Parallel Programming on Hopfield Nets

Pekka Orponen and Frédéric Prost

Department of Computer Science
University of Helsinki
P. O. Box 26, FIN-00014 Helsinki, Finland

E-mail: orponen@cs.helsinki.fi

Département de Mathématiques et d’Informatique
Ecole Normale Supérieure de Lyon

69364 Lyon cedex 07, France

E-mail: fprost@lip.ens-lyon.fr

Abstract.

We describe a simple general purpose condition-action type parallel pro-
gramming language and its implementation on Hopfield-type neural net-
works. A prototype compiler performing the translation has been imple-
mented.

Keywords: neural networks, Hopfield nets, parallel programming

1 Introduction

In addition to their uses in specific applications such as pattern classification,
associative memory or combinatorial optimization recurrent neural networks are
also theoretically universal, i.e., general-purpose computing devices. It was ob-
served in [7] that sequences of polynomial-size recurrent threshold logic networks
are computationally equivalent to (nonuniform) polynomial space-bounded Turing
machines, and in [11] this equivalence was extended to polynomial-size sequences
of networks with symmetric weights, i.e., “Hopfield nets” with hidden units. A
corollary to the latter construction shows also that polynomial-size symmetric net-
works with small (i.e., polynomially bounded) interconnection weights are equi-
valent to polynomial time-bounded Turing machines. In [17] similar characteriza-
tions are proved concerning the computational power of asymmetric bounded-size
networks with real-valued units and a saturated-linear transfer function. (All the
networks discussed here and below have discrete synchronous dynamics, i.e., the
states of all the units are updated in parallel discrete steps. However, see [12] for
a simulation of synchronous Hopfield nets by totally asynchronous ones.)

An obvious next step after establishing such a universality result is to design
a high-level programming language and a compiler appropriate for the model.

For the analog asymmetric network model of [17] this was done in [16]; here we
describe our approach to high-level programming of standard discrete symmetric
Hopfield nets. Although the idea of high-level programming of neural nets may
seem counterintuitive at first, we believe that methods for doing this will eventually
be quite useful, considering the rapid progress in neural network hardware (see,
for instance, the work presented in the compendium [15]).

A direct approach to the compilation would have been to simply implement the
Turing machine simulation scheme from [11]. This would, however, have been a
waste of the networks’ capabilities, as this simulation forces the potentially highly
parallel network to behave in a purely sequential manner. Thus we chose rather
to experiment with a very simple parallel language, where a program consists of
a set of “condition — action” pairs, to be executed repeatedly in parallel until
a “halt”-action is encountered. The only operations performed by our programs
are elementary arithmetic and left and right shifts on fixed-length integers, and
the only conditions allowed are conjunctions and disjunctions of numerical com-
parisons. The language should obviously be enriched considerably to be of any
practical use; nevertheless even this prototype version is computationally univer-
sal (within the limits set by the chosen integer length), and suffices to try out the
basic compilation principles.

Finally, a few words on the broader motivation of this work. While the idea of
high-level programming of neural nets may seem counterintuitive (after all, these
are supposedly learning devices), there are at least two good reasons to consider
the topic. Firstly, learning of concepts with high-level structure purely from raw
data is very difficult (see, e.g. [6]), and thus it might be useful to have a method
for initializing a network with an approximate solution, and use learning only for
the fine-tuning of its parameters. Secondly, work on hardware implementations of
neural network models progresses rapidly (see, for instance, the compendium [15]),
and eventually ideas about high-level progamming methods for them will be very
useful. (We might note that these motivations underlie, at least partly, also the
by now quite large literature on neural representation of symbolic knowledge and

“hybrid” neural-symbolic models; see, e.g. [4, 8, 9, 10, 14, 18].)

2 Mapping parallel programs onto asymmetric net-
works

The compilation of programs from our simple parallel language into Hopfield net-
works proceeds in two stages: first the program is represented as a recurrent
threshold logic network with asymmetric interconnections, and then this asym-
metric network is “symmetrized” using the construction from [11]. Here we shall
first describe the mapping into asymmetric networks, and then briefly the sym-
metrization procedure.

The syntax of our simple language is as described in Figure 1. As an element-

program = var list of names: length integer;
pardo statement {; statement }* parend

statement = condition — action{, action }*

condition = Boolean combination of comparison’s
comparison = variable {< | < | =] > | >} variable

action = assignment | halt

assignment = variable := expression

expression = arithmetic expression | shl variable | shr variable

Figure 1: Syntax of a simple parallel language.

ary translation example, let us consider the following program with two 8-bit
integer variables x and y. Starting from any pair of nonnegative initial values
(satisfying the appropriate length constraints), the program simply adjusts the
values of the variables until they are equal, and then halts.

var z, y: length 8;

pardo
r<y — wx:=az+y,y:=y—1;
r>Yy — =Ty,
r=y — halt

parend.

Schematically, this program would first be translated into the asymmetric re-
current network shown in Figure 2. The boxes labeled x and y represent the 8-bit
variable registers, whose contents are first initialized with the input values of the
variables, and then repeatedly updated until a halting-test module (not shown)
determines that the values are equal and forces the network to converge. The thick
lines in Figure 2 correspond to 8-bit data lines around the network, and the thin
lines to single-bit controls. Note that all the possible assignments for each variable
are computed in parallel on each pass of data around the network, and only at
the end of the pass the control lines are used to select the correct assignment,
within a simple multiplexer (MPX) subcircuit. In case none of the selector lines are
active, a multiplexer implicitly selects the old value of the variable (the bottom
input lines to the « and y multiplexers in Figure 2). If many of the selector lines
are active simultaneously, the result of the multiplexing is undetermined.

In addition to the registers and the comparison and multiplexer modules, Fig-
ure 2 shows three 8-bit adders (ADD), one module (NEG) for transforming an 8-bit
number into its negative in a two’s complement representation, and one constant
input module (—1). All these subcircuits are quite easy to build using threshold
logic units: for instance the comparisons require just one unit each, and each mul-
tiplexer consists of 8 two-way one-bit selectors, each of size 3, plus the additional

ADD \
1
P
NEG ADD
ADD
-1

MPX Y

\

Figure 2: Asymmetric net corresponding to example program.

circuitry needed to implement the default selection. The most complicated mod-
ules are the adders, whose implementation we moreover have not even attempted
to optimize. For an 8-bit adder we simply chain together 8 single-bit full adders.
(This is perhaps the main aspect of our compiler that needs improvement. The
current design is bad not only because it consumes a lot of units, but also be-
cause it introduces long delays into the network and complicates its sequencing.)
In addition to the modules shown in the figure, the network also contains a cer-
tain amount of control circuitry, e.g. for implementing the halt operation, and
ensuring that all the inputs required by a module arrive at the same time.

As an example of threshold logic design, Figure 3 shows a full adder that adds
bits x;, y;, and ¢;, to produce output bit z; and carry bit ¢;41. All the weights in
the first layer of the circuit are 1.

3 Mapping asymmetric networks onto symmetric
ones

The procedure for transforming convergent asymmetric nets into symmetric ones
is discussed in detail in [11]; here we provide only an outline. In the transforma-
tion, each asymmetric edge in the original network is first replaced by a sequence
of three symmetric edges and their intermediate units, as indicated in Figure 4.

Ly

Yi >~ 2 > 2

c; O — Cit1

Figure 3: A single-bit full adder subcircuit.

Figure 4: A sequence of symmetric edges corresponding to an asymmetric edge
of weight w.

[U AU U U
[Yo iy
W ———m - |- -
R s

Figure 5: The clock pulse sequence used in the edge simulation.

Figure 6: A three-bit binary counter network.

The two intermediate units act like locks in a canal, permitting information to
flow only from left to right. The locks are sequenced by clock pulses emanating
from the units labeled A and B, in cycles of period three as presented in Figure 5.
(This edge simulation technique was originally introduced, in a somewhat more
complicated form, by Hartley and Szu in [3].)

Because symmetric nets always converge to either a stable state or a cycle of
period two [2], a proper clock of period three cannot actually be constructed in
a symmetric net. However, to simulate a convergent computation of the original
asymmetric net, it suffices to have a clock that produces an exponential number
of periods and then stops. (Note that a convergent synchronous computation on
n units must terminate within 2” steps, because otherwise the network repeats
a configuration and goes into a cycle.) Such a clock can be obtained from, e.g.,
a symmetric exponential-transient network designed by Goles and Martinez [1].
The first two stages in the construction of this network are presented in Figure 6.

The 1dea here is that the n units in the upper row implement a binary counter,
counting from all 0’s to all 1’s (in the figure, the unit corresponding to the least
significant bit is to the right). For each “counter” unit added to the upper row,
after the two initial ones, two “control” units are added to the lower row. The
purpose of the latter is to first turn off all the “old” units, when the new counter
unit is activated, and from then on balance the input coming to the old units from
the new units, so that the old units may resume counting from zero.

The required period-three clock may now be obtained from the second counter
unit of this network by means of an appropriate delay line construction. In build-
ing this connection, the weights and the thresholds in the counter network must
also be multiplied by some sufficiently large constant so that the rest of the network
has no effect back on the clock. For more details of the construction, see [11].

4

Conclusion and further work

We have designed and implemented an experimental compiler from a very simple

condition-action type parallel programming language into standard symmetric dis-
crete Hopfield networks with synchronous dynamics. The programming language
should be extended considerably to be practical, and some of the design decisions
in the compiler (notably the simplistic implementation of arithmetic modules)
have turned out to be less than optimal. Nevertheless, this is to our knowledge
the first attempt at general-purpose high-level programming on this standard and

theoretically well-studied computational model.

References

[1]

[2]

Goles, E., Martinez, S. EKxponential transient classes of symmetric neural networks
for synchronous and sequential updating. Complex Systems 3 (1989), 589-597.

Goles, E., Olivos, J. Comportement périodique des fonctions & seuil binaires et
applications. Discr. Appl. Math. 3 (1981), 93-105.

Hartley, R., Szu, H. A comparison of the computational power of neural networks.
In: Proc. of the 1987 Internat. Conf. on Neural Networks, Vol. 3. IEEE, New York,
1987. Pp. 15-22.

Hinton, G. E. (ed.) Connectionist Symbol Processing. (Reprint of Artificial Intelli-
gence 46:1-2 (1990).) The MIT Press, Cambridge, Ma., 1991.

Hopfield, J. J. Neural networks and physical systems with emergent collective com-

putational abilities. Proc. Nat. Acad. Sci. USA 79 (1982), 2554-2558.

Kearns, M., Valiant, L. Cryptographic limitations on learning Boolean formulae
and finite automata. J. Assoc. Comput. Mach. 41 (1994), 67-95.

Lepley, M., Miller, G. Computational power for networks of threshold devices in an
asynchronous environment. Unpublished manuscript, Dept. of Mathematics, Mas-
sachusetts Inst. of Technology, 1983.

Levine, D. S., Aparicio, M. A., IV (eds.) Neural Networks for Knowledge Repres-
entation and Inference. Lawrence Erlbaum, Hillsdale, N.J., 1994.

Myllymiki, P., Orponen, P. Programming the Harmonium. In: Proceedings, In-
ternational Joint Conf. on Neural Networks (Singapore, November 1991), Vol. I.
IEEE, New York, 1991. Pp. 671-677.

Myllyméki, P., Orponen, P., Silander, T'. Integrating symbolic reasoning with neur-
ally represented background knowledge. In: Proceedings, AAAI-92 Workshop on
Integrating Neural and Symbolic Processes (San Jose, Ca., July 1992), 168-172.

Orponen, P. The computational power of discrete Hopfield nets with hidden units.
Neural Computation 8 (1996), 403—-415.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Orponen, P. Computing with truly asynchronous threshold logic networks. Theor-
etical Computer Science, to appear.

Parberry, I. (ed.) The Computational and Learning Complexity of Neural Networks:
Advanced Topics. The MIT Press, to appear.

Plate, T. A. Holographic reduced representations: Convolution algebra for compos-

itional distributed representations. In: Proceedings, 12th International Joint Conf.
on Artificial Intelligence (Sydney, August 1991), 30-35.

Sanchez-Sinencio, E., Lau, C. Artificial Neural Networks: Paradigms, Applications,
and Hardware Implementations. IEEE Press, New York, 1992.

Siegelmann, H. T. A neural programming language. In: Proc. of the 12th National
Conf. on Artificial Intelligence (Seattle, Wa., July 1994), Vol. 2. AAAT Press/The
MIT Press, 1994. Pp. 877-882.

Siegelmann, H. T., Sontag, E. D. Analog computation via neural networks. Theor-
etical Computer Science 131 (1994), 331-360.

Sun, R., Bookman, .. A. (eds.) Computational Architectures Integrating Neural and
Symbolic Processes. Kluwer Academic, Boston, Ma., 1995.

