
Using Unfoldings in Automated

Testing of Multithreaded Programs

Kari Kähkönen, Olli Saarikivi, Keijo Heljanko

The Problem

• How to automatically test the local state reachability in

multithreaded programs

– E.g., find assertion violations, uncaught exceptions, etc.

• The main challenge: path explosion and numerous

interleavings of threads

• One approach: dynamic symbolic execution (DSE) +

partial order reduction

• New approach: DSE + unfoldings

Dynamic Symbolic Execution

• DSE aims to explore different execution paths of the

program under test

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...

Dynamic Symbolic Execution

• DSE typically starts with a random execution

• The program is executed concretely and symbolically

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...

Dynamic Symbolic Execution

• Symbolic execution generates constraints that can be

solved to obtain new test inputs for unexplored paths

Control flow graph

x = input

x = x + 5

if (x > 10) {

...

}

...

c1 c2

c3 c4

c1 = input1 + 5 > 10

c2 = input1 + 5 ≤ 10

What about Multithreaded Programs?

• Take control of the scheduler

• Execute threads one by one until a global operation

(e.g., access shared variable) is reached

• Branch the execution tree for each enabled operation

Scheduling decision

What about Multithreaded Programs?

• Take control of the scheduler

• Execute threads one by one until a global operation

(e.g., access shared variable) is reached

• Branch the execution tree for each enabled operation

Problem: a large number of irrelevant interleavings

One Solution: Partial-Order Reduction

• Ignore provably irrelevant parts of the symbolic

execution tree

• Existing algorithms:

– dynamic partial-order reduction

– race detection and flipping

Another Solution?

• Can we create a symbolic representation of the

executions that contain all the interleavings but in more

compact form than with execution trees?

• Yes, with unfoldings

What Are Unfoldings?

• Unwinding of a control flow graph is an execution tree

• Unwinding of a Petri net is an unfolding

• Can be exponentially more compact than exec. trees

Petri net Initial unfolding

What Are Unfoldings?

• Unwinding of a control flow graph is an execution tree

• Unwinding of a Petri net is an unfolding

• Can be exponentially more compact than exec. trees

Petri net Unfolding

What Are Unfoldings?

• Unwinding of a control flow graph is an execution tree

• Unwinding of a Petri net is an unfolding

• Can be exponentially more compact than exec. trees

Petri net Unfolding

What Are Unfoldings?

• Unwinding of a control flow graph is an execution tree

• Unwinding of a Petri net is an unfolding

• Can be exponentially more compact than exec. trees

Petri net Unfolding

What Are Unfoldings?

• Unwinding of a control flow graph is an execution tree

• Unwinding of a Petri net is an unfolding

• Can be exponentially more compact than exec. trees

Petri net Unfolding

Using Unfoldings with DSE

• When a test execution encounters a global operation,

extend the unfolding with one of the following events:

read write lock unlock

• Potential extensions for the added event are new test

targets

Example

Global variables:

int x = 0;
Thread 1:

local int a = x;

if (a > 0)

error();

Thread 2:

local int b = x;

if (b == 0)

x = input();

Initial unfolding

Example

Global variables:

int x = 0;
Thread 1:

local int a = x;

if (a > 0)

error();

Thread 2:

local int b = x;

if (b == 0)

x = input();

First test run

Example

Global variables:

int x = 0;
Thread 1:

local int a = x;

if (a > 0)

error();

Thread 2:

local int b = x;

if (b == 0)

x = input();

Find possible

extensions

Example

Global variables:

int x = 0;
Thread 1:

local int a = x;

if (a > 0)

error();

Thread 2:

local int b = x;

if (b == 0)

x = input();

Computing Potential Extensions

• Finding potential extensions is the most computationally

expensive part of unfolding

• It is possible to use existing potential extension

algorithms with DSE

– Designed for arbitrary Petri nets

– Very expensive

• Key contribution: Possible to limit the search space of

potential extensions due to restricted form of unfoldings

generated by the algorithm

– Same worst case behavior, but in practice very efficient

Comparison with DPOR and Race

Detection and Flipping

• The amount of reduction obtained by dynamic partial-

order approaches depend on the order events are

added to the symbolic execution tree

• Unfolding approach is computationally more expensive

per test run but typically requires less test runs

– With threads that contains high amount of independence, the

reduction to the number of test runs can be even exponential

Experiments

program paths time paths time paths

Indexer (12) 8 2 85 10 8

Filesystem (16) 3 0 16 2 31

Filesystem (18) 4 0 97 6 2026

Parallel pi (5) 120 3 2698 17 120

Test selector (3) 65 2 87 2 65

Test selector (4) 2576 70 8042 97 2576

Pairs (6) 7 0 512 8 580

Locking (4) 2520 42 2520 13 2520

Synthetic-1 (3) 984 15 3716 10 2430

Synthetic-2 (3) 1943 54 7768 56 4860

Synthetic-3 (4) 682 14 8550 52 1757

Unfolding DPOR (ACSD ’12) jCUTE

Conclusions

• A new approach to test multithreaded programs by

combining DSE and unfoldings

• The restricted form of the unfoldings allows efficient

implementation of the algorithm

• The new algorithm offers competitive performance to

existing approaches

– In some cases it can be substantially faster

