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Abstract

We establish a fundamental result in the theory of computation
by continuous-time dynamical systems, by showing that systems cor-
responding to so called continuous-time symmetric Hopfield nets are
capable of general computation. As is well known, such networks have
very constrained, Liapunov-function controlled dynamics. Nevertheless,
we show that they are universal and efficient computational devices,
in the sense that any convergent synchronous fully parallel computa-
tion by a recurrent network of n discrete-time binary neurons, with in
general asymmetric coupling weights, can be simulated by a symmetric
continuous-time Hopfield net containing only 18147 units employing the
saturated-linear activation function. Moreover, if the asymmetric net-
work has maximum integer weight size wpyax and converges in discrete
time t*, then the corresponding Hopfield net can be designed to operate
in continuous time ©(t*/¢), for any & > 0 such that wyax2'%" < 2'/°.
In terms of standard discrete computation models, our result implies
that any polynomially space-bounded Turing machine can be simulated
by a family of polynomial-size continuous-time symmetric Hopfield nets.

1 Introduction

In recent years, a number of studies have sought to understand the computational
characteristics of “natural” dynamical systems. The results achieved include, e.g.
universal computation results for several types of ODE’s (Asarin & Maler, 1994;
Branicky, 1994), PDE’s (Omohundro, 1984), and discrete iterations (Koiran, Cos-
nard, & Garzon, 1994; Moore, 1990; Siegelmann & Sontag, 1995). One much stud-
ied class of systems are those that are defined by various neural network models
(Golden, 1996; Haykin, 1999; Siegelmann, 1999). This interest is motivated partly
by the quest to understand the fundamental limits and possibilities of practical
neurocomputing, and partly by the realization that despite their formal simplicity,
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neural networks are computationally quite powerful, and thus may serve as a useful
reference model for investigating more complicated systems. In general, the compu-
tational capabilities of discrete-time systems are by now fairly well understood, but
in the area of continuous-time systems much work remains to be done. To get an
overview of the issues, see the survey papers by Moore (1998) and Orponen (1997a).

Continuous-time recurrent neural networks are an attractive class of computa-
tional models with applications in, e.g., control, optimization, and signal processing
(Cichocki & Unbehauen, 1993; Medsker & Jain, 2000). Probably the best-known,
and most widely-used continuous-time recurrent network model is that popularized
by John Hopfield (1984), and often called the “continuous-time Hopfield model”.
The dynamics of this model were actually already analyzed earlier by Cohen and
Grossberg (1983) in a more general setting, but because of the affinity to the very
influential discrete-time binary-state version of the model (Hopfield, 1982), this ad-
ditive special case of the Cohen-Grossberg equations has become associated to Hop-
field’s name. As practical neural networks, proposed uses of Hopfield nets include
associative memory (Hopfield, 1984) and fast approximate solution of combinatorial
optimization problems (Hopfield & Tank, 1985), and designs exist for implementing
them in analog electrical (Hopfield, 1984) and optical (Stoll & Lee, 1988) hardware.

In this paper, we prove a fundamental result concerning the computational power
of continuous-time symmetric Hopfield nets. It is well known (Cohen & Grossberg,
1983; Hopfield, 1984) that the dynamics of any Hopfield net with a symmetric
coupling weight matrix is governed by a Liapunov, or energy function. This is a
bounded function defined on the state space of a network, whose values are properly
decreasing along any nonconstant trajectory of the network’s dynamics. In partic-
ular, such a symmetric network always converges from any initial state towards
some stable equilibrium state. This is a very useful property for obtaining guar-
anteed behavior in practical applications, but would at first sight seem to severely
limit the networks’ general dynamical capabilities. For instance, nondamping oscil-
lations of the network state, which seem to be an essential prerequisite of general
computation, obviously cannot be created under this constraint (i.e. strictly speak-
ing continuous-time Hopfield nets cannot simulate even a single alternating bit),
whereas such oscillations are easily obtained in networks with asymmetric coupling
weights.

Nevertheless, we shall show that infinite oscillations are the only feature of
general-purpose digital computation that cannot be reproduced in continuous-time
symmetric Hopfield nets. More precisely, we prove that any converging discrete-
time computation described by a recurrent network of n > 1 binary neurons work-
ing under synchronous fully parallel mode and with in general asymmetric coupling
weights, can be embedded in a continuous-time Hopfield net of 18n + 7 units with a
symmetric coupling weight matrix, and using the saturated-linear activation func-
tion. In particular, the simulation of ¢* discrete update steps can be achieved in
continuous time O(t*/¢), for any £ > 0 such that wmax2'?" < £2'/¢ where wyay > 1
is the maximum integer weight size of the discrete network. An experimental valida-
tion of this result appeared previously in the extended abstract (Sima & Orponen,
2000).

A key observation is that any terminating computation by a discrete-time de-
terministic network with state space {0, 1}"™ must converge within 2" steps. A basic
technique used in our proof is then the construction of a symmetric continuous-
time clock network—a simulated (n + 2)-bit binary counter—that, using 8n + 7
units, produces a sequence of 2" well-controlled oscillations (generated by the sim-
ulated second least significant counter bit) before it converges. This sequence of
clock pulses is used to drive the rest of the network where each discrete neuron
is simulated by a symmetrically coupled subnetwork of 10 continuous-time units.
The continuous-time clock is already by itself of some interest from a dynamical



systems perspective, because it provides to our knowledge the first known example
of a continuous-time Liapunov system whose convergence time grows exponentially
in the system dimension (Sima & Orponen, 2001a).

A similar, but considerably simpler, construction was used in the discrete-time
setting (Orponen, 1996) to prove the computational equivalence of symmetric and
convergent asymmetric binary neural networks. Our present construction also pro-
vides the technique for improving this discrete-time simulation by reducing its over-
head from a quadratic number of units to the asymptotically optimal linear size
(Sima, Orponen, & Antti-Poika, 2000). The original idea for the discrete-time clock
network used by Orponen (1996), and on which our current construction is based,
stems from the result by Goles and Martinez (1989). Another related work (Orpo-
nen, 1997b) concerns the simulation of discrete-time binary networks by continuous-
time asymmetric networks which, however, do not adhere to the Liapunov property.

It is quite easy to see (Lepley & Miller, 1983; Orponen, 1996) that families of
polynomial-size discrete neural networks are computationally equivalent to (nonuni-
form) polynomially space-bounded Turing machines; more precisely, they compute
the complexity class PSPACE/poly (Balcdzar, Diaz, & Gabarrd, 1995, p. 105). By
the result in the present paper, we now know that continuous-time symmetric Hop-
field nets are also at least as powerful, i.e. given any polynomially space-bounded
Turing machine, we can construct a family of polynomial-size continuous-time sym-
metric Hopfield nets (one network for each input length) for simulating it. This is
to our knowledge the first result concerning the computational power of continuous-
time symmetric networks, and it is somewhat surprising that they turn out to be
computationally universal in this complexity-limited sense. It remains an open
question whether this is also an upper bound on the power of such networks.

A related line of study concerns the computational capabilities of finite discrete-
time analog-state neural networks (Siegelmann, 1999). Here it is known that the
computational power of asymmetric networks using the saturated-linear activation
function increases with the Kolmogorov complexity of the real weight parameters
(Balcézar, Gavalda, & Siegelmann, 1997). With integer weights such networks coin-
cide with binary networks, and so are equivalent to finite automata (Horne & Hush,
1996; Indyk, 1995; Sima & Wiedermann, 1998), while with rational weights arbi-
trary Turing machines can be simulated (Indyk, 1995; Siegelmann & Sontag, 1995).
With arbitrary real weights the networks can even have “super-Turing” computa-
tional capabilities (Siegelmann & Sontag, 1994). To some extent similar results
also apply to discrete-time symmetric analog networks that are computationally
equivalent to their asymmetric counterparts when an external clock pulse sequence
is provided (Sima, Orponen, & Antti-Poika, 2000). On the other hand, it is known
that any amount of analog noise reduces the computational power of discrete-time
analog recurrent networks to that of finite automata (Casey, 1996; Maass & Or-
ponen, 1998) or even less (Maass & Sontag, 1999; Siegelmann, Roitershtein, &
Ben-Hur, 2000).

A preliminary version of this paper appeared as an extended abstract (Sima &
Orponen, 2001b). The present article is organized as follows. After a brief review of
the basic definitions in section 2, our main construction of the symmetric continuous-
time Hopfield net simulating a given discrete-time binary neural network is outlined
in section 3 where its dynamics is also informally explained. The formal verification
of this construction, which has the form of a rather tedious case analysis, is given
in section 4. In section 5 a numerical simulation example witnessing the validity of
the construction is presented. Section 6 concludes with some open problems.



2 Preliminaries

We will first specify the model of a finite discrete-time binary-state recurrent neural
network (DRNN). Such a network consists of n simple computational binary units
or neurons, indexed as 1,...,n, that are connected into a generally cyclic directed
graph or architecture. Each edge (i,j) in this graph, leading from neuron i to j,
is labeled with an integer coupling weight w(i, j) = wj; € Z. Note that for binary
neurons integer weights can be assumed without loss of generality (see e.g. Parberry,
1994). The absence of an edge in the architecture indicates a zero weight between
the respective neurons, and vice versa.

An instantaneous state of a DRNN at time ¢ > 0 is described by a vector
y® = (y?),...,yg)) € {0,1}™ composed of current binary outputs (states) ygt)
from particular neurons j = 1,...,n. We consider here only the synchronous fully
parallel dynamics in which the evolution of the network state y®) is determined for
discrete time instants t = 0,1, .. ., as follows. At the beginning of a computation the
network is placed in some initial state y(©, which may include an external input.
At discrete time ¢ > 0, each neuron j = 1,...,n collects its local binary inputs from
the states (outputs) ygt) € {0,1} of incident neurons ¢ and determines its integer
excitation

n
€0 =S ul®, i=1, 21)
1=0

as the respective weighted sum of these inputs. Moreover, sum 2.1 includes an
integer bias w;jo € Z local to each neuron j, which is formally modeled as a coupling
weight from an additional neuron with index 0 and constant unit output y((]t) =1.
At the next instant ¢ + 1, the new network state y(*+1) is computed by applying an

activation function to all excitations componentwise:

y =g (), j=1...n (2.2)

where the Heaviside or threshold function

1 for >0
H(&) = { 0 for £ <0 (2.3)
is employed here. We also denote by
Wmax = . Max |wjs | (2.4)

j=1,...,,n;i=0,...,n

the mazimum weight size in the network.
Similarly, a finite continuous-time analog neural network is composed of m ana-
log units which operate (in our case) with the saturated-linear activation function

1 for £>1
o(§)=4 & for 0<é<1 (2.5)
0 for £<0.
Hence, the states y,(t) of analog units p = 1,...,m at time ¢ > 0 are real numbers

within the interval [0, 1], and the coupling weights (including biases), denoted by
v(p,q) € R for edges from p to ¢, are reals as well. The computational dynamics
of a continuous-time network is defined for every real ¢ > 0, e.g. by the following

system of ordinary differential equations in real variables y,...,ym € [0,1]:
dyp v _ _
Yo (1) =~y (1) + 06 @), P=1,..m (26)



where
m

&(t) =D (g, P)yq(t) (2.7)

q=0

is the real-valued excitation for unit p at time ¢ > 0 (cf. equation 2.1) including bias
v(0,p) € R which is associated with an additional formal variable yo whose value is
constant yo(t) = 1 in time. The initial network state y(0) € [0, 1]™ then determines
the boundary conditions for system 2.6.

In particular, we shall consider the continuous-time (symmetric) Hopfield net-
works, whose architecture is an undirected graph with symmetric weights

v(p,q) =v(g,p) for every 1 <p,g<m. (2.8)

The dynamics of a continuous-time symmetric Hopfield net described by system 2.6
is controlled by the following Liapunov or energy function, introduced by Cohen
and Grossberg (1983):

m

E(y) = —% DO 0@ p)yayp — Y v(0,P)yp+ > /pr o ' (y)dy-- (2.9)

p=1g¢=1 p=1

The characteristic properties of function E(y) are that it is bounded on the sys-
tem’s state space [0,1]™, and that it is properly decreasing (i.e. dE/dt < 0) along
any nonconstant trajectory of the network’s dynamics. It then follows that the
continuous-time Hopfield net always converges, from any initial state, towards some
stable equilibrium state with dy,/dt =0 for all p=1,...,m.

3 Constructing the Continuous-Time Hopfield Net

We shall now show how to simulate the convergent computations of a given DRNN
N on a somewhat bigger continuous-time Hopfield network H. In our simulation,
the binary output values 0 and 1 of discrete neurons in N will be represented
by excitations 2.7 of corresponding analog units in H that are below the lower
saturation threshold of 0 or above the upper saturation threshold of 1, respectively,
for activation function 2.5. For brevity, we shall simply say that a unit p is saturated
at 0 or 1 at time ¢ if its excitation satisfies &,(t) < 0 or &,(t) > 1, respectively. We
also say that p is unsaturated when 0 < &,(¢) < 1.

Note that we use the ezcitations &,(t) of continuous-time units p € # rather
than their actual states y,(t) to represent the binary values since starting at any
point within the open interval (0,1), the outputs y,(¢) of the units saturated at
0 or 1 only converge to limit values 0 or 1, respectively, and never reach these
boundaries (see lemma 2.1 below). In fact, this is the main difference between the
discrete dynamics 2.2 and its simulation within the continuous dynamics 2.6. The
following theorem summarizes the result:

Theorem 1 Any fully parallel computation by a recurrent neural network N of
n > 1 binary neurons with asymmetric integer weights of mazrimum size Wmax >
1, converging within t* discrete update steps, can be simulated by a continuous-
time symmetric Hopfield network H with m = 18n + 7 analog units employing the
saturated-linear activation function, within continuous time ©(t*/e) for any real
€ > 0 such that
12n 1/e
Wmax2 “" < €27/°. (3.1)

Proof: Since the DRNN A defines a deterministic dynamical system over the state
space {0,1}", any converging computation by A" must terminate within t* < 2"



(12u+39)n

Figure 1: A 2-bit continuous-time counter C;.

discrete steps. To achieve the simulation of N by Hopfield net H we first construct
in paragraph 3.1 a continuous-time symmetric clock subnetwork C = Cp41 with
8n + 7 units that simulates a discrete (n + 2)-bit binary counter. When the network
C is initialized in the zero state, its interface unit x; will exhibit a sequence of 2"
well-controlled oscillations before C converges. Each “clock pulse” from z; € C is
then exploited to “drive” a simulation of one parallel discrete update iteration by a
simulating subnetwork S of size 10n units that is constructed in paragraph 3.2. In
particular, § = U7_, G; consists of n continuous-time symmetric gate subnetworks
G; (j =1,...,n) each having 10 units for simulating one discrete neuron j € N'. We
shall now first discuss the operation of the continuous-time Hopfield net H =CUS
intuitively while its correctness will formally be verified later in section 4.

3.1 The Clock Network

The construction of the continuous-time symmetric clock network C = Cp41 simu-
lating an (n + 2)-bit binary counter of “order (n+1)” will be described by induction
on n. The induction starts with the 2-bit counter network C; presented in Fig-
ure 1. The undirected edges connecting units in this graph are labeled with the
corresponding symmetric weights whereas the oriented edges drawn without an
originating unit correspond to the biases. Assume that initially all the states of
the units indicated in this network are zero. The least significant counter unit cg
of “order 0” has positive bias v(0,cg) = € > 0 corresponding to its initial positive
excitation. Because of its feedback coupling v(cp,co) = 1+ & > 1 the state of ¢
gradually grows from initial 0 towards 1. Eventually ¢¢ saturates at 1, at which
point we say that the unit ¢y becomes active or fires. Recall that we associate the
simulated discrete counter behavior to the excitations of the units rather than their
outputs. The external state of ¢y of course evolves smoothly converging to 1, and
exhibits no abrupt “firing” transitions. Thus, ¢¢ simply implements counting from
0 to 1 as required. This trick of gradual transition from 0 to 1, formally described
in lemma 3 below, is used repeatedly throughout our construction of C.

The remaining six units ¢, a1,21,b1,ds, 21 in the 2-bit counter network C; (see
Figure 1) are of “order 1”. They function similarly to the corresponding units of
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Figure 2: Inductive construction of Cy.

higher orders, so we will describe below only the inductive construction for general
order k > 1. The eventual interconnection of the clock network C to the simulating
subnetwork S, i.e. to the gate subnetworks G; (j =1,...,n) is taken into account
in the weight v(a1,21) = W + 4, which includes a large positive integer parameter

3 n
W= | nu+t28 n+Z|wj0| >0, (3.2)
j=1
where
u:28j:r€1?§n - Z Wji . Z wj; | >0, (3.3)
1<i<n; w;; <0 1<i<n;w;; >0

and wj; are the weights of the original DRNN N to be simulated. This large weight
is needed because the interface unit z; transfers the pulses generated by the clock
C to all of the gate subnetworks G;, and its operation within C must not be affected
by feedback effects from S (see section 3.2).

For the induction step depicted in Figure 2, assume that an “order (k — 1)”
counter network Cx—1 (1 < k < n + 1) has been constructed, containing the first
k counter units cg,...,cx—1 € Cx_1, together with auxiliary units ag, ¢, be, dg, 2¢ €
Cr—1 {=1,...,k—1), and for k > 2 also z},b, ({ =2,...,k — 1), for a total of

mg=|Cr_1|=k+5(k—1)+2(k—2)=8k-9 (3.4)

units. Then the next counter unit ¢ is connected to all the my units p € Cr_1
via unit weights v(p,c;) = 1, which, together with its bias v(0,cx) = —myg + €



and feedback weight v(ck,cr) = 1 + €, cause ¢ to fire shortly after all these units
are active (lemma 3). This includes the first k& active counter bits c,...,cx—1,
which means that the simulated counting from 0 to 2F — 1 has been accomplished,
and hence, the next counter bit ¢; must fire. In addition, unit ¢ is connected
to a sequence of seven auxiliary units ag, z}, b}, Tk, br, di, 2r with feedback weights
v(ak, ar) = v(zy, 2}) = v(b, b)) = v(zk, 2k) = v(b,br) = v(dk,dr) = v(zk, 2x) =
1 + ¢, which are being, one by one, activated after ¢ fires (lemma 3). This is
implemented by the weights v(cg, ar) = my, v(ak, z},) = —v(z), z1) + 1, v(z}, b)) =
v(xr,br) = v(be,dr) = 1, v(by, k) = Vi + v(a}, 21), v(dk,26) = Vi — my, and
biases v(0,a;) = —my + ¢, v(0,2},) = v(0,2x) = v(0,d;) = =1+ ¢, v(0,b},) =
v(0,br) = —1+4¢/3, v(0, zx) = my, — Vi + €, where v(z},z1) < 0 is in its absolute
value a sufficiently large, negative weight and V}, > 0 is a sufficiently large, positive
parameter, whose values will be determined by formulas 3.5 and 3.8, respectively,
so that units z},, zx, 2, are not directly influenced by the computations occurring in
units from Cj_1 except via c.

The purpose of the auxiliary units a, b, bx, di, is only to slow down the continuous-
time state flow in order to synchronize the computation.

The units z},, z;, are used to reset all the lower-order units in Cx_1 back to values
near 0 by saturating them at 0 (lemma 2.2b) after ¢ fires, which is consistent with
the correct counter computation. The units that saturate at 0 are then called
passive. To achieve this effect, zj, is connected to z; via a large negative weight

v(z),21) = —Skey, — (12u + 39)n, (3.5)
and similarly, zy, is linked with each p € Cx_1 \ {z1} via negative weight

v(Zk,p) = —Skp (3.6)

where parameter

Skp = |v(ck,p) + > v(g;p)| ; PECr1 (3.7)

4€Cr_15v(q,p)>0

exceeds the positive influence of units in C_1U{cx} on p, and term —(12u+39)n in
equation 3.5 balances the total positive influence on the interface unit z; originating
from units A in the gate subnetworks G; (see section 3.2). Now, the value of
parameter

Vi =1—v(x),z1) — Z v(zk, p) (3.8)
peCr_1\{z1}

is determined so that unit zj fires after bj, is activated in spite of the negative
contributions through weights 3.6 from p € Cr_1 \ {1} to the excitation of z.

Note that the interface unit 21 € Cp_1 is first suppressed separately by zj
(lemma 4) while the remaining units in Cy—1 \ {z1} are active. In particular, units
a; and by incident on z; that are of the same order 1 remain activated after z;
becomes passive because of active ¢; and dj, respectively, and unit ¢q is connected
with z; via a negative weight (see Figure 1). Furthermore, units in Cg_; of order
greater than 1 are not directly influenced by passive z1. Thus, only after 21 becomes
passive and b,z are activated, the other units from Cj_1 \ {1} are reset by z.

Finally, unit z; balances the negative influence of ),z on Cy_1 so that the
first k counter bits can again count from 0 to 2¥ — 1 but now with ¢; being active.
This is achieved by exact positive weights

_ —U(.’L';E,-Tl) -1 for p=um
v(2k,p) = { —v(zg,p) —1  for p € Cr \ {z1} (3.9)



in which —v(x},,z1) and —v(zy, p) eliminate the influence of z}, and z},, respectively,
on p € Cr—1, whereas —1 compensates for v(cg,p) = 1 for each p € Cx—;. Clearly,
units p € Cy_1 cannot reversely activate zj since their maximal contribution to the
excitation of zg,

> vpz) = —mp —v(@h, @) — Y, v@k,p) =Vi—mip—1 (3.10)
peCr_1 p€Cr_1\{z1}

according to equations 3.9, 3.8, cannot overcome its bias v(0,2;) = my — Vi + €.
This completes the induction step of the counter network construction.

3.2 The Simulating Network

The high-level scheme of the simulating subnetwork S is depicted in Figure 3. Net-
work S consists of a sequence of five layers, each layer being linked to the subsequent
one. A signal is propagated through these layers (lemma 2.2b) only in one direc-
tion, i.e. from top to bottom in Figure 3, even though the respective connections
are symmetric. For this purpose, a device used previously for symmetric implemen-
tation of feedforward networks (Parberry, 1994) is applied here. In particular, the
absolute values of weights and biases in the symmetric network are arranged in a
decreasing sequence, which prevents the signal from back-propagating. However, to
make recurrent computation possible, the “bottom” layer is further connected to
the “top” layer—but only via weights of small absolute values that need additional
strong support from the clock C in order to transmit a signal.

Therefore, Figure 3 also shows the clock subnetwork C that has been constructed
in paragraph 3.1. Particularly, interface unit z; of C is connected to the first layer
denoted by A = {a;,5;;j = 1,...,n} via large positive weights and at the same
time z; is linked to the fourth layer B = {¢;, x;; j =1,...,n} via negative weights
of large absolute values (cf. Figure 1). Within the simulated (n + 2)-bit binary
counter Cpy1, unit x; is of the second least significant order 1 and thus fires 2"
times. To each discrete computational step of network N that converges after
t* < 2™ updates then corresponds a two-phase continuous-time state dynamics of
S, controlled by one oscillation of z1 € C.

In particular, the next simulated state of A/ is computed in the first phase when
unit x; is passive. In this phase, the first layer A is locked, i.e. no signal can
pass through A, since there is no support from C. At the same time, the negative
influence of z; on the fourth layer B is suppressed. The third layer of S serves as
a memory that encodes the current binary state y(*) of the simulated network A
at discrete time instant ¢. This memory is properly initialized by the initial state
y(® of M. The new state y(**1) of AV at each time instant ¢ + 1 is then computed
from y® in the subsequent fourth layer by using the original weights of A and it
is further stored in the following fifth memory layer. This completes the first phase
and S is stabilized until xz; fires.

In the second phase, when unit x; is active, the new simulated state of N
replaces the old one. The fourth layer B is now locked due to the large negative
weights from z1, while the first layer A is unlocked by the positive support from C.
The new state y(*t1) is transmitted from the fifth memory layer back to the first
layer in a cycle, and further transferred to the subsequent second layer that updates
the contents of the third memory layer by new state y(**!). Thus, one simulation
step is completed and the simulating subnetwork S is stabilized until z; becomes
passive again.

Now, the detailed implementation of the simulating subnetwork S will be pre-
sented. As indicated in Figure 3 each of the five layers in S is composed of n pairs
of continuous-time units, one pair for each discrete neuron j in the network A to be



1.layer: feedback transfer
A={a;,B;3j=1,01)

copying
\ + CLOCK

2.layer: memory driver

{Zj sr]j ;J=1a--an}

storing

Y

3.layer: memory  y
{m,P;5j=1,....n}

computing

A J

4.layer: memory driver

B= {(‘p ,Xj;jzlv-',n}

storing

\ 4

5.layer: memory  y(*!)

(W, =101}

Figure 3: A high-level scheme of the simulation.

simulated. Each system of five unit pairs, one from each layer, that are associated
with the same neuron j, create the symmetric gate subnetwork G; with 10 units
for simulating discrete neuron j € N as depicted in Figure 4. Besides the defini-
tion of weights in G, this figure again shows the interface clock unit z; € C which
is linked to each G;. In what follows we will informally describe the dynamics of
G; (j = 1,...,n) that simulates the discrete-time updates of neuron j € N. For
simplicity of presentation, we assume (see lemma 2.2b) that particular units in the
continuous-time network G; approximately follow the discrete update rule 2.1-2.3
when their inputs are saturated for the duration of a certain period.

At the beginning of the simulation, all units in G; are placed in zero initial
states, except possibly for units 7, 0; € G; that doubly encode the initial state of
discrete neuron j € N:

Y, (0) =y, (0) = 4", (3.11)

which means that both units 7;, ¢0; are initially saturated at value yj(-o) € {0,1}.

The first phase of a general simulation step corresponding to the update of state
of neuron j at discrete time instant ¢ + 1 starts when the interface unit x; € C
becomes passive. Consequently, units a;,5; € A saturate at 0 and remain passive
due to their negative biases (see Figure 4). Only then (lemma 4) the states of units
¢j,Xx; € B are allowed to evolve since the influence of negative weights from z;

10
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Figure 4: A continuous-time gate network G; simulating the discrete neuron j.

disappears with passive z1. Assume now that the simulated state y](-t) € {0,1} of

neuron j € N at discrete time instant ¢ is doubly represented by continuous-time
units 7;, 0; € G; that are both saturated at value y§t). In particular, units ;, g;

are either both passive due to their negative biases and passive (;, if y(-t) =

0, or
7 y
they are saturating each other at 1 via their positive coupling weight v(;, 0;) while
® _
;=1L
The value corresponding to the new state y§t+1) € {0,1} of neuron j is computed
by unit ¢; € G;, based on its connections to the units m; € G; (i = 1,...,n)

that represent the simulated states y@

;  of neurons i € N at the previous discrete
time instant t. Therefore, these connections are labeled with symmetric weights
v(mi, ¢;) = 28wj;, and unit ¢; has bias v(0, ¢;) = 28w;o + 14, where wj; are the
original weights of N. The large coefficients are used to guarantee that ¢; is not

influenced by 1, w; while the original function of j is preserved (Parberry, 1994).

n; is passive, if y

Similarly, unit x; computes the negation of y§t+1) from units g; € G; by using the
opposite weights v(o;, x;) = —28w(i, j) and bias v(0, x;) = —28w,o — 14 which also
prevent x; from being influenced by ;,w;.

Note that because units 7;, o; have biases v(0, ;) = v(0, g;) = —u—1, where u is
the large nonnegative parameter defined by formula 3.3, the state evolution of ¢;, x;
cannot reversely affect the dynamics of units 7;, g;, respectively. In addition, units
®j,Xj € G; are never simultaneously active, since either they are both passive,
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or each of them represents the negation of a binary state encoded by the other.
Therefore, the positive parameter W introduced in equation 3.2 and implanted in
weight v(a1, 1) is sufficient for activating the clock unit z; € C regardless of the
total negative influence on z; from units in B (see Figure 1).

Furthermore, units ¢;, x; store the new state yj(-tﬂ) into both ¢; and w; in such
(t+1) _

a way that either ¢; ensures activating 9;,w; through positive weights, if y;

() = o,
Consequently, continuous-time units v, w; store the simulated state y§-t+1) even if
¢, x; become later passive, since they are either both passive due to their negative
§t+1)
weight v(y;,w;), if yj(.tH) = 1. Since units o, 8; € A are temporarily locked, the
gate network G; becomes stable until unit z; is activated.

In the second phase, interface unit 1 € C becomes active and locks units ¢;, x; €

B by saturating them at 0 before releasing units a;,3; € A (lemma 4). Unit a;

1, or x; arranges for their reseting by means of negative weights, if y

biases, if y = 0, or they are saturating each other at 1 via their positive coupling

then receives yj(-tﬂ) from unit ¢;, as the positive support from z; balances the

negative bias of a; so that the small positive weight v(4);, ;) can have an influence

on «;. Similarly, unit 3; computes the negation of the binary state yJ(-Hl)

from w; by means of the support from ;. State y§-t+1) and its negation are further
propagated in G; from «j,8; to (j,n;, respectively, and these units then update
the simulated state of neuron j stored in =;, 0; by its new value y(-t+1). Since the
negative weights v(z1,¢;) = v(z1,x;) = —3(u + 28|wjo| + 28)/2 from x; overcome
the total positive influence on ¢;, x; that originates in their incident units, network
G; is temporarily stabilized until z; becomes passive again, and computing the
new discrete state y§-t+2) is initiated. Recall also that units a;,3; € G; are never
simultaneously active, which implies that the term —(12u 4 39)n in definition 3.5
of v(z),x1) (k > 1) suffices to suppress the total positive influence from A on
z1 (see Figure 1). This completes the construction of the simulating subnetwork

S = Ul?zlgj.

received

4 Formal Verification

Now the correct state evolution of the continuous-time Hopfield network H described
in section 3 needs to be verified. This is achieved by a sequence of lemmas analyzing
the behavior of the corresponding system of differential equations 2.6. Lemma 1
first upper bounds the maximum sum of absolute values of weights incident on any
unit in H. Lemma 2 then describes explicitly the continuous-time state evolution
for saturated units. An analysis of how the decreasing defects, i.e. distances from
limit values in the states of saturated units, affect the excitation of any other unit
reveals that the units in H actually approximate the discrete update rule 2.1-2.3
of corresponding binary neurons after a certain transient time, provided that the
incident saturated units stay saturated. Furthermore, the transfer of the activity
in the clock C from a unit to a subsequent one, when all the incident units are
saturated, will be analyzed explicitly in lemma 3. (But note that the dynamics of
unit ¢p at time ¢ = 0 slightly differs from this analysis.) A crucial fact for the proof
of theorem 1 is that the duration time of this transfer turns out to be constant
and not affected by any initial defect. This introduces a “discrete time” into the
clock operation and enables the clock to synchronize the simulation. In lemma 3.2
the result is also partially generalized to the case when some of the incident units
may become unsaturated. Finally, lemma 4 will verify that the clock interface unit

12



z1 € C correctly synchronizes the simulation by network S, i.e. locking the units in
A and B always precedes unlocking the units in B and A, respectively.

Lemma 1 For any unit p € H in the Hopfield network constructed in section 3,
the sum of absolute values of its incident weights (excluding its local bias) is upper
bounded by

m
Ep =) lv(g,p)| <e2"/°. (4.1)
q=1

Proof: Consider first the input weights to the clock interface unit x; € C as
indicated in Figures 1, 2, and 4:

—

Er = v(x1,21) + |[v(co, x1)| + v(ar, z1) + v(by, 1)
n+1
+Z v(er, z1) + |v(@h, 21)| + v(zk, T1))

n

+Z v(aj,@1) +0(Bj, 1) + [v(dj, )| + v, 21)])  (4.2)

which reduces to
n+1
Boy =3W +2(12u+39)n + 9+ +2 > [v(x}, 1) (4.3)
k=2
by using definitions 3.9, 3.2. Weights v(z}, 1) defined by formulas 3.5, 3.7 can be
expressed recursively:

v(z),71) = v(T_1,@1) — > v(g, 1)
7€Ci_1\Cr—2; v(q,21)>0
= v(@}_1,71) —v(ch—1,21) — V(2k—1,21) = 20(T}_1,T1) (4.4)
for k =3,...,n+ 1 according to Figure 2 and equation 3.9, whereas
v(zh,z1) = —[v(ca,z1) +v(z1,21) +v(ar,z1) +v(bi,z1)] — (12u + 39)n
= —(W+ (12u+ 39)n + 8) (4.5)
follows from Figure 1. Hence,
v(zh, 1) = —2F"2(W + (12u + 39)n + 8) (4.6)
for k=2,...,n+ 1, which can be substituted into formula 4.3:
Epy =2"T'(W + (12u+39)n+8) + W —T+¢. (4.7)

Furthermore, as indicated in Figure 2, the input weights to the clock unit 2,11 €
C of the highest order n + 1 give:

Ezn_H = 'U(zn—i—la zn—i—l) + 'U(dn—i-la zn—i—l) + Z ’U(p, zk)
peCn
= 2Vn+1 — 2mn+1 +e= 2Vn+1 —16n+2+¢ (48)

according to equations 3.10, 3.4. Parameter V,,;1 will be computed recursively
starting with

Vo = 1—u(@h,z)— Y, v(@2,p)

peCi\{z1}
= 1+ > |v(ca,p > wlgp)| + (12u+39)n
peCy qecl;v(q,p)>0
= 2W + (12u + 39)n + 48 (4.9)

13



which follows from equations 3.5-3.8 and Figure 1. For 2 < k < n+ 1 the definition
3.8 of V}, can be rewritten as follows:

Vi=1-v(@f,z)— > vEwnp)— Y, o@D (4.10)
Peck—2\{w1} peck—l\ck—2

Similarly as in equation 4.4, a recursive formula for the weights v(zy,p) for p €
Cr—2 \ {z1} (k > 2) defined by formulas 3.6, 3.7 can be derived:

v(@k,p) = v(@k1,p) — > v(q,p)

q€Cr—1\Cr—2; v(g,p)>0
= 0(Tg-1,p) —v(ck—-1,p) —v(2k—1,p) = 20(T}—1,p)  (4.11)

according to Figure 2 and equation 3.9. By introducing formulas 4.4, 4.11 into
equation 4.10 and using definition 3.8 the recursive formula for V}, is obtained:

Vi=2Vioi—1— > v(@p). (4.12)
PECk—l\Ck—z

The Welghts 'U(.Tk,p) for pE Ck—l \Ck—2 = {ck—la ak—lam;‘;—la b;g—17$k—17bk—17 dk—l:
zk—1} in equation 4.12 can be calculated from Figure 2 and by definitions 3.6, 3.7
in which [v(cg,p) + v(p,p)] = 3, as follows:

—v(Tk,c—1) = 3+v(ag—1,ck-1)+ Z v(g, cr—1)
q€Cr_2;v(g,ch—1)>0
= 2my_1+3 (4.13)
—v(zg,ak—1) = 3+v(ck—1,a5-1)+ 0(T)_1,a5-1)
= —v(@}_1,21) +mp—1 +4 (4.14)
—v(zk, T_y) = 3+ v(ag—1,5_1) +v(bj_1,T_1)
= —v(x)_q,71)+5 (4.15)
—0(@k, b1) = 3+ 0(Th_15041) +0(@k—1,0p 1)
= Vi1 +o(z)_q,m1) +4 (4.16)
—v(@p, T—1) = 3+vb_q1,Tk-1) +0(br_1,Tk1)
= Vi1 +o(zp_q,21) +4 (4.17)
—'l)(ﬂ?k,bk_l) = 3+U(£L'k_1,bk_1) +'U(dk_1,bk_1) =5 (4.18)
—v(zr,dp_1) = 3+vbp_1,dr_1) +v(zk_1,dr_1)
= Vg1 —mp—1+4 (4.19)
—v(zg,2p—1) = 3+v(dr_1,2k-1)+ Z v(g, 2k—1)
q€Cr_2;v(q,2-1)>0
— Wiy — 2mp s +2 (4.20)

where formula 3.10 has been employed in equation 4.20. Weights 4.13—4.20 are
summed up as

- Z v(xg,p) = 5Vi—1 +31 (4.21)
peck—l\ck—2

which is plugged in formula 4.12:
Vi =7Ve 1 +30. (4.22)
It follows from equations 4.9 and 4.22 that
Vg1 = 771 2W + (120 + 39)n + 53) — 5 (4.23)
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which gives
S =27 2W 4 (120 + 39)n 4+ 53) — 16n — 8 + ¢ (4.24)

according to equation 4.8.
Observe from Figure 4 that the maximum value of Z, among units p € S within
the simulating subnetwork is reached by o, 8; € S, i.e.

Sa; =Zp, = 16u+51<Z,,, j=1,...,n (4.25)

which is still less than =, associated with the clock interface unit z; € C according
to equation 4.7. On the other hand, the maximum value of 2, among units p € C
within the clock subnetwork is reached by unit 2,41 € C of the highest order n + 1
for n > 2, e.g. compare formula 4.8 to

Zensr = 2Vag1 —2v(zh q,21) +1+4¢
= 2Vpp1 —2"(W+ (12u+39)n+8)+1+e< 2., ,, (4.26)

computed by formula 4.6, while Z,, > Z,, dominates for n = 1 according to
equations 4.7, 4.24. Hence,

Ep <max (Z,,,,,Z,) (4.27)

for every unit p € H. Clearly,
€ <0.0625 (4.28)
follows from assumption 3.1 in which n > 1, wyax > 1, and 21/ is decreasing for
€ > 0. In addition, the following two upper bounds
W < 420°Wmax + 42nWmax + 421 (4.29)
u < 28NWmax (430)

are obtained from definitions 3.2 and 3.3, respectively, which together with equations
4.7, 4.24, and inequality 4.28 ensure that condition 4.27 implies

Ep < 127" (10n*Wmax + 11nWmax + 3n + 2) (4.31)
which, for n > 1, gives
B < Wmax2'?" < £21/¢ (4.32)
according to assumption 3.1. O
Lemma 2
1. Let p € H be a unit saturated ot b € {0,1} with a defect
(1) = b —yp(®)] , (4.33)

for the duration of a continuous time interval T = [to,ts] for some to > 0. Then
the state dynamics of p converging towards value b can be explicitly solved as

yp(t) = |b—dpe (-t (4.34)

for t € T, where 6, = dp(to) is p’s initial defect.

2a. Let Q C H be a subset of units saturated for the duration of time interval
T = [to,tf]. Then the dynamics of the excitation &,(t) for any unit p € H can be
described as

E®=v0,p)+ Y, v@p)+ >, v(@pyt) +Apge T (4.35)
qEQ; €4 (1) >1 e H\Q
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for t € T, where
APQ = Z U(qap)dq - Z /U(qap)dq (436)
q€Q; £q(ta) <0 qEQ; €q(to)>1
is the initial total weighted defect of Q affecting &,(to).
2b. In addition, let t; > to + t1 where

b= 1“; , (4.37)

and assume that the respective weights in H satisfy either

v(0,p) + Z v(g,p) + Z v(g,p) < —¢€ (4.38)

9€EQ; £q(t0)>1 7€ H\Q; v(q,p)>0
or
v(0,p) + Z v(g,p) + Z v(g,p) >1+e¢. (4.39)
qEQ; £q(to)>1 7€ H\Q; v(q,p)<0

Then p is saturated at either O or 1, respectively, for the duration of time interval
[to + t1, tf].

Proof:

1. According to dynamics 2.5 and 2.6 the state y,(t) of unit p saturated at b € {0,1}
for ¢t € 7 is independent of outputs from the remaining units and its continuous-time
dynamics is described by a differential equation

d
oy = —y,(t) + b (4.40)
dt
with a boundary condition
Yp(to) = b — 6| (4.41)

obtained from formula 4.33 for initial defect J,. Hence, its explicit solution 4.34
follows.

2a. The excitation £,(t) of unit p defined by formula 2.7 is split among the con-
tributions from units outside @ and from those in @ saturated at 0 and 1 whose
dynamics for ¢ € 7 is given by equation 4.34:

&) = v(0,p)+ Z v(q, P)yq(t) + Z v(g, p)d et
e H\Q qEQ; £4(1)<0

+ Z v(g,p) (1 — qu_(t_to)) . (4.42)

4€Q;&q(t)>1

By introducing the initial total weighted defect 4.36 into formula 4.42 the dynamics
4.35 follows.

2b. The defect term Aer_(t_tO) in equation 4.35 vanishes quickly as time proceeds

and its absolute value can be bounded for ¢ € [ty + t1,¢y] as follows

|Aer_(t_t°) <Epeh<e (4.43)

by using lemma 1 and equation 4.37. Hence, unit p is saturated at either 0 or 1 for
the duration of time interval [to + t1,t] when condition 4.38 or 4.39, respectively,
is assumed in equation 4.35. O
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| o | P | r | unit order |
z1 |co | ek | 2<k<n+1
1+¢ 1+¢ 2k |co |aa | 2<k<n+1

co | ek |ap | 1<k<n+1
p v(p,r)zl r cr | a1 |z |1
ck |ar | 2% | 2<k<n+1

zp | by |z | 2<k<mn+1
Tr | bg dy 1<k<n+1
b dr | zk 1<k<n+1
di | z1 | co 1<k<n+1

.te .. t+E

Figure 5: Activity transfer from unit p to unit r in the clock subnetwork C.

Lemma 3

1. Consider o situation as depicted in Figure 5, where a clock unit p € C with
fractional part of bias €' € {e,e/3} and feedback weight v(p,p) = 1+¢ is supposed to
receive a signal from preceding clock unit o € C, activate itself, and further transfer
the signal to a subsequent clock unit r € C with bias fraction € and v(r,r) =1+¢
via weight v(p,r) > 1. Let all the units incident on p,r excluding p,r be saturated
for the duration of some sufficiently large time interval T = [to,tf] (e.g. ty > to+1t2
where to is defined by formula 4.49 below), starting at a time to > 0 when &,(to) = 0.
Assume that the initial defects meet

5p+ Mg <e (4.44)

for Q = H \ {p}. Further assume that the respective weights satisfy

v(O0,p)+ >,  wigp) = € (4.45)
q€Q; §4(t0)>1
v(0,7) + Z vig,r) = e—wv(p,r). (4.46)

qEQ; &q(to) 21

Then p is unsaturated with the state dynamics

! (es(tfto) _ 1) B e+ Aerf(tfto)

P = 4.47
up(t) e(l+e¢) 1+¢ (447)
ezactly for the duration of time interval (to,to + t}), where
In(1+ %
t = ¥ (4.48)

(note t; = t1 for €' = e and t| = 2t1 for €' = €/3), and r is saturated at 0. In
addition, p is saturated at 1 for the duration of time interval [to + t},to + t2] and
remains further saturated independently of the output from r, while r unsaturates
from O at time to + to where

o(p,r) ((E+¢) (14 5)" + M) = (1 +2)Ang

to =1
2= e(l+¢)

> (4.49)

2. Consider a situation as depicted in Figure 6, where a clock unit p € C with
bias v(0,p) = —1 + ¢ and feedback weight v(p,p) = 1 + € is supposed to receive a
signal from preceding clock unit o € C, activate itself, and further transfer the signal
to a subsequent clock unit r € C with v(0,7) = —1+¢/3 and v(r,r) = 1+ ¢, via
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wé,_s 1+¢

@ (P )——r
-1+¢ —1+%

|0 |p |r |unit0rder |R |

ay I1 bl 1 {C()} UAU Bto

ap |z |V, | 2<k<n+1]| {z1}
b |2k | be | 2<k<n+1|Crq\ {21}

Figure 6: Activity transfer from unit p to » when units ¢ € R unsaturate.

weight v(p,r) = 1, while the units in a given subset R C H, incident on p (with
no connections to r) may unsaturate after p unsaturates from 0. Let all the units
incident on p,r, excluding p,r, and R, be saturated for the duration of a sufficiently
large time interval T = [to,ts] (e.g. at least until r unsaturates from 0) starting at
a time to > 0 when &y(to) = 0. In Figure 6,

By, = {q € B; &(t)) > 1} C S (4.50)

denotes the subset of units from simulating subnetwork S that are saturated at 1 at
time to. Assume that the initial defects meet

6, < e27Ye (4.51)
A < 27V (4.52)
for Q" =H\ (RU{p}), and
(1+¢)dp, + Z v(g,p)dq — Z v(q,p)d, < e27Y/¢ (4.53)
qER; £4(t0) <0 qER; £4(to)>1

outside Q'. Further, assume that the respective weights satisfy

vO0,p)+ Y, wep+ Y, vigp) = € (4.54)
q€Q’;€4(t0) 21 g€R; v(q,p)<0

Z v(g,r) = 0. (4.55)

9€Q’;56q(t0) 21

Then p saturates at 1 in time at most tg + 2t1, remaining then saturated until time
at least ty, and r unsaturates from O only after p is saturated at 1.

Proof:
1. A summary of the dynamics of units p,r under discussion here is presented in
Table 1, which is verified step by step below.
Excitation
E(t) = &' + (1 +)yp(t) + Apge™ =) (4.56)
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Lt [0 [w@) [Zw ] &0 v |

=t =0 | =6 <0 =6,

€ (t07t0 +tg)

=ty + 1,4 >0 |eq-447| =0

€ (to +tg,to + 1) <0 | =d,e(t=to)
=19 + ) =1 | eq.4.64

€ (to + t],t0 + t2) >0

=tp + 12 >1 eq. 4.70 =0

€ (to + t2,ty] >0 —

Table 1: The chronology of the dynamics of units p, r.

of unit p at time ¢ € [tg,to + t2] is derived from equation 4.35 by assumption 4.45
and determines p’s state dynamics 2.6 by differential equation

dyp

7 (t) = —yp(t) + &' + (1 + &)y, (t) + Apge 710 (4.57)

when p is unsaturated. The corresponding boundary condition

—6'—APQ .y

4.
1+¢ P (4.58)

Yp(to) =
comes from £, (to) = 0 that is applied to formula 4.56 and determines also the initial
defect

—Apg=¢'"+(1+¢)d, (4.59)

which can be bounded as
—l-e—¢&' <Ay <—£'<0 (4.60)

due to 1 > §, > 0. The explicit solution 4.47 for differential equation 4.57 follows
when initial condition 4.58 is provided.

By plugging solution 4.47 in equation 4.57 an explicit formula for p’s state deriva-
tive can be calculated:

e~ (t-10) (gle(+e)(t—to) 1 A )

dyp
TP (1) =
(*) 1+¢

- (4.61)

It follows that before the state yp(t) of unit p starts to grow it is initially nonin-
creasing within time ¢ € [tg, to + t4] where
In —2ra

ty = —F—

4.62
1+4+¢ ( )

since p’s state derivative 4.61 is nonpositive for t € [to, to + 4], and ¢, > 0 according
to inequality 4.60.

Further, by introducing solution 4.47 into equation 4.56 the dynamics of p’s
excitation can also be expressed explicitly:

! (es(t—to) _ 1)

0. 4.63
6 > (4.63)

Ep(t) =
This ensures that unit p is unsaturated for the duration of the whole time interval

(to,to + t1) even though its state y,(¢) is initially decreasing for ¢ € (tg,t0 + ¢4).
Eventually unit p saturates at 1 exactly at time instant to + ¢} where t} is given

19



by formula 4.48 that is derived from equation 4.63 for &,(¢o + ¢;) = 1. The state of
unit p at to + ¢t} can be computed by substituting formula 4.48 into equation 4.47:

L-¢' =D (1+5)7F
1+¢

yplto + 1)) = (4.64)
Also t} > t, according to inequality 4.28 which confirms the actual growth of p’s
state. Notice that the length ¢| of the period when p is unsaturated is constant
and independent of the initial defects. This introduces a notion of “discrete time”
into the clock operation based on 1. Recall that the detailed chronology of the
dynamics of units p,r during the activity transfer is shown in Table 1.

Similarly, excitation

&(t) =& —v(p,7) +v(p,T)y,(t) + Arge 1) (4.65)

of unit r in time t € [to, tg + t2] is derived from equation 4.35 by assumption 4.46.
In order to verify that the state dynamics of unit p is indeed controlled by equation
4.57 for the duration of time interval (to,to + t}) it must also be checked that unit r
remains saturated at 0 in this period, that is &.(t) < 0. Since v(p,r) > 1, according
to equation 4.65 it suffices to show

&) <e+yp(t) =1+ Apge 0 <0 (4.66)
for all ¢ € [to,to + t}] which can be rewritten as
e+ (1 +e)(8p +Arg)) e 1) 4 ¢ (es(t*to) - 1) —e<e(e—€%)  (4.67)

by substituting solution 4.47 for y,(t) in which —Apg is replaced by formula 4.59.
Inequality 4.67 further reduces to

e(e +e(l+e))e -t ¢ (es(t_t‘)) - 1) —e<e(e'-¢&% (4.68)

due to assumption 4.44. For t € [tg, o + t.| where

e +e(l+e)
tg =In ﬁ 5 (469)
term e5(t=%0) reaches its maximum at time instant to + t. whereas e~(t=t0) < 1,

which implies inequality 4.68 by using condition 4.28. For t € [to + t.,to + t1], on
the other hand, term £(&’ +&(1+¢))e~#~%) in inequality 4.68 achieves its maximum
e(e' — €?) at time instant ¢y + t. while &’(e*(t=%) — 1) — ¢ < 0 reaches 0 at time
instant ¢o + t}. Hence, unit r is saturated at 0 within the period (to,to + t}) when
unit p is unsaturated.

The state y,(t) of unit p saturated at 1 follows further the dynamics equation
4.34, that is

yp(t) = 1—dp(to + tll)ei(titoitll)
<a +e' +Apg (1+ 5)_1/5) e~ (t=to—t1)
- 1- o (4.70)

for t € [to + t},ts] where the corresponding defect 0,(to + t)) = 1 — yp(to +t7) is
calculated from formula 4.64. By substituting formula 4.70 into equation 4.56 the
dynamics of p’s excitation is obtained:

&) =1+ (e+¢) (1 - e*“*tO*t’l)) > 1 (4.71)
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for t € [to + t{,t0 + t2] which confirms that unit p remains saturated at 1 at least
until unit r becomes unsaturated from 0. Also excitation &,(¢) of unit r saturated at
0 after p saturates at 1 can be expressed by introducing formula 4.70 into equation
4.65 as follows:

£(t) = & —v(p, )8, (to + )=t~ L A e (1) (4.72)

that reaches 0 at time instant to + t2, i.e. & (o +t2) = 0 which gives formula 4.49
for t2 by using equation 4.48. Hence, unit r is unsaturated from 0 after time g + t2
and the dynamics of r’s state is further described by a differential equation of the
form 4.57. In this way, the activity of unit p is transferred to r.

Finally, it must be checked that unit p remains still saturated at 1 when r is
unsaturated from 0. For this purpose, excitation 4.56 of unit p can be rewritten as

&) = & +1+e+o(pr)y(t)
—(1+¢€)dp(to + tg)e_(t_to_tz) + (Apg — v(p,T)dy) e~ (t=to) (4.73)

for ¢ € [to +t2,tf] according to equation 4.35 in which the subset of saturated units
@ is now replaced with Q1 = H \ {r} while the initial defects d,,A,q in equation
4.73 are still related to time instant to and @ = H \ {p}. The defect 6,(to + t2) at
time instant ¢y + to of unit p saturated at 1 can be calculated from equation 4.70:

g
(4980
(e+e)(1+5) " +ape

(5p(t0 + t2) =1- yp(to + t2) =

(4.74)

'U(p, T) -

where formula 4.49 is used. In order to prove that &,(t) > 1 for all ¢ € [to + to, t4]
the underlying negative defect terms in equation 4.73 having the least value for
t = to + t2 will be lower bounded by —&’' — & whereas v(p, )y, (t) > 0 is neglected
assuring that unit p remains saturated at 1 independently of the output from r.
Thus, it is sufficient to prove

—(1+€)dy(to + t2) + (Apg — v(p,7)8,) ™"

—e(1+¢) ((5 +e)(1+ 55_1)1/5 + v(p, r)ér)
- — >—¢' —¢ (4.75)
oip,r) ((+2) (1+ %)+ Ap0) - (1 +2)Arg

where formulas 4.74, 4.49 have been employed, which further reduces to
, e\ 1l/e A
(1+e)e+¢€) 6(14—;) + A0
"2 e\!/e 1
<o) (+e)? (1+ Q) F(e+e)Ao—c(l+e)d ).  (4.76)

According to assumption 4.44 and equation 4.59 it suffices to show inequality 4.76
with A,g and Apg replaced by € and —&’' — (1 + €)e, respectively. In addition,
v(p,r) > 1 and §, < 1, which leads to

1+e)(e+¢e) (e (1 + 5)1/5 +E>

g

< (e+¢€)? (1 + 5)1/5 —ele+e)—e(l+e)(1+e+¢) (4.77)

that holds due to inequality 4.28. This completes the argument for unit p to be
saturated at 1 after » becomes unsaturated from 0.
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2. Note that unit o saturates at 1 according to case 1 of this lemma before p is
unsaturated from 0 at time instant #y9. Excitation of unit p derived from equation
4.35 can be lower bounded as

E(t) > e+ (1 +e)y,(t) + Ayg e tt0) (4.78)

for t € 7 by assumption 4.54. According to dynamics equation 2.6 this also provides
the following lower bound on the state derivative of unsaturated p:

%(t) > eyp(t) + 6+ Apgr e~ 710 (4.79)

Moreover, in the beginning of time interval 7, the state evolution of unit p is
determined by formula 4.47 before the first unit ¢ € R becomes unsaturated, since
assumption 4.45 coincides with assumption 4.54 due to ¢’ = € and &,(¢p) > 1 for all
q € R with v(q,p) < 0 (see table in Figure 6). Also the initial total weighted defect
Apg for Q' =H\ (RU {p}) can be expressed in terms of A, = —¢ — (1 +¢€)4, for
Q = H\ {p} from equation 4.59 as follows:

Apgr=—e=(1+e)0,— Y wv@pd+ >,  vlgep)d, (4.80)
9ER; £4(t0)<0 q€ER; £4(t0)>1

according to definition 4.36. Hence,
Apr > =& (14+2717°) (4.81)

by assumption 4.53.
By introducing inequality 4.81 into formula 4.79 the state derivative of unsatu-
rated p is further lower bounded as

dy»

5 (t) >ey,(t)+e—¢ (1 + 2’1/5) e (t—to) (4.82)

Since ey, (t) > 0, it follows that

d
ﬂ(t) >e—e2>0 (4.83)
dt
for t > to + tg where ,
14271/
tg=1n % , (4.84)

provided that p is still unsaturated. This implies that y,(¢) for ¢ > to + ¢4 grows at
least as fast as the straight line with equation

(e—&*)(t—to—ta) —y=0 (4.85)

until unit p saturates at 1. Hence, p saturates at 1 certainly before tg + tg + t5 <
to + 2t1 where

1
ts = 4.86
Fe—g? (4.86)
because &,(t) > yp(t) from equation 2.6 due to p’s state derivative 4.83 is positive
for t > to + ta.
In addition, it will be proved that the subsequent unit r is saturated at 0 at

least until p saturates at 1. Excitation

&.(1) = -1+ g +yp(t) + Apgr e~ (tt0) (4.87)
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of unit r saturated at 0 can be derived from equation 4.35 by assumption 4.55. Let
ty > 0 be the least local time instant at which

€ _
yp(t() + ty) =1- g - ATQI e ty (488)

when r is still saturated at 0 since &, (to +1¢,) = 0 follows from equation 4.87. Thus,
it suffices to prove that the excitation of unit p can be lower bounded at time instant
to + 1ty as

Elto +1y) > e+ (1+¢) (1 . g — Ay e_tl‘) F A et >1 (4.89)

according to inequality 4.78. By substituting the error bounds 4.52, 4.81 this reduces
to
5-c-3 (1 2+ 5)2*1/5) ety >0 (4.90)

which holds for condition 4.28 due to e~*v < 1, ensuring that unit p is already
saturated at 1 at time instant o + ¢,.

Finally, it must be checked that unit p remains saturated at 1 after ¢, +t, when
unit » may become unsaturated from 0. Inequality 4.78 reads now as

_ (¢ Je—ty) p—(t—to—ty)
&) > 5+(1+s)<1 (3+ArQe )e 0 )+yr(t)
+ (Apgr — 6,) e~ (tt0) (4.91)

since the state dynamics of unit p saturated at 1 is controlled by equation 4.34. In
order to prove that &,(t) > 1 for all ¢ € (to + ty,ts] it suffices to show

6— (14¢e)e (o=t _3 (1 +(3+ 5)2—1/5) e~ (t=t) > (4.92)

according to inequality 4.91 in which y,.(¢) > 0 and the error bounds 4.51, 4.52, and
4.81 have been applied. Inequality 4.92 follows from e~(t—t0) < ¢=(t=to—ty) < 1 and
condition 4.28. This completes the argument for unit p to be saturated at 1 after r
becomes unsaturated from 0. m|

Lemma 4 All the units in AUB C S are saturated at 0 when the state of the clock
interface unit z1 € C equals 2/3.

1. The state of unit x1 unsaturated from O at time to > 0 (i.e. &,(to) = 0)
after reaching value yg, (to + t;) = 2/3 from below at time to + t},, remains further
increasing at least until 1 is again unsaturated from 1 by the next x) unit (2 < k <
n+1).

2. Let unit x;, (2 < k < n+ 1) cease its saturation at 0 at time to > 0 when
&, (to) = 0. Following this, let unit x; unsaturate from 1 immediately after time
instant to+t, > to, where &, (to+ty,) = 1, and reach its state value y,, (to+te) = 2/3
from above at time to + tg (t, < tg). Let

Ay > —¢€ (4.93)

for Q1 =H\ {z},} and
Agiqp > —e27Y¢ (4.94)

for Q1 =H\ (A, UB U {z1,2},}) where

Ay = {a € 45 &(to) > 1} . (4.95)
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Further assume that

0, < 27V (4.96)
Z v(g, )8, < e27/¢ (4.97)
QEAtO
Zv(q,xl)éq > —e27 1=, (4.98)
4€B

Then the state of unit x1 keeps decreasing after time to+t; at least until x1 is again
unsaturated from 0 by a;.

Proof: It can first be easily checked from Figure 4 that the excitation of all
aj,Bi,0j,x; € AUB for j =1,...,n is negative when y,, =2/3:

b, < 0(0,05) + 0(t505) + (G 5) +oen, ) 5 = 2 (499
b, < 0(0,8) (s, By) + o(en, ) 5 =2 (4100)
€s; < U(Oa%)+u+v(¢j7¢j)+v(wg‘=¢j)+v($1=¢j)';S—2 (4.101)
&, < v(o,xj)+u+v(x1,xj)-§5_42. (4.102)

1. Obviously, yg, (t) is further increasing for t > to + t; since (dy,, /dt)(t) > 0 for
Yz, (to + t¢) = 2/3 according to inequality 4.82, and hence, unit z; then saturates
at 1.

2. Excitation

i (to+tu) = W+ (12u+39)n + 3 4 2¢ + v(z), 21)Ye! (to + tu)
+Az,0, 7 =1 (4.103)

of unit z; at to + t,, is derived from equation 4.35 for )1 where

v(0,21) + Z v(g,z1) = v(0,21) +v(z1,21) + v(co, T1) +v(a1,21)
1€Q1;€4(t) 21
+o(b1, 21) + v(ck, 71) + Z v(g, 1)
qEA:,
= W+ (12u+39)n+ 3+ 2¢ (4.104)

follows from Figures 1, 2, definition 3.9, and from the fact that o; € A, iff B; & Ay,
for all j =1,...,n (see paragraph 3.2). Equation 4.103 gives

W+ (12u+39)n+2+¢

S (4.105)

Yor (to + ty) >

by assumption 4.93 and v(z},,z1) < 0. We already know from inequality 4.82 where
e (t=t) < 1 that
dya:;c
dt
We prove that the state y,: (t) of unit zj, keeps increasing after z; is unsaturated
from 1 for ¢ > to + ¢y. Since y,; is continuous, it suffices to show that its derivative
satisfies

(t) > eyq (1) —e27 /%, (4.106)

dyar:;c
dt

(to + tu) > 0 (4.107)
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BRI TIEIrm Ex)
to =0 <0 >1 =1-10, >0

to + ty =1 =1- 6z1€7t”

to +t) — >0 — — -0

to + t =32 <0

Table 2: The review of the boundary time instants for units z},, z;.

at time instant tg + ¢, according to inequality 4.106, which further reduces to

dyz;c

e(W+ (12u+39)n+2 +¢) _ g1/
dt

—v(x}, 1)

(tO + tu) Z

>0 (4.108)

by using condition 4.105. Inequality 4.108 follows from —v(z},z1) < £2'/¢ according
to lemma 1.
Similarly, excitation

&) = v0z)+ D v(gz) + (1+&)ys, (t) + v(@h, 21)ys (b)
1€Q} €, (121
+ 3 vl z)yg () + Y 0@ 1)y () + Agygy e (4.109)
qEA, qeB

of unit z; for time ¢ > to is obtained from equation 4.35 for Q]. Hence, the
derivative of unsaturated z; for ¢ > tg + t,, can be expressed as

dy,
Ztl (t) = ’U(Oaxl) + Z v(q, :L'l) + €Yz, (t) + v(m;caml)yz;c (t)
9EQT; 64(H)>1

+ 3 (@ ey () + Y v(g, 21)y, () + Aaygy e ¢ (4.110)
qEA:, qEB

according to equation 2.6. Denote by 0 < t/, < t; the least local time instant such

that
dyz,

dt
Note that ¢/, > t,, since unit z; is still saturated at 1 at time to + ¢, when its state
Yz, 18 increasing according to equation 4.34. The values defining the boundary time
instants (printed in bold) for the variables associated with units z},z; and their
signs or dynamics are summarized in Table 2
Now, the change in values of particular terms in the state derivative 4.110 of
unit z; will be estimated between time instants ¢o + ¢, and to + t;. Thus,

(to + ;) =0. (4.111)

You (o + ) > o (to) = 1 — 60y > 1— 2715 > ; ettt (4112)
by assumption 4.96, which implies
€Y, (fo + te) — ey, (to + 1) < —% ye2ml/e (4.113)
Since v(z}, 1) < 0 and y, (t) is increasing for ¢ > to +t,, it follows

o(xh, 1)ygr (1) — v(Th, 21)Ye (to + 1) <0 (4.114)
k k
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for t > to +1t,. In addition, v(g,z1) > 0 for ¢ € A;; C A and all the units in A, are
still saturated at 1 at to + t/, because y,, (t) is nondecreasing for to < t < tq +t/;,
which gives

Z v(g, z1)yq(t) — Z v(g, 1)y (to + 1) < e271/¢ (4.115)
QEAtO QEAzO

for t > to + t!; according to assumption 4.97. Similarly, v(¢,z1) < 0 for ¢ € B and
all the units in B are still saturated at 0 at to + t]; which provides

Z v(g, z1)yq(t) — Z (g, 1)y (to + ) < e271/¢ (4.116)
qEB geB

for t > to + t!, by assumption 4.98. Also the defect term in equation 4.110 satisfies
Agygr e ) — Ay o et < g271/° (4.117)

for t > to + t/; according to assumption 4.94. By summing inequalities 4.113-4.117
for differences in particular terms of equation 4.110 we obtain
dyzl dy-fﬂl
t t = t te) —
(to +te) o (o +te) =~
< —g/3+e(83+e)27 <0 (4.118)

dyz,
dt

(to +th)

from inequality 4.28. The state derivative of z; is further negative as inequality
4.118 is valid even for t > ty + t, until z; saturates at 0, since bounds 4.114—
4.117 still apply while condition 4.113 holds for continuous y,, (t) that is further
decreasing according to inequality 4.118. m|

The correct timing of the simulation still needs to be verified to ensure a suf-
ficiently fast decrease in the defects of the continuous-time correlates of binary
states, because the analysis in lemmas 3, 4 is valid only if the defect bounds 4.44,
4.51-4.53, 4.93, 4.94, and 4.96-4.98 are satisfied. According to inequality 4.43, the
absolute value of the total weighted defect of saturated units affecting any unit in
# is bounded by ¢ after transient time ¢, decreasing further to €21/ by time 2t;.
On the other hand, ¢1 lower bounds the time necessary for activating a typical clock
unit p € C (see table in Figure 5) by lemma 3.1.

We will first concentrate on the clock subnetwork C excluding its connection
to simulating subnetwork S via interface unit x;, which will be resolved later on
together with the synchronization analysis for S. In order to validate assumption
4.44, consider e.g. a unit o' € C that has also been activated according to lemma 3.1
last before unit p € C from formula 4.44 starts its activation. Clearly, unit o
coincides with unit o € C in table of Figure 5 except for o =z, (k =2,...,n+1)
and o =z (k= 1,...,n+ 1) whose activation is analyzed in lemma 3.2 instead,
and therefore

ap for p=b,, 2<k<n+1

, ap for p=b

o= b, forp=by, 2<k<n+1 (4.119)
o otherwise .

It follows from Figures 1, 2 that v(o',r) > 0. In fact only v(z1,cx) = 1 and
v(zg,c1) > 0 for k = 2,...,n + 1 are positive while the remaining pairs o',r are
actually not connected corresponding to v(o',r) = 0. In addition, v(p,r) > 1 and
hence the defect in formula 4.44 can be upper bounded as follows:

dp + Arg < v(p,7)dp + Arg +0(0',7)0y = Arg, (4.120)
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where Q2 = H \ {0'}, according to definition 4.36.
Assume first that unit » # x; is not connected to any unit in S, which gives

Argy = Avg, (4.121)

where Q) = Q2NC. Foro #b, 2<k<n+1)ando #b (1 <k<n+1)
all the units in @), are saturated when o' is being activated which takes time ;.
On the other hand, the activation of o' = bj,b; takes time 2¢; due to its bias
v(0,0') = =1 + ¢/3, while simultaneously units in RNC C @, (for particular cases
of R see table in Figure 6 in which now o' corresponds to r) saturate within a
time period of length #; according to lemma 2.2b. Note that the corresponding
unit, xj, or xy, preceding o' = bj, or o' = by, respectively, is already saturated at
1 by lemma 3.2 before o' unsaturates from 0. Furthermore, also all the units in
Q% are saturated for the duration of the next ¢1-period certainly before unit p from
formula 4.44 unsaturates. It follows from inequality 4.43 that A,q; < e which
implies condition 4.44 according to inequality 4.120 and equation 4.121. Similarly,
for r = z; (i.e. p = a1) it will be shown below that all the units in @2 that are
connected to r, especially units in AU By, C R from simulating subnetwork S are
saturated before o' = ¢; unsaturates, which clearly suffices for proving condition
4.44.

Analogously, the stronger defect bounds 4.51-4.53 in lemma 3.2 are met for
p=2x, (2<k<n+1)and p=2, (1 <k <n+1) since according to lemma 3.1
the transient time 2¢; that is sufficient to decrease the underlying defects due to
inequality 4.43, is guaranteed by the successive separate (all the units in C are
saturated but one) activations of the preceding two units cg,ar with v(cg,r) =
v(ag,r) = 0 before unit p unsaturates from 0. It only remains to check inequality
4.53 for p = z; when AU B;, C R, which again follows from the fact that units in
AU By, C S are saturated before o' = ¢; unsaturates, whose proof is given below.

Now, the synchronization of the simulating subnetwork S will be analyzed. The
first phase of any simulated discrete step is delimited by the period during which
the clock interface unit ; € C is passive. Recall that unit z; is reset by zj, for
some 2 < k < n + 1 which saturates at 1 by lemma 3.2 before the subsequent unit
b}, is unsaturated from 0. The activation of b, then takes time 2¢; by lemma 3.1,
from which the first period of length #; suffices for x; to saturate at 0 according
to lemma 2.2b. Thus, the second t;-period of activating the bj, belongs already to
the first simulation phase. This phase then also includes the successive separate
activations of units by, dy, 2, co, ¢1, a1, each of length ¢1 except for the activation of
by, that requires time 2¢; according to lemma 3.1. Altogether the length of the first
phase is certainly at least 8¢;. Note that in this consideration the length of activating
the z, is omitted for which only the upper bound is given in lemma 3.2. Actually,
the first two t;-periods of the first simulation phase are sufficient to stabilize the
simulating subnetwork S, i.e. to saturate all its units, e.g. even before dj, unsaturates
from 0. In particular, according to lemma 4, units in A are and remain saturated
at 0 after y,, = 2/3 while units in By, only then saturate at 1 by lemma 2.2b
within the first ¢;-period, i.e. long before o' = ¢; unsaturates as required above.
The following second t;-period ensures that the units in the second and fifth layers
of S saturate (see Figure 3).

Similarly, the second phase of any simulated discrete step is defined as the period
during which the clock interface unit ; € C is active. Recall that unit z; is activated
by a; and saturates at 1 by lemma 3.2 before the subsequent unit b; becomes
unsaturated from 0. Thus, the second simulation phase includes the successive
separate activations of units b1, d1, 21, ¢, C, ax for some 2 < k < n+1, each of length
t; except for the activation of by that requires time 2¢; according to lemma 3.1.
Altogether the length of the second phase is certainly at least 7¢;. In fact, already

27



-1 -1

1 1
(T)—(2)
N NG

Figure 7: A 3-neuron cycle DRNN.

the first three t;-periods of the second simulation phase are sufficient to stabilize
the simulating subnetwork S, i.e. to saturate all its units even before z; unsaturates
from 0. In particular, according to lemma 4, units in B are and remain saturated
at 0 after y,, = 2/3, while units in Ay, only then saturate at 1 by lemma 2.2b
within the first ¢;-period. The following two t;-periods ensure that the units in the
second layer of S, followed by third-layer units saturate according to lemma 2.2b
(see Figure 3). Obviously, the length of the second simulation phase that is lower
bounded by T7¢; also guarantees the defect bounds 4.93, 4.94, and 4.96-4.98 in
lemma 4.2.

Finally, the lower bound §2(¢*/¢) on the total simulation time follows immedi-
ately from the previous time analysis and equation 4.37. In addition, every unsat-
urated unit in #H saturates within time at most O(¢1) according to lemmas 2.2b, 3.
Also during the simulation all the units in # can simultaneously be saturated for a
period of at most t; before the respective defects decrease below & according to in-
equality 4.43, and the next unit unsaturates. This implies the corresponding upper
bound O(t*/e) and completes the proof of the theorem. O

5 A Simulation Example

A computer program HNGEN has been created to automate the construction from
theorem 1. The input for HNGEN is a text file containing the asymmetric weights
and biases of a given DRNN N, as well as its initial state. The program generates
the system of differential equations 2.6 describing the dynamics of continuous-time
symmetric Hopfield net H together with its boundary conditions in the form of
a FORTRAN subroutine corresponding to N to be simulated. This FORTRAN
procedure is then presented to a solver from the NAG library (Numerical Algorithms
Group, 2002) that provides a numerical solution for this system.

By using the program HNGEN, the underlying construction has been success-
fully tested on several examples. Consider e.g. the simple 3-neuron cycle DRNN NV
depicted in Figure 7, initiated in a state where neuron 1 has output 1 and neurons
2 and 3 output 0. Then the computation of the network consists simply of propa-
gating the unit signal around the cycle. Implementing this system on the HNGEN
generator results in a system of 61 differential equations describing the dynamics of
a continuous-time symmetric Hopfield net H with 61 units. Figure 8 shows the nu-
merical evolution of the states corresponding to the clock interface unit 2, and the
three units 71, 7, w3 that represent binary states of the original discrete neurons
from N, for a period of eight (23) simulated discrete steps confirming the correct-
ness of the simulation. A parameter value of ¢ = 0.3 was used in this numerical
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Figure 8: Continuous-time symmetric simulation of 3-neuron cycle DRNN for
e =0.3.
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simulation, showing that the theoretical bound on ¢ in theorem 1, which would
require about € < 0.024 in the present case, is actually quite conservative.

6 Conclusions and Open Problems

We have proved that an arbitrary convergent discrete-time recurrent neural network
can be simulated by a symmetric continuous-time Hopfield net with only a linear
increase in the network size. The existence of Liapunov functions for Hopfield nets
precludes the use of unbounded oscillations in such a simulation; nevertheless we
are able to base the construction on the bounded, but exponentially long sequence
of pulses generated by the continuous-time clock subnetwork.

From the point of view of understanding analog computation in general this
technique is somewhat unsatisfying, since we are still basically discretizing the
continuous-time computation. It would be most interesting to develop some theo-
retical tools (e.g. complexity measures, reductions, universal computation) for “nat-
urally” continuous-time computations that exclude the use of discretizing oscilla-
tions. First steps along this direction have recently been established (Ben-Hur,
Siegelmann, & Fishman, 2002; Gori & Meer, 2001).

Another challenge for further research is to prove upper bounds on the power
of continuous-time systems. Note that in the case of discrete-time analog-state
neural networks a single fixed-size network with rational-number parameters can
be computationally universal, i.e. able to simulate a universal Turing machine on
arbitrary inputs (Siegelmann & Sontag, 1995). Can e.g. this strong universality
result be generalized for continuous-time systems? Also, we have established an
exponential lower bound on the convergence time of symmetric continuous-time
Hopfield nets (Sfma & Orponen, 2001a): can a matching upper bound be proved,
or the lower bound be increased?

References

Asarin, E., & Maler, O. (1994). On some relations between dynamical systems
and transition systems. In Proceedings of the 21st ICALP’9 International
Colloguium on Automata, Languages, and Programming, LNCS 820 (pp. 59—
72). Berlin: Springer-Verlag.

Balcédzar, J. L., Diaz, J., & Gabarrd, J. (1995). Structural Complexity I (2nd ed.).
Berlin: Springer-Verlag.

Balcdzar, J. L., Gavalda, R., & Siegelmann, H. T. (1997). Computational power
of neural networks: A characterization in terms of Kolmogorov complexity.
IEEE Transactions on Information Theory, 43(4), 1175-1183.

Ben-Hur, A., Siegelmann, H. T., & Fishman, S. (2002). A theory of complexity
for continuous time systems. Journal of Complexity, 18(1), 51-86.

Branicky, M. (1994). Analog computation with continuous ODEs. In Proceedings
of the PhysComp’94 Workshop on Physics and Computation (pp. 265-274).
Los Alamitos, CA: IEEE Computer Society Press.

Casey, M. (1996). The dynamics of discrete-time computation, with application to
recurrent neural networks and finite state machine extraction. Neural Com-
putation, 8(6), 1135-1178.

Cichocki, A., & Unbehauen, R. (1993). Neural Networks for Optimization and
Signal Processing. Chichester: John Wiley & Sons.

30



Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern for-
mation and parallel memory storage by competitive neural networks. IEEFE
Transactions on Systems, Man, and Cybernetics, 13(5), 815-826.

Golden, R. M. (1996). Mathematical Methods for Neural Network Analysis and
Design. Cambridge, MA: The MIT Press.

Goles, E., & Martinez, S. (1989). Exponential transient classes of symmetric neural
networks for synchronous and sequential updating. Complex Systems, 3(6),
589-597.

Gori, M., & Meer, K. (2001). A step towards a complexity theory for dynamical
systems. Technical Report ALCOMFT-TR-01-191, Department of Computer
Science, University of Aarhus, Denmark. To appear in Mathematical Logic
Quarterly.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (2nd ed.).
Upper Saddle River, NJ: Prentice-Hall.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences,
79, 2554-2558.

Hopfield, J. J. (1984). Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proceedings of the National
Academy of Sciences, 81, 3088-3092.

Hopfield, J. J., & Tank, D. W. (1985). “Neural” computation of decisions in
optimization problems. Biological Cybernetics, 52(3), 141-152.

Horne, B. G., & Hush, D. R. (1996). Bounds on the complexity of recurrent
neural network implementations of finite state machines. Neural Networks,
9(2), 243-252.

Indyk, P. (1995). Optimal simulation of automata by neural nets. In Proceedings
of the 12th STACS’95 Annual Symposium on Theoretical Aspects of Computer
Science, LNCS 900 (pp. 337-348). Berlin: Springer-Verlag.

Koiran, P., Cosnard, M., & Garzon, M. (1994). Computability with low-dimensional
dynamical systems. Theoretical Computer Science, 132, 113-128.

Lepley, M., & Miller, G. (1983). Computational power for networks of threshold
devices in an asynchronous environment. Unpublished manuscript, Depart-
ment of Mathematics, Massachusetts, Institute of Technology.

Maass, W., & Orponen, P. (1998). On the effect of analog noise in discrete-time
analog computations. Neural Computation, 10(5), 1071-1095.

Maass, W., & Sontag, E. D. (1999). Analog neural nets with Gaussian or other
common noise distribution cannot recognize arbitrary regular languages. Neu-
ral Computation, 11(3), T71-782.

Medsker, L. R., & Jain L. C. (Eds.) (2000). Recurrent Neural Networks: Design
and Applications. Boca Raton, FL: The CRC Press.

Moore, C. (1990). Unpredictability and undecidability in physical systems. Phys-
ical Review Letters, 64(20), 2354-2357.

31



Moore, C. (1998). Finite-dimensional analog computers: flows, maps, and recur-
rent neural networks. In Proceedings of the 1st International Conference on
Unconventional Models of Computation (pp. 59-71). Berlin: Springer-Verlag,.

Numerical Algorithms Group (2002). Fortran library routine DO2PCF. Manual
available on-line: http://www.nag.co.uk/numeric/fl/manual/pdf/D02/d02pcf.pdf.

Omohundro, S. (1984). Modelling cellular automata with partial differential equa-
tions. Physica, 10D, 128-134.

Orponen, P. (1996). The computational power of discrete Hopfield nets with hid-
den units. Neural Computation 8(2), 403—415.

Orponen, P. (1997a). A survey of continuous-time computation theory. In D.-
Z. Du and K.-I. Ko (Eds.), Advances in Algorithms, Languages, and Com-
plexity (pp- 209-224). Dordrecht: Kluwer Academic Publishers.

Orponen, P. (1997b). The computational power of continuous time neural net-
works. In Proceedings of the 24th SOFSEM’97 Seminar on Current Trends
in Theory and Practice of Informatics, LNCS 1338 (pp. 86-103). Berlin:
Springer-Verlag.

Parberry, 1. (1994). Circuit Complexity and Neural Networks. Cambridge, MA:
The MIT Press.

Siegelmann, H. T. (1999). Neural Networks and Analog Computation: Beyond the
Turing Limit. Boston, MA: Birkh&user.

Siegelmann, H. T., Roitershtein, A., & Ben-Hur, A. (2000). Noisy neural net-
works and generalizations. In S. A. Solla, T. K. Leen, & K.-R. Miiller (Eds.),
Advances in Neural Information Processing Systems (NIPS’99), 12 (pp. 335—
341). The MIT Press.

Siegelmann, H. T., & Sontag, E. D. (1994). Analog computation via neural net-
works. Theoretical Computer Science, 131(2), 331-360.

Siegelmann, H. T., & Sontag, E. D. (1995). Computational power of neural net-
works. Journal of Computer System Science, 50(1), 132-150.

Sima, J., & Orponen, P. (2000). A continuous-time Hopfield net simulation of
discrete neural networks. In Proceedings of the 2nd NC’2000 International
ICSC Symposium on Neural Computing (pp. 36-42). Wetaskiwin, Canada:
ICSC Academic Press.

Sima, J., & Orponen, P. (2001a). Exponential transients in continuous-time sym-
metric Hopfield nets. In Proceedings of the 11th ICANN’2001 Conference
on Artificial Neural Networks, LNCS 2130 (pp. 806-813). Berlin: Springer-
Verlag.

Sima, J., & Orponen, P. (2001b). Computing with continuous-time Liapunov
systems. In Proceedings of the 83rd STOC’2001 Annual ACM Symposium on
Theory of Computing (pp. 722-731). New York: ACM Press.

Sima, J., Orponen, P., & Antti-Poika, T. (2000). On the computational complexity
of binary and analog symmetric Hopfield nets. Neural Computation, 12(12),
2965-2989.

Sima, J., & Wiedermann, J. (1998). Theory of neuromata. Journal of the ACM,
45(1):155-178.

32



Stoll, H. M., & Lee, L.-S. (1988). A continuous-time optical neural network.
In Proceedings of the IEEE International Conference on Neural Networks,
volume II (pp. 373-384).

33



