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1. Introduction

Designing reliable and correctly functioningreactive systemsis a challenging un-
dertaking for developers. Reactive systems have several features which complicate
the design process. The systems can be composed of several cooperating com-
ponents, forcing the developer to deal with the issues of concurrency and non-
determinism. Because reactive systems are non-terminating by nature, this also
introduces issues such as fairness which do not have to be taken into consideration
for systems exhibiting only finite behaviours. Additionally, the systems usually
function in a highly non-deterministic environment.

The class of reactive systems is economically significant as it covers embedded
systems such as digital controllers and mobile phones. The market for embedded
systems in general is one hundred times as large as for desktop systems [Eggermont
2002]. In other words, there is substantial financial interest in improving develop-
ment methods for reactive systems. Currently, the preferred method for validation
and verification when developing reactive systems is testing. According to several
authors [Sanders and Curran 1994, Ferguson and Korel 1996], more than half of
the development costs of software projects in general are spent on testing. Testing
and debugging systems exhibiting non-determinism is even more difficult due to,
e.g., the challenge of repeating faulty executions.

A complementary approach to testing is to perform formal verification on a for-
mal model of the system. One of the simplest models of computation for reactive
systems is communicating finite state automata formalised aslabelled transition
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systems(LTSs). Each component of the system is separately specified as an LTS.
The behaviour of the global system is obtained by computing the synchronisation
of the LTSs. This forms the so calledstate spaceof the system.

This simple model is surprisingly powerful and has been used to model systems
ranging from telecommunications protocols [Leppänen and Luukkainen 2000] to
space craft guidance systems [Havelundet al.2001]. Unfortunately, because the
number of states in the state space can be exponential in the number of syn-
chronising processes, proving even simple properties such as deadlock-freedom is
PSPACE-complete in the size of the LTSs (see, e.g., Papadimitriou [1994]). Much
research has been devoted to alleviating the so calledstate explosion problem(see,
e.g., Valmari [1998] for a review).

Simple properties such as the absence of illegal states and deadlocks can be speci-
fied as invariants over the state space. These can be checked by inspecting all states.
For specifying and verifying more complex properties than deadlocks and illegal
states we can usetesters[Valmari 1993, Hansenet al.2002]. Testers are especially
relevant and useful if the semantic model used or the use of a state space reduction
method hides actions of the system (see, e.g., Esparza and Heljanko [2000]). They
can also be used to check behavioural preorders and equivalences between LTSs
such as the CFFD-preorder [Helovuo and Valmari 2000].

Previously, Valmari [1993] has described an algorithm which detects a subset
of the properties specified by a tester in one pass of a state space formed by syn-
chronising the tester with the system. Hansenet al. [2002] sketched a solution
for combining the approach of Holzmann [1991] with thenested depth-first search
(NDFS) algorithm of Courcoubetiset al. [1992] to handle the general verification
problem. Even though Hansenet al. [2002] claim that the problem can be solved
in only three passes of the state space, this is not obvious from their presentation
because a generalised NDFS is needed. Our main contribution is a new mem-
ory efficient on-the-fly verification algorithm that combines a generalisation of the
NDFS with Valmari’s algorithm and is able to check any property specified with a
tester in at most four passes of the state space.

2. Labelled Transition Systems

We model a reactive system as a finite set of synchronising concurrent processes
represented as labelled transition systems. Each individual process has a set of
states and a set of actions that name the moves between states the process may take
during its operation. In this work, we restrict our attention to finite state systems.
Our notation and definitions correspond to those of Valmari [1993].

D 1. A labelled transition systemis a quadrupleP = (S,Σ,∆, s0) where
◦ S is the finite set ofstates,

◦ Σ is the finite set ofactions,

◦ ∆ ⊆ S × Σ × S is the set oftransitions, and

◦ s0 ∈ S is the initial state.



VERIFICATION WITH TESTERS 3

The behaviour of an LTS is described by finite and infinite sequences of actions.
We define some notation related to describing various types of these sequences;
for this purpose, letε, Σn, Σ∗ andΣω denote the empty string, the set of strings
with n ≥ 0 symbols, the set of finite strings and the set of infinite strings overΣ,
respectively.

D 2. Let P = (S,Σ,∆, s0) be an LTS.
◦ For all s, s′ ∈ S anda ∈ Σ, s−−−a−→s′ iff (s, a, s′) ∈ ∆.

◦ For all n ≥ 0, s, s′ ∈ S andσ = a1a2 . . . an ∈ Σn, s−−−σ−→s′ iff there exist
statess1, . . . , sn+1 ∈ S such thats1 = s, sn+1 = s′, andsi−−−ai −→si+1 holds
for all 1 ≤ i ≤ n.

◦ For all n ≥ 0, s ∈ S andσ ∈ Σn, s−−−σ−→ iff s−−−σ−→s′ holds for some
s′ ∈ S.

◦ For all s ∈ S andξ = a1a2 . . . ∈ Σω, s−−−ξ−→ iff there exist infinitely many
statess1, s2, . . . ∈ S such thats1 = sandsi−−−ai −→si+1 holds for all i ≥ 1.

◦ For all s ∈ S, next(P, s) = {a ∈ Σ | s−−−a−→}. If a ∈ next(P, s), we say that
the actiona is enabledin the statesof the LTSP.

◦ For all s ∈ S, reach(P, s) = {s′ ∈ S | s−−−σ−→s′ for someσ ∈ Σ∗}.
Communication between individual processes is modelled by synchronising their

corresponding LTSs on common actions. In a system consisting of multiple pro-
cesses, we allow a single LTS to advance independently from one state to another
only if it takes an action that is unique to the LTS; if the action is shared by several
LTSs, we require that all of these LTSs participate in the same action. Formally,
this synchronisation principle is stated as follows.

D 3. LetP1 = (S1,Σ1,∆1, s01), . . . ,Pk = (Sk,Σk,∆k, s0k) be LTSs for some
k ≥ 1. Theparallel compositionof P1,P2, . . . ,Pk is the LTSP1‖P2‖ · · · ‖Pk =

(S,Σ,∆, s0), where
◦ S = S1 × · · · × Sk;

◦ Σ =
⋃k

i=1 Σi ;

◦ for all s = (s1, s2, . . . , sk), s′ = (s′1, s
′
2, . . . , s

′
k) ∈ S anda ∈ Σ, (s, a, s′) ∈ ∆ iff,

for all 1 ≤ i ≤ k,

– if a ∈ Σi , then(si , a, s′i ) ∈ ∆i , and
– s′i = si otherwise;

◦ s0 = (s01, . . . , s0k).

The properties of action sequences of an LTSP = (S,Σ,∆, s0) are often charac-
terised in terms of the occurrence of actions from a designated setΣvis ⊆ Σ called
the set ofvisible actions. The visible actions also allow us to describe the behaviour
of the LTS in a more abstract way by hiding details about actions, whose exact or-
der of occurrence is not considered relevant to the property of interest. We use the
following additional notation.

D 4. Let P = (S,Σ,∆, s0) be an LTS, and letΣvis ⊆ Σ.
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◦ For all (s,a, s′) ∈ ∆, (s, a, s′) is avisible transitioniff a ∈ Σvis.

◦ For all ρ ∈ Σ∗ ∪ Σω, vis(ρ) ∈ Σ∗vis ∪ Σωvis is the sequence of actions obtained
fromρ by projecting it onto its visible actions.

◦ For all s, s′ ∈ S andσ ∈ Σ∗vis, s===σ=⇒s′ iff σ = vis(ρ) for someρ ∈ Σ∗ such
that s−−−ρ−→s′.
◦ For all s ∈ S andξ ∈ Σ∗vis∪Σωvis, s===ξ=⇒ iff ξ = vis(ρ) for someρ ∈ Σ∗ ∪Σω

such thats−−−ρ−→. The sequenceξ is called atrace.

Valmari [1993] identifies the following properties of an LTS.

D 5. Let P = (S,Σ,∆, s0) be an LTS, and letΣvis ⊆ Σ.
◦ tr(P) = {σ ∈ Σ∗vis | s0===σ=⇒} is the set offinite tracesof P.

◦ sfail(P) =
{
(σ,A) ∈ Σ∗vis × 2Σvis | s0===σ=⇒s for somes ∈ S such that

next(P, s) ⊆ Σvis \ A
}

is the set ofstable failuresof P.

◦ divtr(P) = {σ ∈ Σ∗vis | σ = vis(ρ) for someρ ∈ Σω such thats0−−−ρ−→} is
the set ofdivergence tracesof P.

◦ inftr(P) = {ξ ∈ Σωvis | ξ = vis(ρ) for someρ ∈ Σω such thats0−−−ρ−→} is the
set of infinite tracesof P.

The settr(P) represents all traces that the LTSP can generate by taking a finite
sequence of actions. Each element(σ,A) ∈ sfail(P) determines a finite traceσ
that leadsP into a state in which it can take only visible actions, none of which is,
however, included inA. For instance, if(σ,Σvis) ∈ sfail(P), thenP has adeadlock,
i.e., a state with no outgoing transitions. The setdivtr(P) contains all finite traces
leading to a state in whichP can enter an infinite computation that contains no
visible actions. The setinftr(P) collects all traces with infinitely many visible
actions.

3. On-the-fly Verification

Specifying and checking for violations of properties required of finite and infinite
traces of a given LTSPS can be accomplished with a special kind of LTS called
a tester[Valmari 1993]. Intuitively, a tester forPS describes a collection of traces
that correspond to behaviour thatPS should avoid in order to conform to its ex-
pected operational requirements. The fact that the tester is itself an LTS leads to an
effective method for actually checking (by analysing the parallel composition of the
tester and the LTSPS) whetherPS has such undesirable behaviour. In this section,
we present an algorithm for the verification of LTSs using testers. This algorithm
is a combination of several well-known verification algorithms [Courcoubetiset
al. 1992, Valmari 1993] and supports detection of violations of the expected re-
quirements “on-the-fly” while building the parallel composition of the tester with
the individual components of the LTSPS. Because constructing the composition
in full before analysis is potentially very expensive and inefficient in practice due
to state explosion, on-the-fly algorithms have the advantage of potentially finding
errors even if full verification of the LTSPS against the tester is impossible within
the available resources.
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3.1 Testers

Throughout this section, letPS = (SS,ΣS,∆S, s0S) be an LTS (possibly obtained
as the parallel composition of many synchronising LTSs as described in Section 2)
with a set of visible actionsΣvis ⊆ ΣS. Formally, a tester is defined as follows:

D 6. [Valmari 1993] LetΣvis be the set of visible actions ofPS. A tester
(for PS) is a tupleT = (PT ,SR,SD,SL,S∞), where
◦ PT = (ST ,ΣT ,∆T , s0T ) is an LTS;

◦ ΣT = Σvis∪{τT}, whereτT is a new action unique to the tester (i.e.,τT < ΣS);

◦ SR∪ SD ∪ SL ∪ S∞ ⊆ S;

◦ ∆T contains noτT-loops, i.e., if there exists ∈ ST , n ≥ 1 anda1a2 . . .an ∈ Σ∗
such thats−−−a1a2 . . .an−→s, thenai , τT for some1 ≤ i ≤ n; and

◦ if (s, τT , s′) ∈ ∆T for somes, s′ ∈ ST , thens < SD.
The setsSR throughS∞ are calledreject states, deadlock monitor states, livelock
monitor states, and infinite trace monitor states, respectively.

Using the definition of a tester, Valmari [1993] gives a classification for the fol-
lowing types of undesirable properties of the LTSPS:

D 7. LetT = (PT ,SR,SD,SL,S∞) be a tester for the LTSPS.
◦ σ ∈ tr(PS) is an illegal finite traceiff s0T ===σ′=⇒s holds for some prefixσ′

ofσ and a states ∈ SR.

◦ (σ,A) ∈ sfail(PS) is an illegal stable failureiff s0T ===σ=⇒s holds for some
s ∈ SD such thatnext(PT , s) ⊆ A.

◦ σ ∈ divtr(PS) is an illegal divergence traceiff s0T ===σ=⇒s holds for some
s ∈ SL.

◦ ξ ∈ inftr(PS) is anillegal infinite traceiff there exist statess1, s2, . . . ∈ ST and
actionsa1,a2, . . . ∈ ΣT such thats1−−−a1−→s2−−−a2−→ · · · , vis(a1a2 . . .) =

ξ, andsi ∈ S∞ holds for infinitely manyi ≥ 1.

Illegal finite traces and illegal stable failures represent violations of properties that
have finite traces as counterexamples (generally known assafety properties). Il-
legal finite traces can be used, for example, to model violations of invariants that
should hold along all computation paths of the LTSPS. A classic example is a
violation of a mutual exclusion condition. Illegal stable failures are suitable for
modelling, e.g., deadlock situations in which two synchronising LTSs end up in
states where the LTSs can advance only by synchronising with each other on one
of their common actions, none of which, however, is enabled for both LTSs.

Illegal divergence traces and illegal infinite traces specified using the setsSL and
S∞ correspond to violations oflivenessproperties for which the counterexamples
are infinite. Illegal divergence traces can be used to model behaviour in which,
for example, the LTSPS ceases to respond to certain events (represented by the
visible actions) without actually deadlocking (i.e., alivelock). These traces form
a subset of all infinite action sequences with only finitely many visible actions.
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Illegal infinite traces, which correspond to infinite sequences of visible actions
generated by visiting the setS∞ infinitely often, can be used to represent violations
of fairness requirements.

The specification of infinite sequences of states and actions with infinitely many
elements from a given set of states or actions is in close relation to the concept of
acceptance of infinite words usingBüchi word automata(see, for example, Thomas
[1990]). As a matter of fact, a tester with no reject, deadlock or livelock moni-
tor states and theτT action is structurally identical to a classic Büchi automaton.
However, verification with Büchi automata is usually done using a synchronisation
principle that forces an automaton to synchronise with every action of the system,
regardless of the visibility of the actions. Such behaviour can be simulated easily
with the above restricted kind of testers by considering all actions of the system
visible. In general, however, distinguishing between visible and non-visible ac-
tions affects the class of sequences of visible actions that can be described using
testers. For example, Hansenet al. [2002] introduce a subclass of testers called
tester automata, which they show to be expressively equivalent to Büchi automata
that recognise stuttering-insensitive languages.

3.2 Verification

The setstr(PS), sfail(PS), divtr(PS) andinftr(PS) can be checked for the existence
of illegal finite traces, illegal stable failures, illegal divergence traces and illegal
infinite traces, respectively, by analysing the parallel composition of a tester and
the LTSPS. To ease the description and the analysis of our verification algorithm,
we first define theextended parallel compositionof a tester and an LTS as follows:

D 8. LetPT = (ST ,ΣT ,∆T , s0T ) be an LTS associated with a tester forPS.
Let PT‖PS = (S,Σ,∆, s0) be the parallel composition ofPT andPS. Theextended
parallel composition(PT‖PS)+ of PT andPS is obtained fromPT‖PS by defining

(PT‖PS)+ =
(
S ∪ {s+

0 },Σ,∆ ∪ {(s+
0 , τT , s0)}, s+

0
)
,

wheres+
0 is a new state not included inS.

Thus, we obtain the extended parallel composition ofPT andPS from PT‖PS by
taking a new initial states+

0 for the extended composition and connecting it to
the original initial state ofPT‖PS. Because the states ofS are internally formed
from pairs of states ofPT andPS, we occasionally writes+

0 also as a pair of states
(s+

0T
, s+

0S
), where we assume thats+

0T
ands+

0S
are not included inST ∪ SS.

It is easy to see thatreach(PT‖PS, s0) = reach
(
(PT‖PS)+, s+

0

)\{s+
0 }, and(PT‖PS)+

and PT‖PS contain the same loops (more formally, for alln ≥ 1, s1, . . . , sn ∈
S ∪ {s+

0 } anda1, . . . ,an ∈ Σ, s1−−−a1−→s2−−−a2−→ · · ·−→sn−−−an−→s1 holds in
(PT‖PS)+ iff si ∈ reach(PT‖PS, s0) for all 1 ≤ i ≤ n, ands1−−−a1−→s2−−−a2−→
· · ·−→sn−−−an−→s1 holds inPT‖PS). By combining these facts with Theorem 3.3
of Valmari [1993], we can reduce the question on the existence of illegal elements
in the setstr(PS), sfail(PS), divtr(PS) and inftr(PS) into the following structural
properties of the extended parallel composition ofPT andPS.
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T 1. Let PT = (ST ,ΣT ,∆T , s0T ) be an LTS associated with a tester forPS,
and let(PT‖PS)+ = P = (S,Σ,∆, s0) be the extended parallel composition ofPT

andPS.
◦ tr(PS) contains an illegal finite trace iff there exists a states = (sT , sS) ∈

reach(P, s0) such thatsT ∈ SR.

◦ sfail(PS) contains an illegal stable failure iff there exists a states = (sT , sS) ∈
reach(P, s0) such thatsT ∈ SD andnext(P, s) = ∅.
◦ divtr(PS) contains an illegal divergence trace iff there exists a statesT ∈ SL,

an integern ≥ 1, statess1S , . . . , snS ∈ SS and actionsa1, . . . ,an ∈ ΣS \ Σvis

such that(sT , s1S) ∈ reach(P, s0) and (sT , s1S)−−−a1−→(sT , s2S)−−−a2−→
· · ·−→(sT , snS)−−−an−→(sT , s1S).

◦ inftr(PS) contains an illegal infinite trace iff there exists a states = (sT , sS) ∈
reach(P, s0), an integern ≥ 1 and a sequence of actionsσ = a1a2 . . .an ∈(
ΣS ∪ {τT})∗ such thatsT ∈ S∞, (sT , sS)−−−σ−→(sT , sS) and ai ∈ Σvis for

some1 ≤ i ≤ n.

3.3 Algorithms

The difficulty of detecting errors specified by a tester varies with the type of er-
ror. Finding illegal finite traces and illegal stable failures can be accomplished by
traversing the state space of the parallel composition. Detecting illegal divergence
traces or illegal infinite traces is more challenging.

Valmari [1993] has presented an algorithm which finds illegal divergence traces
in one pass of the state space. The algorithm uses a modified depth-first search to
find loops in the state space. Given a state in the parallel composition of a tester
and an LTS, the algorithm first explores (in depth-first order) all unvisited states
reachable from the state without extending the search beyond visible transitions or
states in which the tester component is not in a livelock monitor state. The LTS has
an illegal divergence trace if the algorithm reaches a state having a transition to a
state on the depth-first search stack. The same step is repeated for all other yet un-
visited states encountered (but not entered) during the depth-first search until either
an illegal divergence trace is found or the entire state space has been explored.

By Theorem 1, detecting illegal infinite traces amounts to finding a reachable
loop that visits a state inS∞ × SS and contains at least one visible transition. In
other words, we need to find a loop that fulfils two independent conditions on the
occurrence of certain states and transitions. It has been suggested [Valmari 1993,
Hansenet al.2002] that the classical NDFS algorithm of Courcoubetiset al.[1992]
for checking the emptiness of the language accepted by a non-deterministic Büchi
word automaton can be used for this purpose. However, this algorithm is in its
basic form capable of finding loops that satisfy only one (but not necessarily both)
of the conditions. The algorithm can nevertheless be easily extended to handle
multiple independent conditions (in automata-theoretic terms,generalisedBüchi
acceptance).

The basic NDFS algorithm (see, e.g., Clarkeet al.[1999] for a simple exposition
with pseudocode) works by traversing the state space in depth-first order. When
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the algorithm backtracks from a state, a new depth-first search is started if the state
belongs to a designated set of states in whose occurrence in a loop we are interested
(for example,S∞ × SS in our case). Should this second search encounter its own
start state (or, more generally, any state in the depth-first search stack of the first
search [Holzmannet al.1997]), the state space contains a loop that visits a state
from the designated set of states. Even though the second search may apparently
have to be restarted from several states, the complete algorithm can be implemented
incrementally without traversing the state space more than two times in the worst
case [Courcoubetiset al.1992].

In general, if the loops have to satisfyk ≥ 1 independent conditions, we can re-
duce them to one condition by modifying the state space [Emerson and Sistla 1984,
Courcoubetiset al.1992]. The basic idea is to “unfold” the state space intok inter-
connected copies such that we always move from a state in theith copy of the state
space to the

(
1+ (i mod k)

)th copy of the state space whenever our current state or
transition fulfils theith condition, and remain in theith copy otherwise. A second
search is now started when we backtrack from ajth-level state associated with the
jth condition for some fixed1 ≤ j ≤ k. By the arrangement of transitions between
the copies of the state space, the unfolded state space has a loop fulfilling thejth

condition iff the original state space has a loop that fulfils all of thek conditions.
Thus, by running the NDFS algorithm on the unfolded state space, we can detect
loops satisfyingk independent conditions in at most2k traversals of the original
state space.

The key observation to combining most of the advantages of NDFS and Val-
mari’s one-pass algorithm is that the correctness of NDFS is not dependent upon
the search order of the second search. In other words, the second searches do not
need to be performed in a depth-first manner. This allows us to add illegal diver-
gence trace detection capabilities to the classic NDFS algorithm by using Valmari’s
one-pass algorithm for the second searches.

Our algorithm can be seen in Fig. 1. The algorithm is invoked by calling the
checkForIllegalTraces function using the initial state of the extended parallel com-
position of a tester LTS with another LTS as a parameter and with thelevel pa-
rameter set to zero. This function implements the top-level depth-first search and
simultaneously unfolds the state space to detect loops satisfying two independent
conditions as described above. Thelevelparameter is used for switching between
two copies of the state space (lines 8–9). The function also checks for the exis-
tence of illegal finite traces and illegal stable failures. A second search is started by
calling thecheckForIllegalLivenessTraces function on line 12 before backtrack-
ing from a state in the setS∞ × SS in the top-level search whenlevel = 0. We
could alternatively have chosen to start a second search from visible transitions
when level = 1. However, because we usually expect to see many more visible
actions in the parallel composition than states belonging toS∞ × SS, our choice
for the levelparameter corresponds to a simple heuristic for reducing the number
of visited states.

Regardless of the strategy for starting second searches, we must start a second
search also from the initial state of the extended parallel composition to handle the
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detection of illegal divergence traces that are not reachable from a state inS∞×SS.
The functionscheckForIllegalLivenessTraces andadvanceFrontier implement

the second search. The search extends by advancing a “frontier” of states surround-
ing the start state of the second search. For each unvisited state in the frontier, the
algorithm invokes a depth-first search (lines 19–20) to check whether an illegal di-
vergence trace can be reached from the state (identically to Valmari’s algorithm).
The depth-first search will not extend beyond visible transitions or transitions that
start from a state in which the tester is not in a livelock monitor state. Instead, the
target states of these transitions are added to thefrontier set as new candidates from
which to repeat the search for illegal divergence traces. These steps are repeated
until an error is found or the frontier becomes empty.

The generalised search for illegal infinite traces is implemented using two addi-
tional copies of the state space. The search moves from the first of these copies to
the second one whenever encountering a transition labelled with a visible action or
the actionτT (line 31). If the search thereafter reaches a state that is present in the
depth-first search stack of the top-level search (line 25), the algorithm reports the
existence of an illegal infinite trace.

Thevisitedset is used to keep track of which copies of a state have already been
visited. Because the conditions on lines 10, 20 and 34 guarantee that each recursive
call to thecheckForIllegalTraces or advanceFrontier function always adds a new
element to this set, the search always terminates without entering any state more
than four times in the worst case. The correctness of the algorithm is established
by the following Theorem.

T 2. Let (PT‖PS)+ = (S,Σ,∆, s+
0 ) be the extended parallel composition of

two LTSsPT = (ST ,ΣT ,∆T , s0T ) (associated with a tester(PT ,SR,SD,SL,S∞))
and PS = (SS,ΣS,∆S, s0S) (with a set of visible transitionsΣvis ⊆ ΣS) given as
input for the algorithm shown in Fig. 1. The algorithm reports the existence of
an illegal finite trace, an illegal stable failure, an illegal divergence trace, or an
illegal infinite trace inPS iff tr(PS), sfail(PS), divtr(PS) or inftr(PS) contains such
a trace, respectively.

P. For simplicity, we assume that thereport statements do not have the
side effect of terminating the execution of the algorithm; in practice, however, this
assumption is not needed if we only wish to checkPS for the existence ofsome
violation detected by a tester.

General remarks; illegal finite traces and illegal stable failuresBecause the al-
gorithm only adds elements to the (initially empty) setvisited, it is easy to see
that (s, `) ∈ visitedholds for somes ∈ S and` ∈ {0, 1} iff the algorithm calls the
checkForIllegalTraces function with the parameterssand` at some point of its ex-
ecution. Using this fact, a simple induction shows that thecheckForIllegalTraces
function is called at least once for each states ∈ reach

(
(PT‖PS)+, s+

0

)
(and no other

states). Therefore, the algorithm can be seen to be both sound and complete for
checkingtr(PS) andsfail(PS) for illegal finite traces and illegal stable failures by
Theorem 1 and the conditions on lines 3 and 4.
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Input: The pair(s+
0 ,0), wheres+

0 = (s+
0T
, s+

0S
) is the initial state of the extended parallel

composition(PT‖PS)+ = (S,Σ,∆, s+
0 ) of an LTSPT = (ST ,ΣT ,∆T , s0T ) (associ-

ated with a testerT = (PT ,SR,SD,SL,S∞)) and an LTSPS = (SS,ΣS,∆S, s0S)
having a set of visible actionsΣvis ⊆ ΣS (ΣT = Σvis∪ {τT}, τT < ΣS)

Output: A report telling whether the LTSPS has any illegal finite traces, illegal stable
failures, illegal divergence traces or illegal infinite traces.

Initialise: visited:= ∅; frontier := ∅; trace_prefix := ∅; divergent_path := ∅

1 checkForIllegalTraces(s ∈ S, level∈ {0, 1}) (* s = (sT , sS) ∈ (ST × SS) ∪ {
(s+

0T
, s+

0S
)
}

*)
2 begin
3 if (sT ∈ SR) then report “PS has an illegal finite trace”; fi
4 if (sT ∈ SD and next

(
(PT‖PS)+, s

)
= ∅) then report “PS has an illegal stable failure”; fi

5 visited:= visited∪ {
(s, level)

}
6 trace_prefix := trace_prefix∪ {

(s, level)
}

7 for all (s, a, s′) ∈ ∆ do
8 ` := level
9 if ((` = 0 and sT ∈ S∞) or (` = 1 and a ∈ Σvis ∪ {τT})) then ` := 1− `; fi

10 if ((s′, `) < visited) then checkForIllegalTraces(s′, `); fi
11 od
12 if (level= 0 and sT ∈ S∞ ∪ {s+

0T
}) then checkForIllegalLivenessTraces(s); fi

13 trace_prefix := trace_prefix\ {(s, level)
}

14 end

15 checkForIllegalLivenessTraces(s ∈ S)
16 begin
17 frontier :=

{
(s,2)

}
18 while (frontier , ∅) do
19 choose (s, level) ∈ frontier; frontier := frontier \ {(s, level)

}
20 if ((s, level) < visited) then advanceFrontier(s, level); fi
21 od
22 end

23 advanceFrontier(s ∈ S, level∈ {2, 3}) (* s = (sT , sS) ∈ (ST × SS) ∪ {
(s+

0T
, s+

0S
)
}

*)
24 begin
25 if (level= 3 and ({(s, 0), (s, 1)} ∩ trace_prefix, ∅) then
26 report “PS has an illegal infinite trace”
27 fi
28 visited:= visited∪ {

(s, level)
}

29 divergent_path := divergent_path∪ {s}
30 for all (s, a, s′) ∈ ∆ do
31 if (a ∈ Σvis ∪ {τT}) then frontier := frontier∪ {

(s′, 3)
}

(* PT makes a move *)
32 else if (sT ∈ SL) then begin (* PT in livelock monitor state, only PS makes a move *)
33 if (s′ ∈ divergent_path) then report “PS has an illegal divergence trace”; fi
34 if ((s′, level) < visited) then advanceFrontier(s′, level); fi
35 end
36 else frontier := frontier∪ {

(s′, level)
}

(* only PS makes a move *)
37 fi
38 od
39 divergent_path := divergent_path\ {s}
40 end

Figure 1: Algorithm for detecting violations of properties specified with a tester



VERIFICATION WITH TESTERS 11

Analogously to the situation above,(s, `) ∈ visited holds for a pair(s, `) ∈
S × {2,3} iff the advanceFrontier function is called with the parameterss and
`. Additionally, calling this function implies thats ∈ reach

(
(PT‖PS)+, ŝ

)
holds

for a stateŝ ∈ S from which the algorithm initiates a second search by call-
ing thecheckForIllegalLivenessTraces function on line 12 (and thereforês, s ∈
reach

(
(PT‖PS)+, s+

0

)
must hold also). On the other hand, it follows by induction

on the length of paths starting from̂s that
{
(s′,2), (s′, 3)

}∩ visited, ∅ holds for all
s′ ∈ reach

(
(PT‖PS)+, ŝ

)
upon the completion of this search, when also any second

searches possibly initiated before the search starting fromŝare taken into account.
It is straightforward to check that, if(s, `) ∈ S × {0,1} is the pair added to

trace_prefix on line 6 (or if s is a state added todivergent_path on line 29), then
s ∈ reach

(
(PT‖PS)+, s′

)
holds for all (s′, `) ∈ trace_prefix (s′ ∈ divergent_path)

in the beginning of each iteration of the loop on line 7 (30) of the algorithm. (For
s, s′ ∈ divergent_path, s is actually reachable froms′ by taking only transitions
labelled with actions not included inΣvis∪ {τT}, i.e., actions fromΣS \ Σvis.)

Illegal divergence tracesIf the algorithm reports an illegal divergence trace (line
33), then the above facts and the conditions on lines 30, 32 and 33 imply the
existence of a states = (sT , sS) ∈ reach

(
(PT‖PS)+, s+

0

) ∩ (SL × SS) such that
s−−−a−→s′ holds for somea ∈ ΣS \ Σvis and s′ ∈ divergent_path. From the
above we now see thats = s1−−−a1−→ · · ·−→sn−−−an−→s1 holds for somen ≥ 1,
a1, . . . ,an ∈ ΣS \ Σvis and s1, . . . , sn ∈ S. Furthermore, becauseai < ΣT for
all 1 ≤ i ≤ n, the definition of parallel composition guarantees that all statessi

(1 ≤ i ≤ n) havesT ∈ SL as theirST-component. Thereforedivtr(PS) contains an
illegal divergence trace by Theorem 1.

Conversely, ifdivtr(PS) contains an illegal divergence trace, then, by Theorem 1,
there exist an integern ≥ 1, statessT ∈ SL, s1S , . . . , snS ∈ SS, and actions
a1, . . . ,an ∈ ΣS \ Σvis (equivalently, actionsa1, . . . ,an < Σvis ∪ {τT}) such that
(sT , s1S) ∈ reach

(
(PT‖PS)+, s+

0

)
holds, and(sT , s1S)−−−a1−→(sT , s2S)−−−a2−→

· · ·−→(sT , snS)−−−an−→(sT , s1S). By the condition on line 12, the algorithm will
call thecheckForIllegalLivenessTraces function for the initial states+

0 of the par-
allel composition. Because(sT , siS) is reachable froms+

0 for all 1 ≤ i ≤ n, it
now follows by the above discussion that the algorithm calls theadvanceFron-
tier function for all (sT , siS) (1 ≤ i ≤ n) before termination; without loss of
generality, we can arrange the indices such that(sT , s1S) is the first state among
(sT , s1S), . . . , (sT , snS) for which such a call occurs. But then it can be shown that
this call results in a recursive call to the same function using the state(sT , snS)
as a parameter while(sT , s1S) is still included in the setdivergent_path. Because
(sT , snS)−−−an−→(sT , s1S), the algorithm reports the existence of an illegal diver-
gence trace.

Illegal infinite traces If the algorithm reports an illegal infinite trace (line 26),
then the second search (started from a stateŝ ∈ reach

(
(PT‖PS)+, s+

0

)
) has reached

a states ∈ S in a call to theadvanceFrontier function with parameters(s,3) such
that(s, `) ∈ trace_prefixholds for somè ∈ {0,1}. The fact that thefrontier set did
not initially contain any pairs fromS×{3} in the beginning of the second search can
now be used to show thatswas actually reached via a states′ ∈ reach

(
(PT‖PS)+, ŝ

)
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such thats′−−−aσ−→s holds for somea ∈ Σvis ∪ {τT} andσ ∈ Σ∗. But then also
ŝ−−−a1a2 . . .an−→ŝ holds for somen ≥ 1 anda1a2 . . . an ∈ Σn such thatai = a for
some1 ≤ i ≤ n. BecausePT contains noτT-loops, there actually exists a1 ≤ j ≤ n
such thata j ∈ Σvis. Furthermore, becausês ∈ S∞ × SS, it follows from Theorem 1
that inftr(PS) contains an illegal infinite trace.

Assume thatinftr(PS) contains an illegal infinite trace. By Theorem 1, there exist
an integern ≥ 1, statess1 ∈ reach

(
(PT‖PS)+, s+

0

)∩(S∞×SS), s2, . . . , sn ∈ S and ac-
tionsa1, . . . ,an ∈ ΣS∪{τT} such thats1−−−a1−→s2−−−a2−→ · · ·−→sn−−−an−→s1

andai ∈ Σvis for some1 ≤ i ≤ n. It can be shown that the condition on line 12 will
hold for somês ∈ {s1, . . . , sn}∩(S∞×SS) during the execution of the algorithm, and
therefore the algorithm will start a second search fromŝby calling thecheckForIl-
legalLivenessTraces function. Without loss of generality, we may fix̂s to be the
first such state (in a loop satisfying the above conditions) encountered during the
top-level search. In this case, the way in which the state space is unfolded into two
levels during the top-level search guarantees that

{
(sj , 2), (sj , 3)

}∩visited= ∅ holds
for all 1 ≤ j ≤ n when the second search begins fromŝ. Because the exact opposite
condition holds for all1 ≤ j ≤ n at the end of this search, it follows that the second
search visits (especially) the statesi . The fact thatsi−−−aiai+1 . . . an−→ŝ holds for
the actionai ∈ Σvis now implies that theadvanceFrontier function will eventually
be called also with parameters(ŝ,3) during the second search. Becauseŝ is the
initial state of the second search, it follows that(ŝ, 0) ∈ trace_prefix, and thus the
algorithm reports the existence of an illegal infinite trace.�

The memory consumption of the algorithm is fairly conservative (as is common
practice we only evaluate the requirement for randomly accessed memory). A stan-
dard adaptation of thehybrid storagetechnique of Godefroid and Holzmann [1993]
makes it possible to keep track of states visited by the algorithm using a hash ta-
ble (indexed with the state descriptors) that stores seven bits of memory with each
entry in the table. Four of these bits are used for representing a subset of the four
“levels” in which the state has been visited, and the remaining three bits are used
for tracking state membership in thetrace_prefix (two bits) anddivergent_path
(one bit) sets. (The two bits used for testing membership in thetrace_prefix set
are not needed if we choose to report an illegal infinite trace only if the second
search reaches its own start state instead of any state in the top-level depth-first
search stack. Using the extra bits corresponds to the heuristic optimisation sug-
gested by Holzmannet al. [1997] to reduce the number of states explored during
the second search.) Because the correctness of the algorithm does not actually de-
pend on the uniqueness of the elements in thefrontier set or the order in which
elements are removed from this set, the set can easily be implemented as a stack,
which can be stored on sequentially accessed media.

3.4 Alternatives for Checking Liveness Properties

There are a few options for solving the combined problem of detecting both illegal
divergence traces and illegal infinite traces. By first running Valmari’s one-pass
algorithm and then the standard generalised NDFS algorithm, we obtain an algo-
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rithm that traverses the state space five times in the worst case. However, this
solution loses the capability of detecting all violations on-the-fly, since running the
algorithms separately forces us to explore the state space in full before invoking the
NDFS algorithm if no illegal divergence traces are detected. An on-the-fly solu-
tion would be to interleave the non-progress cycle detection algorithm of Holzmann
[1991] with the generalised NDFS algorithm. The search for non-progress cycles
would be performed in a separate copy of the state space. This solution is the
closest to ours and was suggested (however, without any implementation details)
by Hansenet al.[2002].

Another possibility is to map the problem to the acceptance of infinite words by a
finite automaton using theStreett acceptance condition(see, for example, Thomas
[1990]) and use algorithms for checking the emptiness of the language accepted
by such an automaton. In general, the Streett acceptance condition for infinite
words over a finite alphabetΓ is defined by a finite family of acceptance set pairs{
(L1,U1), . . . , (Lk,Uk)

}
, whereLi ,Ui ⊆ Γ for all 1 ≤ i ≤ k. An infinite word

γ1γ2γ3 . . . ∈ Γω is acceptediff for all 1 ≤ i ≤ k, if γ j ∈ Li holds for infinitely many
j, then alsoγ` ∈ Ui holds for infinitely manỳ .

The mapping to Streett acceptance can now be done in the following way. We
first take a disjoint copySvis of the state setS of the extended parallel composition
(with initial state s+

0 ∈ S) of PT and PS by introducing for each elements ∈
S a corresponding (unique) elementsvis ∈ Svis. We then redirect all transitions
(s, a, s′) ∈ ∆ with a ∈ Σvis∪ {τT} to their corresponding target statess′vis ∈ Svis and
add to∆ a transition(svis, a, s′) for each (possibly redirected)(s, a, s′) ∈ ∆ with
s ∈ S. Let ∆′ be the resulting set of transitions, and letS′ = S ∪ Svis. Intuitively,
the LTS(S′,Σ,∆′, s+

0 ) now contains an infinite path (beginning ats+
0 ) which visits

infinitely many states fromSvis iff the LTS(S,Σ,∆, s+
0 ) has an infinite trace with

infinitely many visible actions. We also letS′L =
(
SL ∪ {svis | s ∈ SL}) × SS and

S′∞ =
(
S∞ ∪ {svis | s ∈ S∞}) × SS. By identifying the infinite state sequences

generated by the LTS(S′,Σ,∆′, s+
0 ) from its initial state as infinite words over the

alphabetS′, we can now reduce the question on the existence of illegal divergence
traces or illegal infinite traces in the LTSPS to the property that one of these state
sequences satisfies the Streett acceptance condition

{
(S′ \ S′L,Svis), (Svis,S′∞)

}
.

Algorithms for checking for the existence of state sequences satisfying the Streett
acceptance condition [Emerson and Lei 1987, Henzinger and Telle 1996, Latvala
and Heljanko 2000] are based on computing the maximal strongly connected com-
ponents (MSCCs) of the LTS. However, MSCC-based verification algorithms use
more memory than NDFS-based algorithms (logarithmic versus constant overhead
in the total number of reachable states per state) and they are not suited for on-the-
fly verification in the general case, as in the worst case the state space of the system
is a single MSCC.

3.5 Counterexamples

When an illegal trace is found, reporting the trace is as important as reporting the
existence of the trace itself. Simply knowing that an illegal trace exists does not
aid the debugging task.
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In the standard NDFS algorithm it is very easy to extract a counterexample trace.
Unfortunately, our new algorithm does not inherit this feature for all kinds of errors.
Since the algorithm unfolds the state space, all traces must be projected to the
original state space before they are reported to the user. The following discussion
talks about the original state space to make the presentation simpler.

For illegal stable failures and illegal finite traces an error trace is simple to gen-
erate. We only need to print the states in the settrace_prefix in the order the states
were put there. If an explicit depth-first stack is maintained this is easy. We can
produce a trace, generated in depth-first order, from the initial state to a violating
state. The trace is usually not the shortest trace possible, however.

In the case of an illegal divergence trace, we can only obtain a partial error trace
from the data structures. The states intrace_prefixcan be used to generate a (pos-
sibly empty) trace from the initial state to a states, from where a loop ofSL-states
is reachable. A sequence of non-visible actions forming a loop ofSL-states can
be extracted from the setdivergent_path. However, to obtain a complete coun-
terexample trace, a trace froms to a state indivergent_path must be found. The
complete counterexample starts from the initial state and leads tos, continues from
s to a state indivergent_pathand ends with the loop extracted fromdivergent_path.

The last case of an illegal infinite trace is fairly similar to the case of an illegal
divergence trace. When the algorithm detects the existence of an illegal infinite
trace,trace_prefix contains a path from the initial state to a states ∈ S∞, from
which a second search was last started. To complete the counterexample, we have
to find a loop that contains a visible action. This loop can be built, for example,
from the following three segments: a path froms to a state indivergent_path, a
path extracted fromdivergent_path to a states′ ∈ trace_prefix, and a path froms′
to sextracted fromtrace_prefix. By the properties of the algorithm, we can always
choose either the path froms to divergent_path, or the path froms′ to sso that the
loop will contain the required visible action.

Completing the illegal divergence traces and the illegal infinite traces is not algo-
rithmically challenging even though it may require an additional pass of the state
space. If finding short counterexamples is important, it is possible, e.g., to adapt the
counterexample algorithm for Streett automata presented in [Latvala and Heljanko
2000] for this task. An alternative to doing a search in the parallel composition is
to store a pointer to an ancestor for each state during the construction of the par-
allel composition using secondary storage, as suggested by Stern and Dill [1996].
The counterexamples for illegal divergence and illegal infinite traces could easily
be completed using this information.

4. Discussion and Conclusions

We have presented an on-the-fly algorithm that can verify LTSs w.r.t. all errors
specified by testers in four passes of the state space. The memory consumption
of the algorithm is also conservative. It uses seven additional bits per state for
bookkeeping.

The new algorithm combines most advantages of the NDFS algorithm and Val-
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mari’s one-pass algorithm. It is more memory efficient than algorithms based on
computing MSCCs. However, if we are not interested in illegal infinite traces, it
is preferable to use Valmari’s one-pass algorithm, since our algorithm performs a
redundant top-level search in this case. The experiments performed by Hansenet
al. [2002] support this view. Tool implementors may want to implement Valmari’s
algorithm as a special case.

Because the definition of a tester does not allowτT-loops, it follows that each
loop in the extended parallel composition of a tester with an LTS either includes
at least one visible action, or all actions in the loop are non-visible actions of the
LTS otherwise. In the case we wish to consider all loops of non-visible actions
illegal (i.e., whenSL = ST), this fact allows us to verify all tester properties in
only two passes of the state space of the composition. In this case we can use
our algorithm without unfolding the state space during the top-level and second
searches. The verification can now be aborted during the second search of the
NDFS not only when finding an illegal divergence trace, but also if we encounter
a state with a transition to a state on the depth-first search stack of the top-level
search. Reaching such a state implies the existence of a loop which in this special
case always corresponds to either an illegal infinite trace or an illegal divergence
trace. The exact type of the violation needs to be determined separately, however.
This can be done by constructing a counterexample as in the case of illegal infinite
traces and checking whether the loop in this counterexample contains a visible
transition. This optimisation has already been applied to the implementation of the
tester verification problem described in Latvala and Mäkelä [2004].

The above optimisation does not apply, however, in the general case where the
set of divergence traces is partitioned into non-empty sets of “legal” and illegal
divergence traces. In this case the loop detected by finding a path to a state in
the trace_prefixset during the second search may correspond to one of the “legal”
divergence traces, and thus the verification may not be aborted.

Adapting classic constructions from the theory of generalised Büchi automata
to the tester verification problem gives an algorithm that traverses the combined
state space of the tester and the system four times in the worst case. This upper
bound could still possibly be reduced to three worst-case traversals by combining
Valmari’s one-pass algorithm with a direct emptiness checking algorithm for gen-
eralised Büchi automata, such as the one suggested by Tauriainen [2003, Chapter
6]. In fact, it seems likely that three traversals of the state space are the best that
can be achieved using NDFS-based algorithms in the worst case: as described in
Section 3.3, detecting illegal infinite traces corresponds to solving the language
emptiness problem of generalised Büchi automata with two accepting sets, and
there are no known NDFS-based algorithms for solving this problem in fewer than
three traversals of the automaton in the worst case.
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