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Abstract Switching is a local transformation that when applied to a combina-
torial object gives another object with the same parameters. It is here shown
that the cycle switching graph of the 11 084 874 829 isomorphism classes of
Steiner triple systems of order 19 as well as the cycle switching graph of the
1 348 410 350 618 155 344 199 680 000 labeled such designs are connected. In ad-
dition to giving an understanding of the multitude of Steiner triple systems—at
least for order 19 but perhaps also generally—this work also presents an algo-
rithm for testing connectedness of large implicit graphs and brings forward a
benchmark instance for such algorithms.
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1 Introduction

The concept of switching in combinatorial design theory is old and can be
traced back at least to work by Norton [22] and Fisher [8] in the 1930s. A
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switch is a local transformation that when applied to a design produces a new
design with the same parameters. The current work considers Steiner triple
systems of order 19 and the application of a common type of switches called
cycle switches, also utilized in the early work by Norton (in the context of
Latin squares) and Fisher who restricted their studies to a particular type of
cycle switch known as a Pasch switch.

Fisher [8] discovered that as many as 79 out of the 80 isomorphism classes of
Steiner triple systems of order 15 have the property that they are all connected
to each other via sequences of Pasch switches. This result was later confirmed
by Gibbons [11]. By also considering other types of cycle switches than Pasch
switches, one can connect the final isomorphism class to the rest [13].

The next admissible order of Steiner triple systems greater than 15 is 19,
at which point the number of isomorphism classes experiences a combinatorial
explosion. The number of isomorphism classes of Steiner triple systems of order
19 is 11 084 874 829, shown in [17]. The results [13] for the application of cycle
switching to the Steiner triple systems of order 15 hint a possible interpretation
of this combinatorial explosion: Could it be that representatives for all these
isomorphism classes can be obtained from just a few designs by a sequence
of cycle switches? The aim of this work is to study this question, which will
be answered in the positive: one seed design suffices. Moreover, this in fact
implies that all 1 348 410 350 618 155 344 199 680 000 labeled such designs are
connected via sequences of cycle switches.

In addition to the design-theoretic motivation, the current work has an
algorithm engineering flavor. Namely, the main problem boils down to deter-
mining whether an implicit graph of order 11 084 874 829 and estimated average
degree 67 is connected or not. For explicitly given graphs, breadth-first search
(BFS) and depth-first search (DFS) are the classical tools for determining the
connected components of a given graph [7]; these run in time linear on the
number of vertices and edges, which is worst-case optimal.

Before classical techniques can be deployed, however, we are already con-
fronted with computational hurdles. In particular, our graph is implicit in the
sense that (i) the vertices are isomorphism classes of explicit (labeled) objects,
and (ii) the edges joining the vertices are determined by the operation of cycle
switching on the labeled objects. This implicit nature of the graph makes it a
nontrivial task to traverse edges in the graph: when we apply cycle switching
to a labeled object and obtain a new labeled object, we must determine the
isomorphism class that the new labeled object represents.

Besides developing a technical solution for edge traversal, we observe that—
fortuitously—we need not explicitly traverse every edge to conclude that the
graph is connected. Namely, instead of invoking BFS or DFS directly, we
proceed in two steps: First, a random walk on the graph suffices to span a
majority of the vertices. Then, it suffices to start a BFS from each of the
vertices not spanned to conclude that the graph is connected; for most vertices,
BFS arrives at a spanned vertex by traversing the first edge that is not a loop.
Compared with a direct invocation of BFS, this not only reduces the number
of edges traversed, but also saves primary storage because fewer objects need
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to be stored in main memory to record the search state. Indeed, arguably the
main engineering hurdle in the present study was a hard limit of 128 gigabytes
of main memory.

The rest of this paper is organized as follows. The mentioned concepts
related to designs and switching are formally treated in Sections 2 and 3,
respectively. The computational problem of establishing connectedness of the
implicit graph of order 11 084 874 829 is considered in Section 4. Section 5
contains a discussion of the results obtained.

2 Triple Systems

A Steiner triple system (STS) is a pair (X,B), where X is a finite set of points

and B is a set of 3-subsets of points, called blocks, such that every 2-subset
of points occurs in exactly one block. The size of the point set is the order of
the STS, and an STS of order v is commonly denoted by STS(v). STSs exist
exactly for orders v ≡ 1, 3 (mod 6), see [4,6].

Two STSs are isomorphic if there is a bijection between their point sets
that maps blocks onto blocks. Such a mapping from a STS onto itself is an
automorphism; all automorphisms form the automorphism group of the STS.
The number of isomorphism classes of STSs is known for all admissible orders
v ≤ 19: one for v ≤ 9, two for v = 13, 80 for v = 15, and 11 084 874 829 for
v = 19; see [18].

Steiner triple systems are designs in the more general class of group divisible

designs (GDDs). A 3-GDD is a triple (X,G,B), where X is a finite set of points,
G is a partition of X into groups, and B is a set of 3-subsets of points, called
blocks, such that every 2-subset of points occurs in exactly one block or one
group, but not both.

If there are s different sizes of groups of a 3-GDD with ai groups of size gi,
1 ≤ i ≤ s, then the 3-GDD is said to be of type ga1

1
ga2

2
· · · gas

s
. Steiner triple

systems of order v are 3-GDDs of type 1v, Latin squares of order n can be
viewed as 3-GDDs of type n3, and one-factorizations of the complete graph of
order K2n can be viewed as 3-GDDs of type (2n − 1)112n.

3 Switching

The operation of switching on a Steiner triple system, or a combinatorial
design in general, is the act of removing certain blocks and replacing the
removed blocks by the same number of new, distinct blocks so that a new
design with the same parameters is obtained. Obviously, the new STS may be
isomorphic to the original one, but it is distinct as a labeled structure. Local
transformations that are not switches in the strict sense, that is, that lead to
sequences whose intermediate objects need not be proper designs, have also
been proposed [2,15].

The two sets of blocks in a switch—those removed and those inserted—are
said to form a trade [14]. All small trades of Steiner triple systems have been
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classified in [9]. In general, it might require some nontrivial computational
effort to detect an arbitrary configuration of a trade in an STS. However,
the study of switching for STSs has generally been focused on cycle switches,
the related configurations of which are present in any STS and for which the
computations are straightforward.

The cycle graph defined by two distinct points, a and b, in an STS (X,B)
is a follows. Let {a, b, c} ∈ B be the unique block that contains the pair {a, b},
and let Xab = X \ {a, b, c}. Consider the point a and all the blocks Ba ⊆
B \ {{a, b, c}} that contain a. There are (v − 3)/2 such blocks, each of which
contains two unique points of Xab. Ignoring the point a, these blocks partition
the set Xab into 2-subsets, which one can view as edges of a graph over the
vertex set Xab. Similar observations hold for the point b and all the blocks
Bb ⊆ B \ {{a, b, c}} that contain b. Thus, we obtain a 2-regular graph with
the vertex set Xab that decomposes into two disjoint perfect matchings, one
defined by Ba and the other by Bb. Each connected component in the graph
is a cycle of even length.

Let {x1, x2, . . . , x2k} ⊆ Xab be the vertices of a cycle, and let the corre-
sponding 2k blocks of the STS be

{a, x1, x2}, {a, x3, x4}, . . . , {a, x2k−1, x2k} ∈ Ba,

{b, x1, x2k}, {b, x2, x3}, . . . , {b, x2k−2, x2k−1} ∈ Bb.

A cycle switch relative to {a, b} and {x1, x2, . . . , x2k} now transposes the points
a and b in the aforementioned 2k blocks. Observe that the result is an STS.

The shortest possible cycle has length 4 and corresponds to the configu-
ration {a, p, r}, {a, q, s}, {b, p, s}, {b, q, r}; this is called a Pasch configuration

and the switch a Pasch switch. (In fact, the configuration defines a cycle of
length 4 in the cycle graph of each of the point pairs {a, b}, {p, q}, and {r, s}.
Moreover, the result of the switch is independent of the chosen pair.) The
longest possible cycle, on the other hand, is a cycle that spans Xab; switching
such a Hamiltonian cycle leads to an isomorphic STS [13, Theorem 1].

Continuing earlier work by Fisher [8] and Gibbons [11], Grannell, Griggs,
and Murphy [13] carried out an in-depth study of cycle switching for isomor-
phism classes of Steiner triple systems of order at most 15 as well as labeled
such designs. Cycle switches for Latin squares up to order 8 have been consid-
ered in depth in [24].

There are several motivations for switching. One may want to try to find
new objects and, more generally, gain understanding in why there are so many
isomorphism classes of objects with certain parameters. Switching and other
transformations may be used as a part of an algorithm for producing objects
at random [2,3,15] (with applications, for example, in significance testing [12])
and can also be used to compress a family of objects [24]. Preliminary calcula-
tions indicate that the STS(19) could in this manner be compressed using less
than one third of the memory needed in [19]; however, the implementation of
such a compression scheme—including the task of partitioning the vertices of
a graph of order 11 084 874 829 into small connected subgraphs (perhaps even
paths)—seems very challenging.
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4 Establishing Connectedness

The cycle switching graph for the Steiner triple systems with a given order is
a graph with one vertex for each isomorphism class and an edge between two
vertices if there is a cycle switch taking a design from one class to the other.
Note that the reverse of a switch is a valid switch in the new design, so it
suffices to consider undirected graphs in the sequel.

A graph is connected if there is a path between any two vertices. A con-

nected component of a graph is a maximal connected subgraph. A connected
component with just one vertex is an isolated vertex.

The cycle switching graph for the Steiner triple systems of order 19 has
order 11 084 874 829. A sample of 107 random designs from the catalog related
to [19] had an average degree of 67, ignoring loops and multiple edges. (It
would be possible but a time-consuming task to determine exactly the average
degree—equivalently, the size of the graph.)

We shall now develop a practical algorithm for determining connected com-
ponents under the assumptions that a limited amount of memory is available
(in our case there was a hard limit at 128 gigabytes) and that one of the
connected components comprises most of the vertices.

The theoretical foundation for the determination of connectedness using
a limited amount of memory—in particular, log-space algorithms—is well es-
tablished; we refer to [23] and the references therein. In particular, a seminal
early idea [1] in this context employs a random walk in the graph to obtain
a randomized log-space algorithm for connectedness. A random walk will also
form the core of the current algorithm, which consists of two parts:

1. Carry out a random walk of length M . Keep a record of the vertices
spanned by the random walk.

2. Carry out a BFS from each vertex not spanned in Step 1 or earlier in
Step 2.

As outlined in the Introduction, one of the computational hurdles stems
from the fact that our graph is not explicitly given but implicit. In particular,
our given input is a compressed catalog (39 gigabytes) [19] consisting of one
representative design for each of the roughly 11 billion isomorphism classes.
This catalog, however, does not accommodate fast searching. Yet, for purposes
of traversing the graph, we must be able to associate a unique identifier to every
isomorphism class while not exceeding the hard limit on memory. Furthermore,
we must finish within reasonable time. This latter requirement in particular
forces us to trade space for time compared with the extremely space-efficient
theoretical approaches.

Let us start by assuming a perfect solution to the unique identifier problem,
that is, consecutive integer identifiers for the isomorphism classes. In this case
it suffices to maintain a bit map with one entry for each vertex (isomorphism
class) to keep track of the vertices spanned in Steps 1 and 2. We also assume
a fast rank function that maps any given design in an isomorphism class to
the integer identifier of that isomorphism class.
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With these assumptions, in Step 1 it suffices to keep track of the current
state of the random walk. This requires us to store only one design from the
current isomorphism class and thus requires a negligible amount of memory.
The random walk in itself is carried out as follows. First, we randomly permute
the points of the current STS. Then, we consider pairs of distinct points in
lexicographic order. For each pair a, b, we form the cycle graph and find the
minimum vertex v that occurs in a non-spanning cycle; if there is no such v, we
consider the next pair a, b. Otherwise we switch a, b on the cycle that contains
v. This completes one step of random walk. (Note that the selection of v in
effect biases the random walk to switching cycles with probability proportional
to their length. We also remark that a switch will always be made because there
exists no STS(19) whose cycle graphs are all Hamiltonian [16].) This completes
the description of Step 1.

Step 2 requires sequential access to a complete list of isomorphism class
representatives. Fortunately, this list can be stored on disk in compressed form
and extracted to main memory one design at a time. What is also required
in Step 2, however, is that we keep track of the isomorphism classes visited
during BFS. In particular, to implement BFS, we must store representative
designs in explicit form in main memory. Fortuitously, Step 1 pays off here:
every execution of BFS in Step 2 turns out to require less than 30 stored
representatives to reach a spanned vertex.

So far the only significant amount of main memory required is the bit map,
which takes 1.3 gigabytes. However, it remains to implement the assumed rank
function.

Let us first associate a unique identifier to each isomorphism class and
then develop a rank function based on these identifiers. A standard way to
obtain a unique identifier for an isomorphism class is to compute a canonical

form for the object given as input. For example, assuming the set of STSs
over a fixed point set is totally ordered—we can use lexicographic order—the
minimum STS in the isomorphism class of the input is a canonical form for the
input. This particular canonical form, however, is slow to evaluate in practice.
To obtain a practical canonical form, we employ nauty [21] expedited with a
block invariant that counts the number of Pasch configurations in which each
block occurs, cf. [17].

Given enough storage space, we could compute the canonical forms of all
the STSs in our compressed catalog, sort these, and use the index of a canonical
form in the sorted list as the rank of the isomorphism class. Compared with
the cost of determining a canonical form, such indexes can be computed with
little effort using binary search. This immediate approach, however, fails due
to lack of sufficient storage.

Fortunately, the aforementioned ranking approach requires only unique
identifiers with no need to recover the canonical form from an identifier. Put
otherwise, we can use any injective function to obtain a unique identifier for
the canonical form. If we assign a b-bit identifier independently and uniformly
at random to each of the N = 11 084 874 829 canonical forms, we obtain unique
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identifiers with probability at least

N
∏

i=2

(1 −
i − 1

2b
) ≥ (1 − 2−bN)N .

For example, for b = 72 we obtain unique identifiers in this way with proba-
bility at least 0.97.

In practice we have to rely on a deterministic hash function to assign
identifiers to the canonical forms. Our choice of a function is nevertheless
motivated by the previous suggestive calculation. Each STS(19) over a fixed
point set is a set consisting of 57 of the

(

19

3

)

= 969 possible triples. We define a
hash function for canonical forms by associating, independently and uniformly
at random, a 72-bit value with each of the 969 triples. The hash value of a
canonical form is then the modulo 2 sum (that is, the bitwise exclusive-or) of
the 57 values associated with the blocks of the canonical form.

The chosen function indeed turns out to give unique identifiers to the
canonical forms. After radix-sorting the computed 72-bit values, some further
compression can be obtained by grouping the entries with the same 24-bit
prefix and using an auxiliary table to locate the entries with given prefixes,
which can then be discarded.

5 Results

The algorithm described in Section 4 processed the exhaustive catalog [19] of
Steiner triple systems of order 19 in about a month and required a memory
of up to 93 gigabytes in the following phases: The 72-bit hash values were
produced in 7 days and saved on disk. Sorting and compressing the hash values
took about 2 hours and required 93 gigabytes of memory. Step 1 of the main
algorithm explored 6 438 182 977 distinct vertices in 8 days with M = 1010,
and Step 2 took 13 days; both steps used about 63 gigabytes of memory.

These computations reveal that the cycle switching graph for isomorphism
classes of Steiner triple systems of order 19 is connected.

Two points of an STS can be permuted by switching all cycles induced
by these points (formally we get a sequence of switches). Consequently, all
labeled Steiner triple systems in an isomorphism class can be obtained from
a single design in the class, and the main result of this work then implies
that all 1 348 410 350 618 155 344 199 680 000 labeled STS(19) are connected via
sequences of cycle switches.

As for validation of the extensive computations carried out in this work, it
should be noted that there is certain inherent error-detection in the proposed
scheme. Namely, if there is a (hardware or software) error when calculating
a switch, the error will be detected with very high probability (via the hash
value) if the object turns into something that is not a proper design. Another
concern is possible errors in the bit map falsely indicating that vertices have
been traversed; such errors can be detected via a counter that is updated for
every new vertex.
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Based on the results of this work one should not jump to the conclusion that
the cycle switching graph of Steiner triple systems might be connected for all
admissible orders. In fact, this is not the case. An STS(v) all of whose derived
cycles have length v − 3 is said to be perfect. The operation of cycle switching
on a perfect STS always gives an isomorphic copy of itself [13, Corollary 1].
Perfect STSs are known to exist at least for the orders 7, 9, 25, 33, 79, 139, 367,
811, 1 531, 25 771, 50 923, 61 339, 69 991, and 135 859, see [4, Remark 2.98] and
[10], and they are known not to exist for orders 13, 15, 19, and 21, see [16].
The study of (minimal) trades that transform perfect STSs into nonperfect
ones—and, more generally, of (minimal) trades that connect all STSs of a
given order—is of independent interest.

Albeit computationally even more challenging, a more detailed study of
the Steiner triple systems of order 19 by considering each type of cycle switch
(Pasch switch, etc.) separately should be possible. Allowing Pasch switches
only, it is known that the corresponding switching graph has at least 2 591
isolated vertices [17] and at least 126 connected components with two vertices
[5]. Attempts could also be made to study various central properties of the
cycle switching graph, including diameter and radius, cf. [24].

As for other major types of 3-GDDs, the earlier study [24] of cycle switching
graphs for Latin squares of order up to 8 could perhaps be extended to order 9
for which there are 19 270 853 541 main classes [20] (less than twice the number
of objects considered in the current study). As far as we are aware, no studies
of cycle switching graphs of 1-factorizations of complete graphs have yet been
carried out.
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17. Kaski, P., Österg̊ard, P.R.J.: The Steiner triple systems of order 19. Math. Comp. 73,
2075–2092 (2004)
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