p3 t4,1 ···

)
is the only permutation compatible with pval1 and

ĝ2 = h1,2 ◦ h2,2 =
(

p1 p2 p3 p4 t1,2 ···
p2 p1 p4 p3 t2,1 ···

)
is the only permutation compatible with pval2. The canonical representative
marking for M is thus

ĝ−1
1 (M) = ĝ−1

2 (M) = 1 ′p2.

Finally, note that

– Stab(Aut(N), M) = {I, h2,2},
– Aut(K(GM)) = {I, ( 1 2 3 4 5 6 7 8 9 10 11 12

2 1 5 7 3 8 4 6 12 10 11 9 )},
– Aut(GM) = γ−1

1 ◦ Aut(K(GM)) ◦γ1 = γ−1
2 ◦ Aut(K(GM)) ◦γ2 ={

I,
(

p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t3,4 t3,2 t2,3 t2,1 t1,2

)}
, and

– Stab(Aut(N), M) equals to Aut(GM) restricted to P∪T (i.e. Aut(GM)
for the class of characteristic graphs used here).

♣

4 BACKTRACK SEARCH IN THE SCHREIER-SIMS REPRESENTATION

The algorithm presented in this section is based on selecting a permutation
that is compatible with the marking in question. That is, the marking itself
is interpreted as a place valuation. A canonical representative function is
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obtained by performing a backtracking search in the Schreier-Sims represen-
tation for the lexicographically smallest marking produced by a compatible
permutation. Pruning techniques for the search are also discussed.

First, assume a base β = [pβ,1, . . . , pβ,|P |, tβ,1, . . . , tβ,|T |] where the places
are enumerated before the transitions and a Schreier-Sims representation
~G = [U1, . . . , U|P |+|T |] of any subgroup G of Aut(N) under this base. Simi-
larly, a fixed multiset selector is implicitly assumed throughout this and fol-
lowing sections.

Let

posreps(M) = {ĝ−1(M) | ĝ ∈ G and ĝ is compatible with M}

denote the set of possible representative markings for M . For symmetric
markings, the sets of possible representative markings are the same:

Theorem 4.1 For each marking M ∈ M and for each symmetry g ∈ G,
posreps(M) = posreps(g(M)).

Obviously, M ′ ∈ posreps(M) implies M ′ ≡G M . However, it does not, in
general, hold that M ∈ posreps(M). Note that the number of symmetries
in G compatible with M is a multiple of |Stab(G, M)|: if ĝ is compatible
with M , then by Thm. 2.5 the permutation g ◦ ĝ ∈ G is compatible with
the marking g(M) = M for each stabilizer g ∈ Stab(G, M). That is, if ĝ is
compatible with M , then (and only then) all the permutations in the right
coset Stab(G, M) ◦ ĝ are compatible with M .

The “hardness” of a marking can be classified as follows. Define that a
marking M is

1. trivial if there is exactly one permutation in G compatible with the
marking M ,

2. easy if it is not trivial but the set posreps(M) contains only one mark-
ing,

3. hard if it is neither trivial nor easy.

Note that this classification depends on the applied Schreier-Sims represen-
tation and multiset selector. It is easy to see that the classification is closed
under G, i.e. a marking is trivial/easy/hard if and only if all the markings
symmetric to it under G are trivial/easy/hard, respectively. Note that for both
trivial and easy markings, the set posreps(M) contains only one marking.
The difference is that easy markings have several permutations in G that are
compatible with the marking.

A very simple representative marking algorithm would be to simply take
an arbitrary permutation ĝ that is compatible with the marking M in question
and then return ĝ−1(M) as the representative marking. Theorem 4.1 guaran-
tees that it is possible, although not guaranteed, that the same representative
marking is selected for two symmetric markings. However, for trivial and easy
markings, as classified above, the unique canonical representative marking is
returned.

A canonical representative marking algorithm can be obtained by first
defining a total order between all the markings and then selecting the small-
est (or greatest) marking in the set of possible representative markings to be
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the representative marking. A natural total ordering between the markings
is the lexicographical ordering. Formally, a marking M1 is lexicographically
smaller than a marking M2 under the base β, denoted by M1 <β M2, if there
is a number 1 ≤ k ≤ |P | such that M1(pβ,j) = M2(pβ,j) for all 1 ≤ j < k
and M1(pβ,k) < M2(pβ,k). Define that M1 ≤β M2 if M1 = M2 or M1 <β

M2. Now define canrepr(M) to be the <β-smallest marking in posreps(M).
As posreps(M) = posreps(g(M)), canrepr(M) = canrepr(g(M)) for all
markings M and for all g ∈ G. Furthermore, canrepr(M) ≡G M . The
canonical representative marking canrepr(M) for a marking M can be ob-
tained by the backtracking depth-first search algorithm Alg. 4.1 derived from
Alg. 2.2.

Algorithm 4.1 A function returning the lexicographically smallest marking
in the set posreps(M)

function canrepr(M)
Require: A global marking BestMarking

1: Set BestMarking = p 7→ ∞ for all p ∈ P
2: Set pval(p) = M(p) for each place p
3: Call backtrack(1, I)
4: return BestMarking

function backtrack(l, ĝ)
Require: l is the backtracking level
Require: ĝ is the currently enumerated compatible permutation

5: if l = |P |+ 1 then
6: if ĝ−1(M) ≤β BestMarking then
7: Set BestMarking = ĝ−1(M)
8: return
9: evaluate S = select(Σh∈Ul

1 ′pval(ĝ(h(pβ,l))))
10: for all h ∈ Ul such that pval(ĝ(h(pβ,l))) ∈ S do
11: Call backtrack(l + 1, ĝ ◦ h)
12: return

Example 4.2 Recall the net in Fig. 4 and the Schreier-Sims representation
of its automorphism group G described in Ex. 2.2. In Ex. 2.4, it was shown
that the symmetries

h1,2 ◦ h2,1 =
(

p1 p2 p3 p4 t1,2 ...
p2 p3 p4 p1 t2,3 ...

)
,

h1,3 ◦ h2,1 =
(

p1 p2 p3 p4 t1,2 ...
p3 p4 p1 p2 t3,4 ...

)
,

h1,3 ◦ h2,2 =
(

p1 p2 p3 p4 t1,2 ...
p3 p2 p1 p4 t3,2 ...

)
, and

h1,4 ◦ h2,2 =
(

p1 p2 p3 p4 t1,2 ...
p4 p3 p2 p1 t4,3 ...

)
are compatible with the marking M = 1 ′p1 (under the minimal element
multiset selector). Thus posreps(M) = {1 ′p3, 1

′p4} and M is hard. Under
the applied base, 1 ′p4 is the lexicographically smallest marking in the set
posreps(M). ♣
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Pruning with the already fixed prefix. Consider a permutation g = g1 ◦
· · · ◦ gi in G, where 1 ≤ i ≤ |P | and gj ∈ Uj for each 1 ≤ j ≤ i. Now
each “extended” permutation g̃ = g1 ◦ · · · ◦ gi ◦ gi+1 ◦ g|P |+|T | in G maps
pβ,1 to g(pβ,1), pβ,2 to g(pβ,2), and so on up to and including pβ,i that is
mapped to g(pβ,i). Thus the values of the first i places in g̃−1(M) are known:
(g̃−1(M)) (pβ,1) = M(g̃(pβ,1)) = M(g(pβ,1)), . . . , and (g̃−1(M)) (pβ,i) =
M(g̃(pβ,i)) = M(g(pβ,i)). If a marking M ′ ∈ posreps(M) such that (i)
M ′(pβ,j) = M(g(pβ,j)) for each 1 ≤ j < k and (ii) M ′(pβ,k) < M(g(pβ,k))
for a 1 ≤ k ≤ i has already been found during the search, one knows that
M ′ <β g̃−1(M) for all extensions g̃ of g and can therefore skip all such g̃.

To improve the possibilities of this pruning technique to work efficiently,
the Schreier-Sims representation can be optimized to have the fixed elements
as early as possible in the base. Let pβ,i be the last element in the base where
a place pβ,j , j ≥ i, may be permuted i.e. hi,l(pβ,j) 6= pβ,j for an hi,l ∈ Ui.
Now the base can be changed so that pβ,j is after pβ,i but before any pβ,k for
which Uk ⊃ {I}.

Finding and pruning with stabilizers. Take any “prefix” permutation g̃ =
g1 ◦ · · · ◦ gi−1 ∈ U1 ◦ · · · ◦ Ui−1 for an 1 ≤ i ≤ |P |. Consider two left cosets,
(g̃ ◦ gi) ◦Gi+1 and (g̃ ◦ g′i) ◦Gi+1, where gi, g

′
i ∈ Ui. Let π be a stabilizer of a

marking M that (i) fixes each place g̃(pβ,1), . . . , g̃(pβ,i−1), and (ii) maps the
place (g̃◦gi)(pβ,i) to (g̃◦g′i)(pβ,i). Now, if a permutation g′ belongs to the left
coset (g̃ ◦ g′i)◦Gi+1, then π−1 ◦ g′ must belong to the left coset (g̃ ◦ gi)◦Gi+1

since (i) (π−1 ◦g′)(pβ,j) = π−1(g̃(pβ,j)) = g̃(pβ,j) for each 1 ≤ j < i and (ii)
(π−1 ◦ g′)(pβ,i) = π−1((g̃ ◦ g′i)(pβ,i)) = (g̃ ◦ gi)(pβ,i). Furthermore, for each
marking M , (π−1◦g′)−1(M) = (g′−1◦π)(M) = g′−1(M). Therefore, the left
cosets (g̃◦g′i)◦Gi+1 and (g̃◦gi)◦Gi+1 produce the same markings. In addition,
if g is compatible with M , then π−1 ◦g is compatible with π−1(M) = M and
therefore the sets of possible representative markings in the left cosets are the
same. To sum up, if all the permutations in a left coset (g̃ ◦ gi) ◦ Gi+1 have
already been searched and there is a stabilizer π with the above mentioned
properties, one can ignore the left coset (g̃◦g′i)◦Gi+1 as it produces the same
possible representative markings.

Stabilizers of markings can be found during the backtrack search on the
Schreier-Sims representation. Consider that M ′ is a marking that has been
found earlier during the search by traversing a path g = g1 ◦ · · · ◦ gi−1 ◦ gi ◦
gi+1 ◦ · · · g|P | meaning that g−1(M) = M ′. For instance, M ′ could be the
lexicographically smallest marking found so far. Assume that the currently
traversed path is g′ = g1 ◦ · · · ◦ gi−1 ◦ g′i ◦ g′i+1 ◦ · · · g′|P |, where g′i 6= gi. If
it holds that g′−1(M) = M ′ = g−1(M), then g′ ◦ g−1 is a stabilizer of M
and (i) g′ ◦ g−1 fixes each (g1 ◦ · · · ◦ gj)(pβ,j), 1 ≤ j < i, as (g′ ◦ g−1)((g1 ◦
· · · ◦ gj)(pβ,j)) = (g′ ◦ g−1)(g(pβ,j)) = g′(pβ,j) = (g1 ◦ · · · ◦ gj)(pβ,j),
and (ii) g′ ◦ g−1 maps (g1 ◦ · · · ◦ gi−1 ◦ gi)(pβ,i) = g(pβ,i) to g′(pβ,i) =
(g1 ◦ · · · ◦ gi−1 ◦ g′i)(pβ,i). Thus g′ ◦ g−1 is a stabilizer of M fulfilling the
properties discussed above (the prefix g̃ being g1 ◦ · · · ◦ gi−1), and the search
can be “back-jumped” to the level i − 1. This is the most trivial (and easiest
to implement) way to prune with the found stabilizers. There are many ways
to achieve even larger degree of pruning by composing the found stabilizers,
see [Kreher and Stinson 1999; McKay 1981; Butler 1991].
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Transition pruning with the stabilizers. Stabilizers of markings can also
be used to prune the set of successor markings that has to be visited during
the reduced reachability graph generation, see e.g. [Jensen 1995]. Namely,
if g ∈ Stab(G, M), then M [t〉 M ′ ⇔ M [g(t)〉 g(M ′). That is, firing tran-
sitions that are in the same orbit under Stab(G, M) lead to symmetric suc-
cessor markings. As generators of Stab(G, M) are found during the search
through the Schreier-Sims representation, the orbits of the transitions under
Stab(G, M) can be computed during the search, too.

5 PARTITION GUIDED SCHREIER-SIMS SEARCH

It is possible to combine the backtracking search in the Schreier-Sims rep-
resentation described in Sect. 4 with a standard preprocessing technique ap-
plied in graph isomorphism algorithms. Assuming a fixed subgroup G of
Aut(N) and given a marking M , an ordered partition of P ∪ T is first com-
puted in a way that respects the symmetries in G. The procedure computing
the partition for M is based on the use of invariants and is a variant of the
standard algorithms for graph isomorphism checking and canonical labeling
of graphs, see e.g. [McKay 1981; Kreher and Stinson 1999]. The place val-
uation corresponding to the partition is then used to prune the search in the
Schreier-Sims representation of G. That is, instead of searching through the
permutations that are compatible with the marking in question as was done
in Sect. 4, the permutations compatible with the constructed place valuation
are searched. The hope is that the place valuation is closer to being injective
than the original marking, i.e., that it can distinguish the places from each
other better.

5.1 Ordered Partitions

Some notation and preliminaries of ordered partitions is defined first.
An ordered partition of a nonempty set A is a list p = [C1, . . . , Cn] such

that the set {C1, . . . , Cn} is a partition of A meaning that (i) ∅ 6= Ci ⊆ A for
each 1 ≤ i ≤ n, (ii)

⋃n
i=1 Ci = A, and (iii) Ci ∩ Cj = ∅ for all i 6= j. The sets

Ci are the cells (or blocks) of the partition. An ordered partition is discrete if
all its cells are singleton sets and unit if it contains only one cell (the set A).
The function incell from the ordered partitions of A and the elements of A
to natural numbers is defined by incell([C1, . . . , Cn], x) = i ⇔ x ∈ Ci.

An ordered partition p1 of A is finer than (or a refinement of) an or-
dered partition p2, denoted by p1 ≤ p2, if each cell in p1 is a subset of a
cell in p2. An ordered partition p1 of A is a cell order preserving refine-
ment of an ordered partition p2, denoted by p1 � p2, if p1 ≤ p2 and for all
x, y ∈ A, incell(p1, x) < incell(p1, y) implies incell(p2, x) ≤ incell(p2, y).
That is, if p2 = [C2,1, . . . , C2,n], then any p1 such that p1 � p2 is of form
[C1,1,1, . . . , C1,1,d1 , . . . C1,n,1, . . . , C1,n,dn ], where

⋃
1≤j≤di

C1,i,j = C2,i for all
1 ≤ i ≤ n. For instance, [{b}, {a}, {c}] ≤ [{a}, {b, c}], [{b}, {a}, {c}] �
[{a}, {b, c}], and [{a}, {c}, {b}] � [{a}, {b, c}]. The relation � is reflexive,
transitive and antisymmetric, i.e., a partial order on the set of all ordered
partitions of A.
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A permutation γ of A acts on ordered partitions of A by γ([C1, . . . , Cn]) =
[γ(C1), . . . , γ(Cn)]. Clearly, incell(p, x) = incell(γ(p), γ(x)) for all ordered
partitions p of A and for all x ∈ A.

5.2 Partition Generators

Assume a net N , a subgroup G of Aut(N), and a Schreier-Sims representa-
tion ~G = [U1, . . . , U|P |+|T |] of G under a base β = [p1, . . . , p|P |, t1, . . . , t|T |]
in which the places are enumerated before the transitions. Denote the set of
all ordered partitions of P ∪ T by P.

Next, the marking M in question is assigned an ordered partition of P ∪T
in a way that respects the symmetries in G. The idea is to try to distinguish
between the elements in P ∪ T so that distinguishable elements are put in
different cells. Formally, define the following.

Definition 5.1 A function f : M → P assigning each marking to an ordered
partition is a G-partition generator if for all markings M ∈ M and for all
g ∈ G it holds that f(g(M)) = g(f(M)).

That is, for permuted markings, similarly permuted ordered partitions are
assigned. A technique for obtaining G-partition generators is described in
Sect. 5.3. Now assume a fixed G-partition generator f .

An ordered partition can be interpreted as a place valuation by simply
assigning each place the cell number in which it appears in the ordered
partition. Formally, the place valuation pvalp corresponding to an ordered
partition p of P ∪ T is defined by

pvalp(p) = incell(p, p)

for each place p ∈ P . The next lemma shows that the place valuations
assigned to symmetric markings in this way are symmetric, too.

Lemma 5.2 For all g ∈ G and all markings M , pvalf(g(M)) = g(pvalf(M)).

A direct consequence of this is that each stabilizer g ∈ Stab(G, M) is a
stabilizer of pvalf(M):

Corollary 5.3 For each stabilizer g ∈ Stab(G, M), g(pvalf(M)) = pvalf(M).

Thus Stab(G, M) is a subgroup of Stab(G, pvalf(M)). For all “reasonable”
G-partition generators, the stabilizer groups are actually the same.2

Lemma 5.4 If incell(f(M), p1) = incell(f(M), p2) ⇒ M(p1) = M(p2) for
all places p1, p2 ∈ P , then Stab(G, pvalf(M)) = Stab(G, M).

After building the ordered partition f(M) for the marking M and the
corresponding place valuation pvalf(M), let

posreps(M) = {ĝ−1(M) | ĝ ∈ G and ĝ is compatible with pvalf(M)}

2Such “reasonable” cases are obtained by simply applying the marking invariant de-
scribed in the following subsection during the partition generation process.
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denote the set of possible representative markings for M (recall Sect. 4). Like
earlier in Thm. 4.1, it can be proven that for symmetric markings, the sets of
possible representative markings coincide.

Theorem 5.5 For each marking M ∈ M and for each symmetry g ∈ G,
posreps(M) = posreps(g(M)).

Again, M ′ ∈ posreps(M) implies M ′ ≡G M and it is not, in general, the
case that M ∈ posreps(M). Furthermore, by Thm. 2.5, a permutation ĝ
is compatible with pvalf(M) if and only if the permutation g ◦ ĝ is com-
patible with g(pvalf(M)) = pvalf(M) for any stabilizer g ∈ G of pvalf(M).
Hence the number of permutations compatible with pvalf(M) is a multiple

of
∣∣∣Stab(G, pvalf(M))

∣∣∣ (that in all reasonable cases equals to |Stab(G, M)| by
Lemma 5.4).

Now the lexicographically smallest state in posreps(M) can be searched
by using the backtrack search algorithm Alg. 4.1 described in Sect. 4 with the
obvious changes (i.e., changing the line 2 to refer to the ordered partition
f(M)). Obviously, the pruning technique based on the fixed prefix is sound,
and Cor. 5.3 ensures that the stabilizer pruning technique is also sound.

Similarly to that in Sect. 4, a hardness measure can be defined for mark-
ings. Define that a marking M is

1. trivial if the partition f(M) is discrete,
2. easy if it is not trivial but the set posreps(M) contains only one mark-

ing,
3. hard if it is neither trivial nor easy.

Again, this classification depends on the applied (i) Schreier-Sims represen-
tation, (ii) G-partition generator, and (iii) multiset selector. Furthermore,
the classification is closed under G. Note that if a marking M is trivial, then
there is a unique permutation in G compatible with the partition f(M) and
thus the set posreps(M) contains only one marking. On the other hand,
easy markings may have several permutations in G that are compatible with
the partition. The definition of triviality defined here is stronger than that
in Sect. 4: there may be markings M for which there is only one permuta-
tion compatible with f(M) although f(M) is not discrete. The definition
here is chosen because it reveals the efficiency of the applied G-partition
generator better (more trivial markings, the better). However, a fundamental
limitation of G-partition generators is that they cannot distinguish between
the elements that are in the same Stab(G, M)-orbit:

Fact 5.6 If g ∈ Stab(G, M) for a marking M , then f(g(M)) = g(f(M))
implies f(M) = g(f(M)) and thus each element x ∈ P ∪ T must be in the
same cell in the partition f(M) as the element g(x).

Thus a trivial marking M has the trivial stabilizer group, i.e., Stab(G, M) =
{I}.

Example 5.7 Consider the net in Fig. 4 and the Schreier-Sims representa-
tion ~G of its automorphism group G described in Ex. 2.2.
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Assume a marking M = 1 ′p1 and a G-partition generator f mapping M
to

f(M) = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t4,1}, {t3,2, t3,4}, {t2,3, t4,3}].

By Fact 5.6, this is one of the finest partitions that any G-partition generator
can produce since h1,1 ◦ h2,2 =

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t3,4 t3,2 t2,3 t2,1 t1,2

)
is a

stabilizer of M in G. The corresponding place valuation is

pvalf(M) = {p1 7→ 3, p2 7→ 2, p3 7→ 1, p4 7→ 2}

and the symmetries in G compatible with pvalf(M) are h1,3 ◦ h2,1 and h1,3 ◦
h2,2. Now (h1,3 ◦ h2,1)

−1(M) = 1 ′p3 and (h1,3 ◦ h2,2)
−1(M) = 1 ′p3. Thus

posreps(M) = {1 ′p3}. According to the above hardness measure for mark-
ings, M is easy.

For the marking M ′ = 1 ′p2 (which is symmetric to M as g = h1,2 ◦h2,1 =(
p1 p2 p3 p4 t1,2 ···
p2 p3 p4 p1 t2,3 ···

)
maps M to M ′), the G-partition generator f must map M ′

to f(M ′) = f(g(M)) = g(f(M)), i.e.,

f(M ′) = [{p4}, {p1, p3}, {p2}, {t2,3, t2,1}, {t3,2, t1,2}, {t4,3, t4,1}, {t3,4, t1,4}].

Again, this is one of the finest partitions one can get by using any G-partition
generator since h1,3 ◦ h2,2 =

(
p1 p2 p3 p4 t1,2 ···
p3 p2 p1 p4 t3,2 ···

)
is a stabilizer of M ′ in G.

The corresponding place valuation is pvalf(M ′) = {p1 7→ 2, p2 7→ 3, p3 7→
2, p4 7→ 1} and the symmetries compatible with pvalf(M ′) are h1,4 ◦ h2,1 and
h1,4 ◦ h2,2. Now (h1,4 ◦ h2,1)

−1(M ′) = 1 ′p3 and (h1,4 ◦ h2,2)
−1(M ′) = 1 ′p3.

Thus posreps(M ′) = posreps(M) as required by Thm. 5.5. ♣

5.3 Partition Refiners and Invariants

The G-partition generators discussed above can be obtained by using G-
partition refiners defined below.

Definition 5.8 A G-partition refiner is a function R : M×P → P such
that both

1. R(M, p) � p, and
2. R(g(M), g(p)) = g(R(M, p))

hold for all g ∈ G, for all markings M ∈ M, and for all partitions p ∈ P.

That is, the refined partition must be a cell order preserving refinement of the
argument partition and for permuted arguments, the result has to be similarly
permuted. A direct consequence of the definition is that if a permutation
g ∈ G fixes both a marking M and a partition p (i.e., G(M) = M and
g(p) = p), then it fixes the refined partition R(M, p), too. The composition
R2?R1 of two G-partition refiners,R1 andR2, defined by (R2?R1)(M, p) =
R2(M,R1(M, p)), is also a G-partition refiner. When a G-partition refiner is
applied to the unit partition, the result is a G-partition generator.

Lemma 5.9 For each G-partition refiner R, the function fR : M → P

defined by fR(M) = R(M, [P ∪ T ]) is a G-partition generator.
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A way to obtain G-partition refiners is based on the use of G-invariants.

Definition 5.10 A function I : M×P× {P ∪ T} → Z is a G-invariant if

I(M, p, x) = I(g(M), g(p), g(x)).

holds for all g ∈ G, for all markings M ∈ M, for all ordered partitions p ∈ P

of P ∪ T , and for all nodes x ∈ P ∪ T .

Clearly any G-invariant is also a G′-invariant for any subgroup G′ of G. The
following are G-invariants for any subgroup G of Aut(N).

– The node type invariant Inode type is defined by

Inode type(M, p, x) =

{
0 if x ∈ P

1 if x ∈ T .

– Assume a fixed total order between the places and transitions. Now the
orbits of G inherit this order and the G-orbit invariant IG-orbit is defined
by IG-orbit(M, p, x) = orbitnum(x), where orbitnum(x) is defined as
on page 14.

– The marking invariant Imarking is defined by

Imarking(M, p, x) =

{
M(x) if x ∈ P

−1 if x ∈ T .

– The preset of an element x ∈ P ∪ T is the set •x = {x′ | 〈x′, x〉 ∈ F}
and the postset x• is the set {x′ | 〈x, x′〉 ∈ F}. The partition indepen-
dent weighted in- and out-degree invariants are defined by

Iin-degree of weight w(M, p, x) = |{x′ ∈ •x |W (〈x′, x〉) = w}|

and

Iout-degree of weight w(M, p, x) = |{x′ ∈ x• |W (〈x, x′〉) = w}| .
– The partition dependent weighted in- and out-degree invariants are de-

fined by

Iin-degree of weight w from cell c(M, p, x) =

|{x′ ∈ •x |W (〈x′, x〉) = w ∧ incell(p, x′) = c}|

and

Iout-degree of weight w to cell c(M, p, x) =

|{x′ ∈ x• |W (〈x, x′〉) = w ∧ incell(p, x′) = c}| .
Note that the partition independent weighted in- and out-degree invariants
and the node type invariant are subsumed by the G-orbit invariant in the
sense that if the values of two nodes are equal under the G-orbit invariant,
they are equal under these invariants, too. That is, they cannot distinguish
elements that the G-orbit invariant cannot.

A partition can be refined according to an invariant by splitting the cells
according to the values assigned to nodes by the invariant. Formally, an
invariant defines the corresponding partition refiner as follows. For a G-
invariant I, define the function RI : M×P → P by RI(M, p) = pr

such that for all x, x′ ∈ {P ∪ T}, for all p ∈ P, and for all M ∈ M,
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1. incell(pr, x) = incell(pr, x
′) if and only if incell(p, x) = incell(p, x′)

and I(M, p, x) = I(M, p, x′), and
2. incell(pr, x) < incell(pr, x

′) if and only if either
(a) incell(p, x) < incell(p, x′), or
(b) incell(p, x) = incell(p, x′) and I(M, p, x) < I(M, p, x′).

Lemma 5.11 The function RI is a G-partition refiner.

Partition refiners with respect to some invariants can also be defined proce-
durally so that in the resulting partition two nodes are in the same cell if and
only if their invariant values in that partition are the same. This is especially
the case for the partition dependent weighted in- and out-degree invariants,
where the procedure corresponds to the method of computing the so-called
equitable partition in [McKay 1981; Kreher and Stinson 1999].

Example 5.12 Consider again the net in Fig. 4 and the Schreier-Sims repre-
sentation ~G of its automorphism group G described in Ex. 2.2.

Assume a marking M = 1 ′p1. Initially, the partition is

pM,0 = [{p1, p2, p3, p4, t1,2, . . .}].

Refining this partition according to the G-orbit invariant yields

pM,1 = [{p1, p2, p3, p4}, {t1,2, . . .}],

and refining according to the marking M gives

pM,2 = [{p2, p3, p4}, {p1}, {t1,2, . . .}].

Evaluating the invariant Iin-degree of weight 1 from cell 1 in the partition pM,2 gives
Iin-degree of weight 1 from cell 1(M, pM,2, pi) = 0 for each 1 ≤ i ≤ 4, and that
Iin-degree of weight 1 from cell 1(M, pM,2, t) equals to 0 for t = t1,2 and t = t1,4 and
to 1 for other transitions. Refining pM,2 thus yields

pM,3 = [{p2, p3, p4}, {p1}, {t1,2, t1,4}, {t2,1, t2,3, t3,2, t4,3, t3,4, t4,1}]

Refining this ordered partition according to Iin-degree of weight 1 from cell 2 changes
nothing and thus pM,4 = pM,4. Next, Iin-degree of weight 1 from cell 3(M, pM,4, p)
equals to 0 for p = p1 and p = p3 and to 1 for p = p2 and p = p4, and
Iin-degree of weight 1 from cell 3(M, pM,4, t) = 0 for all transitions. Thus

pM,5 = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t2,3, t3,2, t4,3, t3,4, t4,1}]

Refining with Iin-degree of weight 1 from cell 4 and Iin-degree of weight 1 from cell 5 changes
nothing. Next, refining according to Iout-degree of weight 1 to cell 1 yields

pM,8 = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t3,2, t3,4, t4,1}, {t2,3, t4,3}]

and refining according to Iout-degree of weight 1 to cell 2 yields

pM,9 = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t4,1}, {t3,2, t3,4}, {t2,3, t4,3}].

This partition cannot be refined further by any invariant since the permuta-
tion

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t3,4 t3,2 t2,3 t2,1 t1,2

)
∈ G is a stabilizer of M in G

also fixing the partition pM,9. ♣
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6 EXPERIMENTAL RESULTS

In this section, some experimental results are given. The results are ob-
tained by using and extending the lola reachability analyzer, version 1.0 beta
[Schmidt 2000c].

6.1 Net Classes

The following net classes are used in the experiments.

Mutual exclusion in grid-like networks. These nets are based on the nets
in [Schmidt 2000b]. A net “grid d n” models a d-dimensional hypercube of
agents with n agents in each dimension. Each agent has two states, critical
and non-critical, and can move from the non-critical state into critical one if
none of its neighbors is in critical state. See Fig. 8 for the “grid 3 2”-net (the
dotted lines are drawn only to visualize the three dimensions). The automor-
phism group of an d dimensional grid net is isomorphic to the automorphism
group of an d-dimensional (hyper)cube.

Figure 8: A three dimensional grid with two agents per row.

Dining philosophers. A version of the classic dining philosophers net. A
net “ph n” has n philosophers and the automorphism group of such net is
isomorphic to the cyclic group of order n.

Database managers. An unfolding of the Colored Petri net presented in
[Jensen 1992]. “db n” denotes the net with n managers, having the automor-
phism group isomorphic to the symmetric group of degree n.

Graph enumeration nets. These nets resemble the one appearing in [Junt-
tila 2001, Lemma 11], inspired by the system in the proof of Thm. 3.4 in [Ip
1996]. Assume a vertex set V = {1, . . . , n} and consider the set of all the
directed, unlabeled graphs over V having no self-loops. The following net,
call it “digraphs n”, enumerates all such graphs in its reachable markings
(see Fig. 9 for an example when n = 3). For each vertex v ∈ V , the net
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has the place pv. Similarly, for each possible edge 〈v1, v2〉 ∈ V × V such
that v1 6= v2, the net has the place pv1,v2 . The purpose is that the places of
form pv1,v2 describe the adjacency matrix of a graph over V and that a place
pv1,v2 contains one token in a marking if and only if the graph corresponding
to the marking has an edge 〈v1, v2〉. For each place pv1,v2 there is a transi-
tion removing one token from it. In addition, each place pv corresponding
to a vertex v is connected to each place of form pv,v′ with a gadget shown
as a dashed line and explained in Fig. 9. Similarly, pv is also connected to
each place of form pv′,v with a gadget shown as a dotted line and explained
in Fig. 9. These gadgets guarantee that the automorphism group of the net
is isomorphic to the permutation group consisting of all permutations of V
(i.e., to the symmetric group of degree n). The action of a permutation π of
V on the places is such that each pv is permuted to pπ(v) and each pv1,v2 is
permuted to pπ(v1),π(v2). Thus the action of π corresponds to the usual action
of a permutation of the vertex set on the adjacency matrix of a graph. In
the initial marking, all the places of form pv1,v2 corresponding to the possible
edges have one token and the others are empty. Thus the set of all reachable
markings of the net corresponds to the set of all directed, unlabeled graphs
over V having no self-loops. Furthermore, two reachable markings are sym-
metric if and only if their corresponding graphs are isomorphic. Thus an
optimal quotient reachability graph consisting only of one marking of each
orbit has exactly one marking for each class of mutually isomorphic graphs.

p2,3p2,1p1,2 p3,1 p3,2p1,3

p1 p2 p3

where abbreviates and abbreviates

Figure 9: A net enumerating all directed graphs without self-loops over three
vertices.

A similar net, call it “graphs n”, enumerating all undirected, unlabeled
graphs over n vertices having no self-loops can be constructed by similar prin-
ciples. See Fig. 10 for an example when n = 4.

Properties of nets. Table 1 lists the properties of the nets used in the ex-
periments. The columns |P | and |T | describe the number of places and
transitions in the net, respectively, and |G| gives the size of the symmetry
group stabilizing the initial marking (the group that is used in the experi-
ments). The number of reachable markings and transition firings as well as
the run time of lola in seconds without the symmetry reduction method is
given in the last three columns, respectively. For some nets the number of
reachable markings is too large and running lola would result in running out
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p{1,2} p{1,3} p{1,4} p{2,3} p{2,4} p{3,4}

p1 p2 p3 p4

Figure 10: A net enumerating all undirected graphs without self-loops over
four vertices.

reachable lola
net |P | |T | |G| markings edges time

ph 10 40 30 10 6,726 43,480 1
ph 13 52 39 13 94,642 795,353 4
ph 16 64 48 16 1,331,714 13,774,112 90
db 8 193 128 40,320 17,497 81,664 1
db 9 244 162 362,880 59,050 314,946 3

db 10 301 200 3,628,800 196,831 1,181,000 15
db 20 1201 800 20! 1+20×(320−1) ≈ 23× 109

grid 2 5 50 50 8 55,447 688,478 3
grid 3 3 54 54 48 70,633 897,594 4
grid 5 2 64 64 3840 254,475 3,689,792 20
graphs 5 15 30 120 1,024 5,129 1
graphs 6 21 45 720 32,678 245,760 1
graphs 7 28 63 5,040 2,097,152 22,020,096 86
graphs 8 36 84 40,320 2(8

2) = 228

graphs 9 45 108 362,880 2(9
2) = 236

digraphs 3 9 18 6 64 192 1
digraphs 4 16 36 24 4,096 24,576 1
digraphs 5 25 60 120 1,048,576 10,485,760 39
digraphs 6 36 90 720 26×(6−1) = 230

Table 1: Properties of the nets.

of memory. In such cases, the run time of lola is not given but the number
of reachable states is given analytically.

6.2 Results

The experimental results were obtained in a PC machine with 1GHz AMD
Athlon processor and 1Gb of memory, running the Debian Linux operating
system. The extended lola was compiled with the GNU g++ compiler with
the -O3 optimization flag switched on. All run-times were obtained by the
Unix time command and are user times rounded up to full seconds unless
otherwise stated. The available memory was limited to 900Mb and the avail-
able time to 24 hours by the Unix ulimit command.

The original symmetry reduction algorithms in lola described in [Schmidt
2000b] are numbered as follows: 1 refers to the “iterating the symmetries” al-
gorithm, 2 is the “iterating the states” algorithm, and 3 is the “canonical
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representative” algorithm3. The results of these algorithms are shown in Ta-
bles 2 and 3. The lola implementation seems to contain some bugs since the
algorithms 1 and 2 should both produce optimally reduced quotient reach-
ability graphs but the numbers of the markings in the generated quotient
reachability graphs are not the same.

lola alg. 1 lola alg. 2
net markings edges time markings edges time

ph 10 684 4,421 1 684 4,421 8
ph 13 7,282 61,193 2 7,282 61,193 629
ph 16 83,311 861,696 33 ≥83,311 ≥861,000 >24h
db 8 37 177 1 37 177 3
db 9 46 250 9 46 250 6

db 10 56 341 118 56 341 11
db 20 >24h 211 2,681 1,477

grid 2 5 7,567 94,143 1 7,471 92,982 183
grid 3 3 2,154 27,620 2 2,103 26,994 62
grid 5 2 296 4,336 7 287 4,237 14
graphs 5 34 170 1 34 170 1
graphs 6 156 1,170 1 152 1,140 1
graphs 7 1,044 10,962 17 1,022 10,731 27
graphs 8 12,346 172,844 2,358 12,095 169,330 3,662
graphs 9 >47,683 >675,000 >24h >55,400 >792,000 >24h

digraphs 3 16 48 1 16 48 1
digraphs 4 218 1,308 1 215 1,290 1
digraphs 5 9,735 97,357 3 9,567 95,670 1,197
digraphs 6 1,598,555 24,060,959 1,810 >85,469 >908,000 >24h

Table 2: Results for the original lola algorithms.

Table 4 shows the results of the Schreier-Sims search algorithm described
in Sect. 4. The maximal element with minimal frequency multiset selector
is used because it seems to usually give the best results. For instance, the
minimal element multiset selector gives for some nets bit smaller running
times since it can be implemented more efficiently, but in some nets the
running times are much worse. Pruning with the fixed prefix, the trivial
pruning with the found stabilizers, and the base optimization described in
page 18 are applied, too. The pruning of transitions with the found stabilizers
was not implemented because the current lola implementation only stores
the symmetry group restricted to the set of places. The “trivial %” and “easy
%” columns show the percentage of trivial and easy canonized markings,
respective, as defined in Sect. 4. The “max dead” and “av. dead” columns
show the maximum and average number of dead nodes, respectively, in the
search trees for hard markings. As can be seen, practically all markings are
usually hard and the number of bad nodes in a search tree can grow quite
large. One reason for this behavior is that all the nets are 1-safe, i.e., the
number of tokens in a place in each reachable marking is at most one. Thus
the multiset selector cannot usually prune the search tree efficiently.

3Not a canonical representative marking function by the terms used in this report.
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lola alg. 3
net markings edges time

ph 10 684 4,421 1
ph 13 7,282 61,193 1
ph 16 83,311 861,696 9
db 8 2,188 10,215 1
db 9 6,562 35,002 1

db 10 19,684 118,109 4
db 20 >399,000 >3,110,000 >418

grid 2 5 14,236 177,007 2
grid 3 3 10,847 136,446 2
grid 5 2 3,020 44,502 1
graphs 5 117 569 1
graphs 6 1,646 11,572 1
graphs 7 37,195 361,478 3
graphs 8 1,536,698 19,805,842 246
graphs 9 >5,128,600 >61,941,000 >801

digraphs 3 16 48 1
digraphs 4 347 2,038 1
digraphs 5 40,078 375,708 3
digraphs 6 >4,581,000 >56,146,000 >512

Table 3: Results for the original lola algorithms (continued).

Table 5 shows the results for the partition guided Schreier-Sims search
algorithm described in Sect. 5. The applied partition generator first refines
the unit partition according to the orbit and marking invariants and then re-
fines the resulting partition with the partition dependent weighted in- and
out-degree invariants until no improvement is achieved. For efficiency rea-
sons, this latter refinement is implemented in a procedural way as discussed
in page 24. As can be seen from the results, the amounts of trivial and easy
markings are now much higher, compared to the marking guided Schreier-
Sims search algorithm discussed above. Furthermore, the hard markings are
also easier, and although the number of dead nodes can be still in thou-
sands, on the average it is very low. For nets with small symmetry groups,
the overhead of computing the ordered partition sometimes makes the algo-
rithm slower than the marking guided Schreier-Sims search (e.g., the dining
philosophers nets and the nets “grid 2 5”, “grid 3 3”, and “digraphs 6”).

Table 6 shows the results of the characteristic graph approach described
in Sect. 3 when nauty [McKay 1990] is used as the graph canonizer. The
“trivial %” column shows the percentage of the trivial canonized markings,
i.e., markings for which the search tree of nauty contains only one node.
The “max nodes” and “av. nodes” columns give the maximum and average
number of nauty search tree nodes, respectively, for the canonized non-trivial
markings. Note that the percentage of the trivial markings encountered is
essentially the same as in the partition guided Schreier-Sims search approach
discussed above. This not a surprise since the preprocessing technique in
nauty and the applied partition generator are based on the same ideas (recall
Sect. 5). Note that although the search tree sizes of nauty are very small in all
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trivial easy max av.
net markings edges time % % dead dead

ph 10 684 4,421 1 7.71 0.50 9 1.38
ph 13 7,282 61,193 1 2.85 0.00 12 2.09
ph 16 83,311 861,696 15 1.04 0.01 15 2.98
db 8 37 177 1 0 6.21 66 24.98
db 9 46 250 1 0 4.80 132 39.49

db 10 56 341 1 0 3.81 259 60.36
db 20 211 2,681 172 0 0.86 40,152 1,844.12

grid 2 5 7,471 92,982 1 0 3.88 7 2.07
grid 3 3 2,103 26,994 1 0 1.59 46 12.14
grid 5 2 288 4,253 1 0 1.03 278 126.94
graphs 5 34 170 1 0 0.59 61 38.25
graphs 6 156 1,170 1 0 0.09 313 109.76
graphs 7 1,044 10,962 3 0 0.01 1,413 272.48
graphs 8 12,346 172,844 82 0 0.00 8,770 580.28
graphs 9 274,668 4,944,024 5,036 0 0.00 70,017 226.80

digraphs 3 16 48 1 29.17 22.92 2 1.17
digraphs 4 218 1,308 1 0 4.05 7 3.15
digraphs 5 9,608 96,080 2 0 0.09 27 7.97
digraphs 6 1,540,944 23,114,160 929 0 0.00 93 17.19

Table 4: Results of the plain Schreier-Sims search.

examples, the running times are high. The bad running times are because of
the following:

1. nauty does not handle edge labels and is optimized for undirected
graphs. P/T-nets are, on the other hand, edge labeled and directed.
Thus some extra vertices have to be included in the graphs (recall
Sect. 3).

2. While P/T-nets are usually sparse, nauty is designed for dense graphs in
a sense that the graphs are internally represented as adjacency matrixes.
Thus storing a graph with thousands of vertices takes a lot of memory
and consequently slows down the refinement routines needed during
the reach tree traversal in nauty.

The results would probably look very different if a graph canonizer designed
for (i) sparse, and (ii) vertex and edge labeled directed graphs were used.

7 CONCLUSIONS

In this report, three new algorithm for producing (canonical) representative
markings for Place/Transition-nets are described. All the algorithms require
the precomputation of a Schreier-Sims representation of the symmetry group
of the net in question. The first algorithm builds a characteristic graph of the
marking and obtains the canonical representative for the marking from the
canonical version of the graph, which is produced by a black box graph can-
onizer. The second algorithm is a backtrack search in the Schreier-Sims rep-
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trivial easy max av.
net markings edges time % % dead dead

ph 10 684 4,421 1 98.76 1.24 - -
ph 13 7,282 61,193 4 99.997 0.003 - -
ph 16 83,311 861,696 66 99.91 0.09 - -
db 8 37 177 1 0 100 - -
db 9 46 250 1 0 100 - -

db 10 56 341 1 0 100 - -
db 20 211 2,681 27 0 100 - -

grid 2 5 7,471 92,982 9 90.86 8.71 2 1.19
grid 3 3 2,103 26,994 4 60.82 33.22 16 1.86
grid 5 2 288 4,253 1 2.26 72.00 15 2.30
graphs 5 34 170 1 0 71.18 16 2.29
graphs 6 156 1,170 1 11.11 57.78 40 3.31
graphs 7 1,044 10,962 1 24.70 50.58 196 3.18
graphs 8 12,346 172,844 15 40.52 42.95 535 3.71
graphs 9 274,668 4,944,024 586 57.46 33.92 2,045 3.02

digraphs 3 16 48 1 77.08 22.92 - -
digraphs 4 218 1,308 1 78.29 21.18 3 2.29
digraphs 5 9,608 96,080 7 89.15 10.22 10 1.52
digraphs 6 1,540,944 23,114,160 2,404 95.68 4.05 34 1.10

Table 5: Results of the partition guided Schreier-Sims search.

resentation of the symmetry group. The search tree is pruned by the marking
in question and the stabilizers of the marking (which are found during the
search). The algorithm returns the smallest marking it finds as the canon-
ical representative. The third algorithm improves the second one by com-
bining it with a standard preprocessing technique applied in graph isomor-
phism/canonizer algorithms. That is, an ordered partition for the marking
is first built by applying a set of invariants and the partition is then used to
further prune the search in the Schreier-Sims representation. The second
and third algorithm could be approximated (i.e., made non-canonical) by
performing only a limited search in the Schreier-Sims representation. For
instance, an upper limit for the traversed nodes could be set.

Some experimental results are provided, too. They show that the pro-
posed algorithms are competitive against the existing algorithms described
in [Schmidt 2000a; 2000b]. The third proposed algorithm is perhaps the
most robust one, working well with many kinds of symmetry groups, even
with very large ones. However, an efficient graph canonizer designed espe-
cially for the class of sparse, vertex and edge labeled directed graphs would
probably make the first algorithm competitive, too.

An interesting alternative for producing canonical representative markings
not discussed earlier in this report is the string canonization algorithm in
[Babai and Luks 1983]. The algorithm does the canonization orbit-wise, and
also exploits the imprimitivity of groups. However, the algorithm seems to
involve more complex permutation group algorithms and implementing it is
left as a future challenge.
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trivial max av.
net markings edges time % nodes nodes

ph 10 684 4,421 8 98.76 3 3.00
ph 13 7,282 61,193 201 99.997 3 3.00
ph 16 83,311 861,696 4,866 99.91 3 3.00
db 8 37 177 87 0 36 18.09
db 9 46 250 278 0 45 24.11
db 10 56 341 877 0 55 31.12
db 20 >24h

grid 2 5 7,471 92,982 2,303 90.86 8 3.13
grid 3 3 2,103 26,994 1,498 60.82 10 3.52
grid 5 2 288 4,253 920 2.26 21 5.71
graphs 5 34 170 1 0 15 5.02
graphs 6 156 1,170 3 11.11 21 5.47
graphs 7 1,044 10,962 38 24.70 28 5.29
graphs 8 12,346 172,844 1,053 40.52 36 4.83
graphs 9 274,668 4,944,024 49,916 57.46 45 4.26

digraphs 3 16 48 1 77.08 4 3.09
digraphs 4 218 1,308 2 78.29 8 3.23
digraphs 5 9,608 96,080 243 89.15 13 3.23
digraphs 6 >1,028,419 >14,187,000 >24h

Table 6: Results of the characteristic graph approach.
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A PROOFS

Proof of Theorem 2.5

Theorem 2.5 Let g ∈ G. A permutation ĝ ∈ G is compatible with a place
valuation pval if and only if the permutation g ◦ ĝ ∈ G is compatible with
the permuted place valuation g(pval).

Proof. Assume that ĝ1 ◦ · · · ◦ ĝ|P | ◦ ĝ|P |+1 · · · ◦ ĝ|P |+|T | is the unique repre-
sentation of ĝ in the fixed Schreier-Sims representation of G. Similarly, let
ĝ′1 ◦ · · · ĝ′|P | ◦ ĝ′|P |+1 · · · ◦ ĝ′|P |+|T | be the unique representation of ĝ′ = g ◦ ĝ.
Fix any i, 1 ≤ i ≤ |P |. It must now be proven that

pval((ĝ1 ◦ · · · ◦ ĝi)(pβ,i)) ∈

select

(∑
h∈Ui

1 ′pval({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui})

)

if and only if

(g(pval))((ĝ′1 ◦ · · · ◦ ĝ′i)(pβ,i)) ∈

select

(∑
h∈Ui

1 ′(g(pval))({(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(pβ,i) | h ∈ Ui})

)
.

First, (ĝ1 ◦ · · · ◦ ĝi)(pβ,i) = ĝ(pβ,i) because the “postfix” permutation
ĝi+1 ◦ · · · ◦ ĝ|P | of ĝ fixes pβ,i. Similarly, (ĝ′1 ◦ · · · ◦ ĝ′i)(pβ,i) = ĝ′(pβ,i) =
(g ◦ ĝ)(pβ,i) = g(ĝ(pβ,i)). Thus pval((ĝ1 ◦ · · · ◦ ĝi)(pβ,i)) = pval(ĝ(pβ,i)),
(g(pval))((ĝ′1◦· · ·◦ ĝ′i)(pβ,i)) = (g(pval))(ĝ′(pβ,i)) = (g(pval))(g(ĝ(pβ,i))) =
pval(ĝ(pβ,i)) and

pval((ĝ1 ◦ · · · ◦ ĝi)(pβ,i)) = (g(pval))((ĝ′1 ◦ · · · ◦ ĝ′i)(pβ,i)).

Secondly, note that {h(pβ,i) | h ∈ Ui} = [pβ,i]Gi−1
, i.e. the orbit of pβ,i

under Gi−1, and thus {(ĝ1 ◦ · · · ◦ ĝi−1 ◦h)(pβ,i) | h ∈ Ui} equals to (ĝ1 ◦ · · · ◦
ĝi−1)([pβ,i]Gi−1

). As the last permutations ĝi ◦ · · · ◦ ĝ|P | in the representation
of ĝ belong to the subgroup Gi−1, (ĝi ◦ · · · ◦ ĝ|P |)([pβ,i]Gi−1

) = [pβ,i]Gi−1
.

Thus {(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui} = (ĝ1 ◦ · · · ◦ ĝi−1)([pβ,i]Gi−1
) =

ĝ([pβ,i]Gi−1
). Similarly, {(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦h)(pβ,i) | h ∈ Ui} = ĝ′([pβ,i]Gi−1

) =

(g ◦ ĝ)([pβ,i]Gi−1
) = g

(
ĝ([pβ,i]Gi−1

)
)

Therefore,

{(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(pβ,i) | h ∈ Ui} = g ({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui}) .
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This implies that∑
h∈Ui

1 ′(g(pval))({(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(pβ,i) | h ∈ Ui}) =∑
h∈Ui

1 ′(g(pval))(g ({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui})) =∑
h∈Ui

1 ′pval({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui})

and thus

select(
∑
h∈Ui

1 ′(g(pval))({(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(pβ,i) | h ∈ Ui})) =

select(
∑
h∈Ui

1 ′pval({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui})).

�

Proof of Theorem 3.1

Theorem 3.1 The mapping KM is a canonical representative function.

Proof. Clearly KM(M) is symmetric to M under G because KM(M) is ob-
tained by applying an element in G to M .

Assume two markings, M1 and M2, that are symmetric under G. By defini-
tion, their characteristic graphs, GM1 and GM2 , respectively, are isomorphic.
Assume that K(GM1) (which equals to K(GM2)) is the canonical version of
GM1 and GM2 . Take any canonization mapping (i.e. isomorphism) γ1 from
GM1 toK(GM1) and γ2 from GM2 toK(GM1). Now γ−1

2 ◦γ1 is an isomorphism
from GM1 to GM2 and γ−1

1 ◦ γ2 is an isomorphism from GM2 to GM1 . By the
definition of characteristic graphs, γ−1

2 ◦ γ1 restricted to P ∪ T belongs to G
and maps M1 to M2 and γ−1

1 ◦ γ2 restricted to P ∪ T belongs to G and maps
M2 to M1.

Define the place valuations pval1 and pval2 by ∀p ∈ P : pval1(p) =
γ1(p) and ∀p ∈ P : pval2(p) = γ2(p). Now

(
(γ−1

2 ◦ γ1)(pval1)
)
(p) =

pval1((γ
−1
2 ◦ γ1)

−1(p)) = pval1(γ
−1
1 (γ2(p))) = γ1(γ

−1
1 (γ2(p))) = γ2(p) =

pval2(p) i.e. γ−1
2 ◦ γ1 restricted to P ∪ T maps pval1 to pval2.

Observe that pval1 and pval2 are clearly injective functions. Assume that
ĝ1 is the unique element in G that is compatible with pval1. By Thm. 2.5, ĝ1

is compatible with pval1 if and only if (γ−1
2 ◦γ1)◦ ĝ1 is compatible with pval2.

Thus (γ−1
2 ◦γ1)◦ ĝ1 is the unique element in G that is compatible with pval2.

Now ((γ−1
2 ◦ γ1) ◦ ĝ1)

−1(M2) = ĝ−1
1 ((γ−1

1 ◦ γ2)(M2)) = ĝ−1
1 (M1) and thus

KM(M1) = KM(M2).
The fact that KM(M) is uniquely determined follows by considering the

case M1 = M2. �

Proof of Theorem 4.1

Theorem 4.1 For each marking M ∈ M and for each symmetry g ∈ G,
posreps(M) = posreps(g(M)).

A PROOFS 35



Proof. By Thm. 2.5, ĝ is compatible with M if and only if g ◦ ĝ is compatible
with g(M). In addition, (g ◦ ĝ)−1(g(M)) = ĝ−1(g−1(g(M))) = ĝ−1(M). �

Proof of Lemma 5.2

Lemma 5.2 For all g ∈ G and all markings M , pvalf(g(M)) = g(pvalf(M)).

Proof. For each place p ∈ P ,

pvalf(g(M))(p) = incell(f(g(M)), p)

= incell(g(f(M)), p)

= incell(f(M), g−1(p))

=
(

pvalf(M)

)
(g−1(p))

=
(
g(pvalf(M))

)
(p).

�

Proof of Lemma 5.4

Lemma 5.4 If incell(f(M), p1) = incell(f(M), p2) ⇒ M(p1) = M(p2) for
all places p1, p2 ∈ P , for all places p1, p2 ∈ P , then Stab(G, pvalf(M)) =

Stab(G, M).

Proof. In Cor. 5.3, it is shown that Stab(G, M) ⊆ Stab(G, pvalf(M)).
Take any permutation g ∈ Stab(G, pvalf(M)), any place p ∈ P and as-

sume that incell(f(M), p1) = incell(f(M), p2) implies M(p1) = M(p2) for
all places p1, p2 ∈ P . It is now shown that

(g(M))(p) = M(p)

which is enough to imply that g(M) = M i.e. g ∈ Stab(G, M) and thus that
Stab(G, pvalf(M)) ⊆ Stab(G, M). Since g is a stabilizer of pvalf(M) in G,
g(pvalf(M)) = pvalf(M) holds and implies that

(g(pvalf(M)))(p) = pvalf(M)(p). (1)

By the action of g on pvalf(M), (g(pvalf(M)))(p) = pvalf(M)(g
−1(p)), which

combined with (1) gives pvalf(M)(p) = pvalf(M)(g
−1(p)). Applying the def-

inition of pvalf(M) to this gives incell(f(M), p) = incell(f(M), g−1(p)).
Thus by the initial assumption it holds that M(p) = M(g−1(p)) implying
that (g(M))(p) = M(g−1(p)) = M(p), which concludes the proof. �

Proof of Theorem 5.5

Theorem 5.5 For each marking M ∈ M and for each symmetry g ∈ G,
posreps(M) = posreps(g(M)).

Proof. By Thm 2.5 and Lemma 5.2, ĝ is compatible with pvalf (M) if and
only if g ◦ ĝ is compatible with g(pvalf(M)) = pvalf(g(M)). In addition, (g ◦
ĝ)−1(g(M)) = ĝ−1(g−1(g(M))) = ĝ−1(M). �
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Proof of Lemma 5.9

Lemma 5.9 For each G-partition refiner R, the function fR : M → P

defined by fR(M) = R(M, [P ∪ T ]) is a G-partition generator.

Proof. For each g ∈ G, fR(g(M)) = R(g(M), [P ∪ T ]) = R(g(M), g([P ∪
T ])) = g(R(M, [P ∪ T ]) = g(fR(M)). �

Proof of Lemma 5.11

Lemma 5.11 The function RI is a G-partition refiner.

Proof. The fact thatRI(M, p) � p is straightforward to see. Take any g ∈ G,
any marking M , and any partition p. Assume that RI(M, p) = pr,1 and
RI(g(M), g(p)) = pr,2. It remains to be shown that g(pr,1) = pr,2. For all
x, x′ ∈ P ∪ T ,

incell(g(pr,1), x) = incell(g(pr,1), x
′)

⇔ incell(pr,1, g
−1(x)) = incell(pr,1, g

−1(x′))

⇔ incell(p, g−1(x)) = incell(p, g−1(x′)) and
I(M, p, g−1(x)) = I(M, p, g−1(x′))

⇔ incell(g(p), x) = incell(g(p), x′) and
I(g(M), g(p), x) = I(g(M), g(p), x′)

⇔ incell(pr,2, x) = incell(pr,2, x
′)

and thus the cells in g(pr,1) and in pr,2 are the same. Similarly, for all x, x′ ∈
P ∪ T ,

incell(g(pr,1), x) < incell(g(pr,1), x
′)

⇔ incell(pr,1, g
−1(x)) < incell(pr,1, g

−1(x′))
⇔ (a) incell(p, g−1(x)) < incell(p, g−1(x′)) or

(b) incell(p, g−1(x)) = incell(p, g−1(x′)) and
I(M, p, g−1(x)) < I(M, p, g−1(x′))

⇔ (a) incell(g(p), x) < incell(g(p), x′) or
(b) incell(g(p), x) = incell(g(p), x′) and

I(g(M), g(p), x) < I(g(M), g(p), x′)
⇔ incell(pr,2, x) < incell(pr,2, x

′)

and thus the cells in g(pr,1) and in pr,2 are ordered in the same way. There-
fore, g(pr,1) = pr,2. �
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