
LTL Model Checking for Modular Petri Nets

Timo Latvala? and Marko Mäkelä
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Abstract. We consider the problem of model checking modular Petri
nets for the linear time logic LTL-X. An algorithm is presented which
can use the synchronisation graph from modular analysis as presented
by Christensen and Petrucci and perform LTL-X model checking. We
have implemented our method in the reachability analyser Maria and
performed experiments. As is the case for modular analysis in general,
in some cases the gains can be considerable while in other cases the gain
is negligible.
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1 Introduction

Modelling using Petri nets can be made easier in many ways. Examples of ex-
tensions of simple Place/Transition nets which ease modelling include, adding
types as in Coloured Petri Nets [1], or allowing modular specifications as in [2].
If, however, we are to reap the full benefits of easier modelling, analysis methods
must also scale up to take advantage of the new features.

One of the most powerful methods of analysing the behaviour of a Petri net
is reachability analysis. By constructing the set of reachable markings we can
decide important properties such as if the net is live, does a certain invariant
hold for all states, etc. Perhaps the most flexible method of analysis we can use is
model checking [3]. Model checking allows us to check if the behaviour of the net
corresponds to a specification given in a temporal logic such as the linear-time
temporal logic (LTL).

Modular Petri nets as presented by Christensen and Petrucci [2] allow de-
signers to specify a system as communicating modules. Modules communicate
using shared transitions or fusion places. Although one of the chief motivations
for using modular specifications is to ease the design of complex systems, another
reason is facilitating compositional reasoning. All analysis methods suffer from
the so called state explosion problem (see, e.g., [4]). Compositional analysis tries
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to alleviate the problem by considering modules in isolation and then reason
about the system as a whole.

Christensen and Petrucci [2] presented a way to perform invariant analysis,
reachability analysis and how to prove several important properties for modular
nets in a modular way. Modular reachability analysis works by hiding internal
moves of the modules. Mäkelä [5] extended their approach for reachability ana-
lysis and implemented modular reachability analysis for hierarchical modular
High-level nets. The work also covers model checking of safety properties using
the translation from LTL safety properties to finite automata implemented in [6].
Full LTL model checking is something which has been missing.

In this work we show how model checking for the temporal logic LTL-X of
the synchronisation graph produced by modular analysis can be achieved. We
have implemented our method in the reachability analyser Maria [7] and present
experimental results. Our results indicate that the overhead of the method is
fairly small, which means that the method works well when modular analysis
is efficient. Our work is inspired by a somewhat similar LTL model checking
method for unfoldings of Petri nets [8]. There are also similarities with the work
done on testers [9,10].

There are many methods which try to use some form of compositional ana-
lysis. As summarised in the survey article [11], using Kronecker algebra, es-
pecially with stochastic Petri nets, can allow analysis of the system as whole
using the components. Compositional reasoning as described by Valmari [12]
advocates the use of process algebraic equivalences for minimisation and com-
position of components, to form an equivalent smaller system where properties
can be proved easily. Another method of compositional reasoning is to use as-
sume guarantee reasoning (see, e.g., [13]). The basic idea is to prove properties
of the modules separately and then conclude that the wanted property holds for
the global system.

2 Definitions

Definition 1. A Place/Transition net (PT-net) is a tuple N = (P, T,W,M0)
where,

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– W : (P × T ) ∪ (T × P ) → N is the arc weight function,
– M0 : P → N is the is initial marking.

A marking is a multiset over P . For a transition t ∈ T we identify t• (•t)
with the multiset given by t•(p) = W (t, p) (•t(p) = W (p, t)) for any p ∈ P .

A transition t ∈ T is enabled in a marking M iff •t ⊆ M . A transition t
enabled in a marking M can occur resulting in the marking M ′ = M − •t+ t•.
This is denoted M t→M ′. A marking in which no transition is enabled is called
a deadlocking marking.
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An execution of a net is an infinite sequence of markings ξ = M0M1M2 . . .

such that M0
t0→ M1

t1→ . . .. The corresponding trace is the infinite sequence of
transitions σ = t0t1t2 . . .. A finite sequence M0

t0→ M1
t1→ . . .

tn−1→ Mn, where
Mn is a deadlocking marking, can be seen as an execution by repeating the last
marking forever, i.e., M0M1 . . .MnMnMn . . ..

Definition 2. The reachability graph G = (V,E, v0) of a net N = (P, T,W,M0)
is defined inductively as follows:

– v0 = M0 ∈ V .
– If M ∈ V and M t→M ′ then M ′ ∈ V and (M, t,M ′) ∈ E.
– V and E contain no other elements.

The reachability graph of a net describes the dynamic behaviour of the net. In
general, the reachability graph can be infinite but in this work we will assume
it is finite unless explicitly stated otherwise. Many properties of a net, such as
home markings and deadlocks, can be decided in linear time w.r.t. the size of the
reachability graph. A simple PT-net modelling a mutual exclusion algorithm and
its reachability graph can be found in Figure 1. The model shows two processes
(l and r) competing for a critical section which is guarded by a lock. A quick
inspection of the reachability graph confirms that under no circumstances are
both processes in the critical section at the same time.
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Fig. 1. A simple model of a mutual exclusion algorithm and its reachability
graph.
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Although PT-nets have great modelling power, the lack of structure can
sometimes be a problem. It is conceptually easier to deal with large systems as
modules, because it allows the designer to consider different parts of the system
in relative isolation. Furthermore, the structural information can in some cases
be utilised to reduce the complexity of analysis.

Modular PT-nets introduce structure to PT-nets by letting modules be spe-
cified separately. The modules communicate either by using shared transitions
or place fusion. We restrict ourselves to nets which communicate using shared
transitions. Christensen and Petrucci [2] have shown that modular nets with
place fusion can be transformed to nets using only shared transitions.

Definition 3. A modular PT-net is tuple Σ = (S,TF ) where:

– S is a finite set of modules:
• each module s ∈ S is a PT-net s = (Ps, Ts,Ws,M0s

),
• the sets of nodes corresponding to different modules are pairwise disjoint,

i.e., for all s1, s2 ∈ S : s1 6= s2 ⇒ (Ps1 ∪ Ts1) ∩ (Ps2 ∪ Ts2) = ∅.
– Let T =

⋃
s∈S Ts be the set of all transitions. TF ⊆ 2T is a finite set of

transition fusion sets such that for all tf ∈ TF we have that if ti, tj ∈ tf and
i 6= j then ti ∈ Ts ⇒ tj 6∈ Ts. In other words, a module may contribute only
one transition to a fusion transition.

Transition fusion sets model synchronising actions. Because the nodes of the
modules are pairwise disjoint, the global marking of a modular net is simply the
union of the markings of the modules. In this work, we mostly use the global
marking of the net and simply denote it M as before. We denote by ET ⊆ T the
set of transitions which belong to a transition fusion set and by IT = T \ ET
the set of internal transitions.

Since there are both fusion transitions and internal transitions in a modular
net, we need a uniform way to refer to them. Here, we call them transition groups
and they are essential equivalent to the transition concept in a standard PT-net.

Definition 4. A transition group tg ⊆ T is a set of transitions such that it
consists of a single internal transition t ∈ IT or is equal to a transition fusion
set tf ∈ TF. The set of all transition groups is denoted TG.

We extend the preset and postset notation to transition groups. Let •tg denote
the multiset given by

•tg(p) =
∑
t∈tg

W (t, p) where W =
⋃

s∈S
Ws

The notation for the postset of a transition group is generalised in a similar
manner. With this notation, enabledness for a transition group generalises in a
natural way.

Definition 5. A transition group tg ∈ TG is enabled in a marking M if

•tg ⊆M
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The result of occurrence of a fusion transition generalises as expected. An enabled
transition group tg can occur in marking M resulting in a marking M ′ given by

M ′ = M − •tg + tg•

It is useful to differentiate between the firing of an internal or an external
transition. We therefore introduce the following notation.

– M [[t〉M ′ denotes thatM ′ is reachable fromM by firing an internal transition.
– M [tf 〉〉M ′ denotes that M ′ is reachable from M by firing a fusion transition

tf .
– M [[σ〉〉M ′, where σ = t0t1t2 . . . tntf , denotes that M ′ is reachable from M

by a sequence of internal transitions followed by a fused transition.

In Figure 2 we show the same mutual exclusion algorithm as in Figure 1
modelled as a modular net. We have split the net into three modules. One module
each for the competing processes and one module for the lock. The fusion sets
are indicated by the labels on the transitions. Note that the transitions ’lock’
and ’unlock’ belong to several transition fusion sets.
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Fig. 2. A mutual exclusion algorithm as a modular net.

3 Modular Reachability Analysis

One of the chief motivations for using modular Petri nets is the possibility of
using modular analysis [2]. With modular analysis we can analyse the behaviour
of the net without explicitly constructing the full reachability graph. Instead
we only construct the so called synchronisation graph between the modules. The
synchronisation graph only includes the external moves, i.e., moves where several
modules participate—all internal moves are hidden. For loosely coupled systems
the synchronisation graph can be significantly smaller than the full reachability
graph.
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The key idea behind modular analysis is having a single marking represent all
markings which can be reached from that marking with internal transitions. We
define Π(M) to be the set of markings reachable from M using a possibly empty
sequence of internal transitions. Two markings M,M ′ are considered equal iff
Π(M) = Π(M ′).

Definition 6. Let Σ = (S,TF ,M0) be a modular net. The synchronisation
graph G = (V,E,v0) of the net is defined inductively as follows:

– v0 = M0 ∈ V.
– If M ∈ V and ∃M ′ ∈ Π(M) : M ′[tf 〉〉M ′′ then (M, tf ,M ′′) ∈ E and M ′′ ∈

V.
– V and E contain no other elements.

The second item of the definition describes which markings are stored in the
graph. The successor markings of a global marking M can be computed, e.g., by
exploring in each module the set of local markings reachable from M via internal
transitions and recording where there are enabled external transitions, and then
composing global markings and firing the corresponding transition fusion sets [5,
Section 4.1].

Christensen and Petrucci [2] describe how the synchronisation graph can be
computed for modular Petri nets. Their approach was extended to hierarchical
high-level nets by Mäkelä [5], who also considered verification of simple safety
properties.

In Figure 3 we show the synchronisation graph of the modular net given in
Figure 2. The synchronisation graph has three states and four arcs compared to
original reachability graph which has eight states and fourteen arcs. The arcs
are labelled by the fusion sets given in the net description. From the graph it
is easy see that the mutual exclusion property holds. What the graph does not
show is the interleaving between the processes when they change from quiet to
pending.
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quiet:1
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critical:1
busy:1

r2r1
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Fig. 3. The synchronisation graph for the mutual exclusion algorithm.
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4 Model Checking LTL-X

Model checking the synchronisation graph would be interesting as it can be
significantly smaller than the reachability graph. However, it is not immediately
clear how the synchronisation graph should be used in model checking. The
traditional automata-theoretic solution [14,15,16], to synchronise the graph with
a Büchi automaton representing the given LTL formula is not directly applicable,
as the synchronisation graph hides information. However, by considering what
information is preserved by the synchronisation graph an automata-theoretic
model checking method can be devised.

An LTL formula ϕ is defined over a set of atomic propositions AP . The
models of the formula are infinite words over 2AP . An LTL formula has the
following syntax:

1. ψ ∈ AP is an LTL formula.
2. If ψ and ϕ are LTL formulae then so are ¬ψ, Xψ, ψUϕ and ψ ∨ ϕ.

We denote the suffix of a model π = σ0σ1σ2 . . . ∈ (2AP )ω by πi = σiσi+1σi+2 . . ..
The semantics of LTL are inductively defined using the ‘models’ relation |=:

– πi |= ψ iff ψ ∈ σi for ψ ∈ AP .
– πi |= ¬ψ iff π 6|= ψ.
– πi |= ψ ∨ ϕ iff π |= ψ or π |= ϕ.
– πi |= Xψ iff πi+1 |= ψ.
– πi |= ψUϕ iff ∃k ≥ i such that πk |= ϕ and πj |= ψ for all i ≤ j < k.

If π0 |= ψ we simply write π |= ψ. Common abbreviations used are > = p ∨ ¬p
for some arbitrary p ∈ AP , the usual abbreviations for the Boolean operators
∧,⇒ and ⇔, and the temporal operators ‘finally’ Fψ ≡ >Uψ and ‘globally’
Gψ ≡ ¬F¬ψ.

The subset of LTL where the ‘next’ operator X is not allowed is denoted LTL-
X. The ‘next’ operator allows LTL to specify properties which can differentiate
between sequences which only have different internal moves, i.e., moves which
do not affect the truth of relevant atomic propositions, or so called stuttering.
Formally, two models π = σ0σ1 . . . , π

′ = σ′0σ
′
1 . . . are stuttering equivalent if

there are two infinite sequences of positive integers 0 = i0 < i1 < i2 < . . . and
0 = j0 < j1 < j2 < . . . such that for every k ≥ 0: σik = σik+1 = · · · = σik+1−1 =
σ′jk = σ′jk+1 = · · · = σ′jk+1−1.

It is a well-known fact that LTL-X is insensitive to stuttering (see, e.g., [17]).
Because the synchronisation graph hides internal moves of the modules, the se-
quences generated by the synchronisation graph can differ from sequences gen-
erated by the reachability graph by stuttering. We therefore focus on model
checking for LTL-X.

A formula defines a language L(ϕ) = {w ∈ (2AP )ω | w |= ϕ}. The language
of the LTL formula can be captured by a Büchi automaton (see, e.g., [18]). In
the recent years several papers have dealt with the problem of translating an
LTL formula to a Büchi automaton [19,20,21].
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Definition 7. A Büchi automaton is a tuple A = (Q,A, ρ, q0, QF ), where Q is
a finite set of states, A is a finite alphabet, ρ ⊆ Q × A × Q is the transition
relation, q0 ∈ Q is the initial state, and QF ⊆ Q is a set of accepting states.

An infinite word w ∈ Aω generates a run r = q0q1q2 . . . of the automaton
such that q0 is the initial state of the automaton and for all i ≥ 0 we have
(qi, w(i), qi+1) ∈ ρ. If the automaton is non-deterministic, one word can gen-
erate several runs. A word w is accepted iff it has run r : N → Q such that
r(i) ∈ QF for infinitely many i. We use Aq to denote the automaton A with q
set as the initial state. The language of the automaton, denoted L(A), is defined
as the set of strings accepted by the automaton. Here we assume that when
Büchi automata are used to represent LTL formulae the alphabet is A = 22AP

.

Definition 8. Given a marking M , the function eval(M) returns the set of
atomic propositions which hold in M . The notation is extended to sequences of
markings in the normal way.

For a Petri net N , we write N |= ψ iff for all executions ξ of the net, we
have that eval(ξ) |= ψ. The executions of the Petri net define a language when
projected with the eval function. A Petri net has a given temporal property if
the language of the net, as defined above, is a subset of the language of the
property automaton.

The traditional way of model checking a Petri net using the automata theor-
etic approach, is to check if intersection of the language of the Petri net with the
language of the negation of the property is empty. This uses the fact that for any
two languages L1, L2 the equivalence L1 ⊆ L2 ⇔ L1∩L2 = ∅ holds, which is why
it is referred to making an emptiness check. The intersection of the languages
is computed by synchronising the reachability graph of the net with a Büchi
automaton representing the negation of the property. If the synchronisation has
no accepting run, the property holds.

The usual way of computing the intersection with automaton and the reach-
ability graph requires that the Büchi automaton synchronises with every move
of the net. Because modular analysis relies on hiding the internal moves of the
modules this is not a good approach, because it would make all moves external
and forfeit the potential benefit of using modular analysis.

It is, however, possible to do model checking by only synchronising with
the visible transitions. The price we pay is a more complex model checking
algorithm. The approach we present is similar to the work on model checking
using unfoldings of Petri nets [8] and has common elements with the tester
approach [9] but as we are synchronising with different constructs there are
technical differences.

Let ϕ be a formula over a set AP of atomic propositions (Boolean expressions
on markings of the net). We call a place p ∈ P visible if the truth of an atomic
proposition can be changed by altering the marking of the place. Let PV ⊆ P =⋃
s∈S Ps be the set of visible places. The set of visible transitions is defined as

TV = •PV ∪P •V . Because all changes in atomic proposition must be visible in the
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synchronisation graph we require that TV ⊆ ET (in an implementation we could
automatically detect which transition need to be treated as external transitions).

Our goal is to find the illegal executions of the modular net by synchronising
the Büchi automaton with the visible transitions. Formally, we define the syn-
chronisation in the following way. Let A¬ϕ be a Büchi automaton accepting the
language of the negation of the property ϕ and Σ a modular net. If the net is
in the marking M , the automaton is in the state q, and (q, a, q′) ∈ ρ such that
eval(M) ∈ a, then the net and the automaton will synchronise in the following
way:

– All visible transitions must always be synchronised with the Büchi auto-
maton. If a visible transition t ∈ TV is enabled in Π(M), it is synchronised
with the automaton, and the product moves to the state (M ′, q′) where
M [tf 〉〉M ′.

– Invisible transitions can occur in the system without synchronising with the
automaton.

A state in the synchronisation s = (M, q) is accepting if q ∈ QF . The syn-
chronisation state (M, q) belongs to a livelock set I if Aq¬ϕ accepts eval(M)ω.
The livelock set I can be very large and should thus be computed on demand
when model checking.

We say that the net has an illegal ω-execution if there is an execution of
the synchronisation where the corresponding trace has infinitely many visible
transitions and there are infinitely many occurrences of an accepting state in
the execution. The net has an illegal livelock if there is an execution of the
synchronisation s0s1s2 . . . snsn+1 . . . such that sn ∈ I and the corresponding
trace from sn onward σn = tntn+1tn+2 . . . does not contain any visible transition.

We can detect all illegal ω-executions and illegal livelocks by computing a
synchronised product of the Büchi automaton and the synchronisation graph of
the modular net.

Definition 9. Let A¬ψ = (Q,A, ρ, q0, QF ) be a Büchi automaton and G =
(V,E,v0) be a synchronisation graph. Their product (Vp, Ep, p0, F, I) is defined
in the following way:

– p0 = (v0, q0) ∈ Vp.
– Given (M, q) ∈ Vp, (M, t,M ′) ∈ E, and (q, a, q′) ∈ ρ there are two possibil-

ities:
• If t ∈ TV and eval(M) ∈ a, the net and the automaton synchronise and

we have ((M, q), {t, a}, (M ′, q′)) ∈ Ep and (M ′, q′)′ ∈ Vp.
• If t 6∈ TV , the system moves: ((M, q), t, (M ′, q)) ∈ Ep and (M ′, q) ∈ Vp.

– Vp and Ep contain no other elements.
– F = {(M, q) ∈ Vp‖ q ∈ QF }.
– I = {(M, q) ∈ Vp‖ Aq¬ψ accepts eval(M)ω}.

We claim that any execution of the net which breaks the given LTL specifica-
tion will induce either an illegal ω-execution or an illegal livelock, which will also
show up in the product of the synchronisation graph and the Büchi automaton.
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Theorem 1. Given a modular net Σ and a Büchi automaton A¬ψ, Σ 6|= ψ iff
the product of the automaton and the synchronisation graph of the net has an
illegal ω-trace or an illegal livelock.

The proof is fairly similar to the proof of Theorem 2 given in [22] but as there
are some technical differences we present it here.

Proof. Let ξ = M0M1M2 . . . be an execution of the net Σ such that eval(ξ) 6|= ψ.
By construction, we know that A¬ψ accepts w = eval(ξ). Let w′ = eval ′(ξ) be
the same sequence with all stuttering removed. There are now two possible cases:
w′ can either be an infinite (a) or a finite sequence (b).

(a) Because all properties specified by LTL-X are immune to stuttering, A¬ψ ac-
cepts the infinite w′. Let r′ = q0q1q2 . . . be one of the runs accepting w′. The
product has the following illegal ω-execution. Set (M0, q0) as the initial state.
Set j = 0. For each i ≥ 0 do: (i) fire the transition ti which leads to Mi+1,
(ii) if ti ∈ IT then goto (i), otherwise if ti ∈ TV set j = j + 1 (iv) (Mi+1, qj)
is the next state in the run. This sequence will exist as the synchronisation
graph contains all possible visible sequences. Step (ii) deals with invisible
internal transitions which are not present in the synchronisation graph while
(iii) makes sure that the Büchi automaton advances only when we have a
visible external transition. Because w′ is an accepted sequence, the run r′

has a final state occurring infinitely often and thus the product has an illegal
ω-trace.

(b) In the same manner as in (a) we can argue that the finite w′ will induce a
finite run of the product. Let (Mi, qi) be the final state of this run. Because
A¬ψ accepts the full word w, we know that w′ can be extended by stuttering
to an accepting word. Thus, by the definition of I we know that (Mi, qi) ∈ I.
Since ξ was infinite we know it is possible to fire an infinite sequence of
invisible transitions from Mi onward and consequently the product has an
illegal livelock.

Let ξp be an illegal ω-execution of the product. By projecting the Büchi
component of the run onto A¬ψ it is clear that this is an accepting run for the
automaton. Similarly we can easily build a run of Σ from the net component of
the execution. All it requires is finding the fired internal transition which occur
between the external transitions. This is be possible due to the properties of the
synchronisation graph. Essentially, we only need to compute how to enable the
next fusion transition by firing internal transitions. By the properties of A¬ψ we
can then conclude that Σ 6|= ψ.

Let ξp be an illegal livelock of the product and (Mi, qi) be the state after which
only invisible transitions are executed. We can project the Büchi component onto
A¬ψ such that the trace ends in qi. We know that (Mi, qi) is in I and thus by
implication that Aq¬ψ will accept eval(Mi)ω. The loop of invisible transitions
corresponds to this infinite stuttering. Building an infinite execution of Σ from
ξp is again easy. Thus we can again conclude that Σ 6|= ψ. 2
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Finding an illegal livelock or an illegal infinite trace from the product is
equivalent to finding an error specified by a tester as described by Valmari [9].
As suggested in [10], we then have a solution which traverses the product three
times in the worst case by first using Valmari’s one-pass algorithm [9] to find
any illegal livelocks. If no illegal livelocks are found we can use the standard
nested depth-first algorithm [23] to find any illegal infinite traces. Some small
modifications are required for the algorithms to function correctly. For the one-
pass algorithm we need an efficient way of deciding if a state belongs the set I.
This corresponds to model checking a reachability graph consisting of a single
marking with a self loop. If a state M belongs to the set I, not only must
we check if there is a loop of invisible transitions in the product starting from
M , but also if internal transitions can loop in any of the modules. This can
be implemented by depth-first traversal of the states reachable from the local
states of the modules corresponding to M . Figure 4 describes the model checking
algorithm at an abstract level.

Input: The product (Vp, Ep, p0, F, I)
proc model check(Vp, Ep, p0, F, I) begin

for all states (M, q) ∈ Vp do
if (M, q) ∈ I then

if a loop of invisible transitions starts from M then
return “illegal livelock found”

fi
if (M, q) ∈ F then

if (M, q) is reachable from (M, q) in the product then
return “illegal ω-execution found”

fi
od

end

Fig. 4. Abstract algorithm for model checking.

5 Experiments

We have implemented our method in the reachability analyser Maria [7]. In or-
der to evaluate our implementation we have conducted some experiments. We
compared modular model checking against the basic Maria model checker [24].
Additionally, we also ran a few benchmarks against PROD [25], a tool with
advanced partial order reduction methods. This benchmark gives us some in-
dication on how modular analysis compares with another method producing
stuttering equivalent structures.

We used three different models of which two were parametric. The first
model (AGV) describes a system of automated guided vehicles, first modelled by
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Petrucci [26]. The second model (SW) is a variant of a sliding window protocol
and the third one (LE) models the leader election protocol in a unidirectional
ring [27]. The results of the experiments can be found in Table 1. The statistics
we recorded were number of states and arcs in the reachability graph, number of
states in the product, time used for state space construction and model check-
ing, size of the synchronisation graph, number of states in the product, the time
used, and the type of formula. All tests were run on a machine with 1 GB of
RAM with an AMD Athlon XP 2000 processor.

Table 1. Experimental results.

Sys- Flat state space G = (V,E, v0) Modular G = (V,E,v0)
tem |V | |E| product time/s |V| |E| product time/s ψ

AGV 30,965,760 216,489,984 N/A N/A 87,480 464,616 87,492 27.3 GFϕ

SW4 6,360 16,608 14,857 1.3 4,456 16,016 8,889 2.6 GFϕ
SW5 24,270 68,760 52,891 5.8 16,930 72,660 31,991 13.1 GFϕ
SW6 82,884 248,400 169,645 20.6 57,564 286,488 103,477 118 GFϕ

LE3 159 303 314 0.0 35 65 68 0.0 FGϕ
LE4 716 1,851 1,428 0.2 92 229 182 0.1 FGϕ
LE5 3,432 11,198 6,860 1.3 253 802 504 0.2 FGϕ
LE6 16,792 66,043 33,580 8.0 715 2,748 1,428 0.8 FGϕ
LE7 82,667 380,267 165,330 49.3 2,043 9,212 4,084 2.9 FGϕ
LE8 407,699 2,146,965 815,394 295 5,865 30,308 11,728 10.2 FGϕ

It would appear that in some cases the modular algorithm is faster while in
some cases it is slower. For very loosely coupled models as AGV, the modular
algorithm does well. Analysis of a model with a fair amount of synchronisation,
such as LE, also shows gains using our modular algorithm. When the gains of
using modular analysis are questionable as for the SW models, the overhead of
using modular analysis and the modular algorithm for model checking is signi-
ficant but not prohibitively expensive.

Our benchmarks against PROD were conducted with a special version of the
sliding window protocol model with more realistic timeout conditions. The model
was separately optimised for PROD and Maria in order to make the comparison
as fair as possible. Results can be found from Table 2.

Table 2. Benchmarks against PROD.

Sys- PROD G = (V,E, v0) Modular (Maria) G = (V,E,v0)
tem |V | |E| product time/s |V| |E| product time/s ψ

SW2,2 8,384 13,388 17,622 8.0 7,376 48,860 9,709 8.0 GFϕ
SW3,2 131,555 198,466 270,142 245 86,995 802,650 101,551 148 GFϕ
SW3,3 422,484 590,298 859,724 969 267,192 2,885,022 302,551 757 GFϕ
SW4,2 1,434,750 2,056,176 2,914,484 7556 762,870 9,379,788 836,275 3031 GFϕ
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The results seem to indicate that the number of states produced is fairly sim-
ilar while partial order reductions eliminate arcs much more successfully. Mod-
ular analysis produces results faster but the difference is not large. The more
relaxed synchronisation for computing the product in modular analysis can ob-
viously lead to smaller products. A combination of modular analysis and partial
order reductions could produce good results and would be very interesting.

6 Conclusions

In this paper we have shown how LTL-X model checking can be done on the
synchronisation graph resulting from modular analysis of modular Petri nets
as presented in [2]. Our method requires a different form of synchronisation
compared to the traditional automata theoretic model checking and a somewhat
more complicated emptiness checking algorithm. The time complexity overhead
is, however, only linear compared to conventional emptiness checking algorithms
for Büchi automata.

As the model checking algorithm has a reasonable overhead (not much worse
than the traditional algorithm), the performance of model checking for modular
nets is heavily dependent on how well modular analysis performs. This means
that for many models where modular analysis does not reduce the state explo-
sion, compared to reachability analysis of flat models, using our method will not
result in excessive waiting. Our implementation is available as a patch to the
standard Maria distribution from http://www.tcs.hut.fi/Software/maria/.

As future work we are considering refining the concept of visibility. A more
relaxed view of visibility could potentially improve the performance of the model
checking algorithm. In general, we believe that the efficiency of modular analysis
could be improved by developing partial order methods which are compatible
with modular analysis. The two problems are related as visibility is also an issue
in partial order reductions.
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