KU LEUVEN

How to use Koblitz curves on small devices?

Kimmo Järvinen^{1,2} Ingrid Verbauwhede¹

- ¹ KU Leuven (Belgium)
- ² Aalto University (Finland)

CARDIS 2014, Paris, France, Nov. 5-7, 2014

Introduction 2/16

- Elliptic curves are good for lightweight public-key crypto
- ullet Koblitz curves allow very fast kP
 - ⇒ Point doublings are replaced by cheap Frobenius maps
 - \Rightarrow The scalar k is needed as a τ -adic expansion K
 - ⇒ Conversions are needed and they are expensive

Introduction 2/16

- Elliptic curves are good for lightweight public-key crypto
- ullet Koblitz curves allow very fast kP
 - ⇒ Point doublings are replaced by cheap Frobenius maps
 - \Rightarrow The scalar k is needed as a τ -adic expansion K
 - ⇒ Conversions are needed and they are expensive
- We provide a solution to this problem: Conversions can be delegated to a more powerful party if the weaker party computes all operations in the τ -adic domain

• Elliptic curves over $GF(2^m)$ of the form:

$$E: x^2 + xy = y^3 + ax^2 + 1$$
, where $a \in \{0, 1\}$

- If $\mathbf{P} = (x, y) \in E$, then also $F(\mathbf{P}) = (x^2, y^2) \in E$
- ullet $2{f P}=\mu F({f P})-F(F({f P}))$ where $\mu=(-1)^{1-a}$

• Elliptic curves over $GF(2^m)$ of the form:

$$E: x^2 + xy = y^3 + ax^2 + 1$$
, where $a \in \{0, 1\}$

- If $\mathbf{P} = (x, y) \in E$, then also $F(\mathbf{P}) = (x^2, y^2) \in E$
- $2\mathbf{P} = \mu F(\mathbf{P}) F(F(\mathbf{P}))$ where $\mu = (-1)^{1-a}$
- \bullet Frobenius can be seen as a multiplication by the complex number: $\tau = (\mu + \sqrt{-7})/2$
- If k is given in base- τ as $K = \sum K_i \tau^i$, then Frobenius maps can be used for computing $k\mathbf{P}$
 - ⇒ Fast Frobenius-and-add instead of slow double-and-add

• Signature (r, s) for a message m:

$$k \in_{R} [1, q - 1]$$

$$r = [k\mathbf{P}]_{x}$$

$$e = H(m)$$

$$s = k^{-1}(e + dr) \bmod q$$

Option A: Convert a random integer to the τ -adic domain

Option A: Convert a random integer to the τ -adic domain

Option B: Convert a random τ -adic expansion to an integer

- The tag computes everything in the τ -adic domain (values that don't depend on k can be computed normally)
- ullet Resources are saved if **operations in the** au-adic domain are cheap (cheaper than conversions)
- ullet We need an efficient algorithm for addition of two au-adic expansions; other arithmetic operations can be implemented using it

 $a=19=\langle 1,0,0,1,1\rangle$ and $b=17=\langle 1,0,0,0,1\rangle$ Then, $c=36=\langle 1,0,0,1,0,0\rangle$ is given as follows:

ullet With any base $B\in\mathbb{Z}_+$, we can do: $r_i=a_i+b_i+t_{i-1}$

$$c_i = r_i \mod B$$
$$t_i = (r_i - c_i)/B$$

• The carry is a au-adic number $t \in \mathbb{Z}[au]$ and it is uniquely given by $t = t_0 + t_1 au$ with $t_{0,1} \in \mathbb{Z}$ (Solinas, 2000)

- The carry is a τ -adic number $t \in \mathbb{Z}[\tau]$ and it is uniquely given by $t = t_0 + t_1 \tau$ with $t_{0,1} \in \mathbb{Z}$ (Solinas, 2000)
- ullet r_i and C_i are given similarly (only t_0 affects C_i)

$$r_i = A_i + B_i + t_0$$
$$C_i = r_i \bmod 2$$

- The carry is a τ -adic number $t \in \mathbb{Z}[\tau]$ and it is uniquely given by $t = t_0 + t_1 \tau$ with $t_{0,1} \in \mathbb{Z}$ (Solinas, 2000)
- ullet r_i and C_i are given similarly (only t_0 affects C_i)
- Division $(t C_i)/\tau$ is given by $(t_0, t_1) \leftarrow (t_1 + \mu(t_0 C_i)/2, -(t_0 C_i)/2)$ (Solinas, 2000)

$$r_i = A_i + B_i + t_0$$

 $C_i = r_i \mod 2$
 $t_0 = t_1 + \mu(t_0 - C_i)/2$
 $t_1 = -(t_0 - C_i)/2$

$$A = 1 + \tau + \tau^4 = \langle 1, 0, 0, 1, 1 \rangle$$

$$B = 1 + \tau^4 = \langle 1, 0, 0, 0, 1 \rangle$$

$$r_i = t_0 + A_i + B_i$$

 $C_i = r_i \mod 2$
 $t_0 = t_1 + \mu(t_0 - C_i)/2$
 $t_1 = -(t_0 - C_i)/2$

$$A = 1 + \tau + \tau^4 = \langle 1, 0, 0, 1, 1 \rangle$$

$$B = 1 + \tau^4 = \langle 1, 0, 0, 0, 1 \rangle$$

$$r_i = 0 + 1 + 1 = 2$$

$$C_i = 2 \mod 2 = 0$$

$$t_0 = 0 + 1 \cdot (2 - 0)/2 = 1$$

$$t_1 = -1 \cdot (2 - 0)/2 = -1$$

$$A = 1 + \tau + \tau^4 = \langle 1, 0, 0, 1, 1 \rangle$$

$$B = 1 + \tau^4 = \langle 1, 0, 0, 0, 1 \rangle$$

$$r_i = 1 + 0 + 1 = 2$$

$$C_i = 2 \mod 2 = 0$$

$$t_0 = -1 + 1 \cdot (2 - 0)/2 = 0$$

$$t_1 = -1 \cdot (2 - 0)/2 = -1$$

$$A = 1 + \tau + \tau^4 = \langle 1, 0, 0, 1, 1 \rangle$$

$$B = 1 + \tau^4 = \langle 1, 0, 0, 0, 1 \rangle$$

$$r_i = 0 + 0 + 0 = 2$$

 $C_i = 0 \mod 2 = 0$
 $t_0 = -1 + 1 \cdot (0 - 0)/2 = -1$
 $t_1 = -1 \cdot (0 - 0)/2 = 0$

$$A = 1 + \tau + \tau^4 = \langle 1, 0, 0, 1, 1 \rangle$$

$$B = 1 + \tau^4 = \langle 1, 0, 0, 0, 1 \rangle$$

$$r_i = -1 + 0 + 0 = -1$$

$$C_i = -1 \mod 2 = 1$$

$$t_0 = 0 + 1 \cdot (-1 - 1)/2 = -1$$

$$t_1 = -1 \cdot (-1 - 1)/2 = 1$$

$$A = 1 + \tau + \tau^4 = \langle 1, 0, 0, 1, 1 \rangle$$

$$B = 1 + \tau^4 = \langle 1, 0, 0, 0, 1 \rangle$$

$$r_i = -1 + 1 + 1 = 1$$

 $C_i = 1 \mod 2 = 1$
 $t_0 = 1 + 1 \cdot (1 - 1)/2 = 1$
 $t_1 = -1 \cdot (1 - 1)/2 = 0$

$$A = 1 + \tau + \tau^4 = \langle 1, 0, 0, 1, 1 \rangle$$

$$B = 1 + \tau^4 = \langle 1, 0, 0, 0, 1 \rangle$$

$$\begin{aligned} r_i &= 1 + 0 + 0 = 1 \\ C_i &= 1 \bmod 2 = 1 \\ t_0 &= 0 + 1 \cdot (1 - 1)/2 = \mathbf{0} \\ t_1 &= -1 \cdot (1 - 1)/2 = \mathbf{0} \end{aligned}$$

Hence,
$$C = A + B = \langle 1, 1, 1, 0, 0, 0 \rangle = \tau^3 + \tau^4 + \tau^5$$

- $A_i \in \{0,1\}$ and $B_i \in \{0,\pm 1\}$ to support τNAF
- FSM includes 21 states

 $\mu = 1$

KU LEUVEN

- $A_i \in \{0,1\}$ and $B_i \in \{0,\pm 1\}$ to support $au \mathsf{NAF}$
- FSM includes 21 states
- The state (t_0, t_1) with $t_0 \in [-3, 3]$ and $t_1 \in [-2, 2]$
- At most 7 steps to reach (0,0) when all $A_i=B_i=0$

Multiplication

- shift-and-add (both operands τ -adic expansion)
- ullet double-and-add (an integer and a au-adic expansion)

Multiplication

- shift-and-add (both operands τ -adic expansion)
- ullet double-and-add (an integer and a au-adic expansion)

Inversion mod q

ullet Fermat's Little Theorem $A^{-1}=A^{q-2}$

Multiplication

- ullet shift-and-add (both operands au-adic expansion)
- ullet double-and-add (an integer and a au-adic expansion)

Inversion mod q

ullet Fermat's Little Theorem $A^{-1}=A^{q-2}$

Folding

- Integer equivalent of $A = \sum_{i=0}^{n-1} A_i \tau^i$ given by $a = \sum A_i s^i \mod q$ where s is a curve constant such that $s^m \equiv 1 \pmod q$ (Lange, 2005)
- Split A into m-bit blocks $A^{(0)},\ldots,A^{(\lfloor n/m\rfloor)}$ and compute $A^{(0)}+A^{(1)}+\ldots+A^{(\lfloor n/m\rfloor)}$ with the addition algorithm
- ullet Length of A can be reduced to approx. m

- 130 nm CMOS, Synopsys Design Compiler, VHDL
- \bullet 75.25 GE $(\mu=1)$ or 76.25 GE $(\mu=-1)$

Work	Technology	GE
(Brumley, 2010), integer-to- τ NAF	FPGA, Stratix II S60C4	>7200
(Brumley, 2010), $ au$ -adic-to-integer	FPGA, Stratix II S60C4	>3600
This work, $\mu = 1$	ASIC, $0.13\mu\mathrm{m}$ CMOS	75.25
This work, $\mu=1$	ASIC, 0.13 μ m CMOS	\sim 2000

Conclusions

- ullet Expensive conversions can be delegated to a more powerful party by using cheap au-adic arithmetic
- Koblitz curves are viable also for lightweight implementations

Future Work

- Side-channel countermeasures
- Bit-serial → digit-serial
- Entire elliptic curve cryptosystem (e.g., ECDSA signing)

Thank you! Questions?