
Complexity Results for Checking Distributed

Implementability

Keijo Heljanko1 and Alin Ştefănescu2

1 Laboratory for Theoretical Computer Science, Helsinki University of Technology
2 Institute for Formal Methods in Computer Science, University of Stuttgart

Abstract. We consider the distributed implementability problem as:
Given a labeled transition system TS together with a distribution ∆ of
its actions over a set of processes, does there exist a distributed sys-
tem over ∆ such that its global transition system is ‘equivalent’ to TS?
We consider the distributed system models of synchronous products of
transition systems [Arn94] and asynchronous automata [Zie87]. In this
paper we provide complexity bounds for the above problem with three
interpretations of ‘equivalent’: as transition system isomorphism, as lan-
guage equivalence, and as bisimilarity. In particular, we solve problems
left open in [CMT99,Mor99]. We also describe a logic programming im-
plementation which complements the implementation for the synthesis
of asynchronous automata initiated in [ŞEM03].

1 Introduction

In this paper we study the computational complexity of the distributed synthesis
problem. The problem has different versions, which share the following abstract
formulation: Given a labeled transition system together with a distribution (as
a relation telling which actions can be executed by which local agents), does
there exist a distributed system over the given distribution that is behaviourally
equivalent to the transition system?

The distributed synthesis problem has been studied for a number of abstract
models of distributed systems (elementary net systems, place/transition Petri
nets, synchronous products of transition systems [Arn94], and Zielonka’s asyn-
chronous automata [Zie87]) using a number of behavioural equivalences between
the implementation and the specification (isomorphism, language equivalence,
and bisimilarity). For nearly all these variants, axiomatic or language theo-
retic characterizations of the transition systems that can be distributed have
been provided [ER90,NRT92,Mor98,CMT99,Vog99,Muk02]. Moreover, the com-
putational complexity of the variants concerning elementary net systems and
place/transition Petri nets is well understood [BBD95,BBD97]. However, the
complexity of many variants concerning synchronous products and asynchro-
nous automata were still open. In this paper we fill many of these gaps, and in
particular solve some problems left open in [CMT99,Mor99].

Mukund [Muk02] surveys (structural, behavioural) characterizations for syn-
chronous products and asynchronous automata. In this paper we provide (the

Table 1. Implementability of synchronous products with one initial state

Specification (TS) Isomorphism Language Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete

Deterministic P [Mor98]
PSPACE-complete PSPACE-complete

Acyclic & Nondet. NP-complete

Acyclic & Determ. P [Mor98]
coNP-complete coNP-complete

Table 2. Implementability of asynchronous automata with multiple initial states

Specification (TS) Isomorphism Language Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete PSPACE-complete

Deterministic P [Mor98] P
P

Acyclic & Nondet. NP-complete coNP-complete

Acyclic & Determ. P [Mor98] P
P

missing) lower and upper bounds for all the implementability tests presented in
[Muk02]. Tables 1,2 present a summary of the known and the new results. Note
that, due to slightly different existing characterizations, the two models consider
one, respectively multiple initial states. Also, we consider special cases in which
the input transition system is assumed to be deterministic or acyclic (column 1).

In [Mor98], Morin proved that distributed implementability modulo isomor-
phism (column 2) can be solved in polynomial time when the input transition
system is deterministic (the result holds for both synchronous products and asyn-
chronous automata). In the nondeterministic case, results from [CMT99,Mor99]
show that the problem is in NP, but precise lower bounds were explicitly left
open. We show that the problem is NP-complete, even for acyclic specifications.

In [Muk02], Mukund characterized the transition systems that can be imple-
mented as a synchronous product modulo language equivalence. It is not difficult
to see that this characterization leads to a PSPACE algorithm. We show that
the problem is PSPACE-complete, even if the input transition system is deter-
ministic, and coNP-complete if it is acyclic (Table 1, column 3). We also obtain
the same results for the implementability problem modulo bisimulation when the
implementation is required to be deterministic (Table 1, column 4). (Notice that
this is a natural constraint in many areas of hardware design.)

In [Zie89], Zielonka characterized the transition systems that can be imple-
mented as an asynchronous automata modulo language equivalence. Combin-
ing this result with several others from the literature, we show that the imple-
mentability problem has the same complexity as for synchronous products in the
nondeterministic case, but can be solved in polynomial time in the deterministic
case (Table 2, column 3). Maybe surprisingly, a simple trick allows us to extend
this result to the implementability problem modulo bisimulation, again when
the implementation is required to be deterministic (Table 2, column 4).

Partly motivated by the complexity results, in the last part of the paper we
present new prototype implementations for asynchronous automata synthesis

2

problems. The used approach is based on mapping the problems to the problem
of finding a stable model of a logic program (an NP-complete problem) by using
the Smodels logic programming system [SNS02].

The paper is organized as follows. We start defining the distributed systems
and their associated synthesis problem (Section 2). Sections 3,4,5 present the
complexity bounds for the implementability problem, while Section 6 discusses
some heuristic implementations for asynchronous automata. The last section is
reserved for conclusions and some of the technical details can be found in several
appendices.

2 The Implementability Problem for Distributed Systems

We begin with the general notion of a transition system. A (labeled) transition
system is a tuple TS = (Q,Σ,→, I), where Q denotes the set of states, Σ the
nonempty, finite alphabet of actions, →⊆ Q × Σ × Q the transition relation,
and I ⊆ Q the set of initial states. We write q

a−→ q′ to denote (q, a, q′) ∈→. A

transition system is called: deterministic if |I| = 1 and if q
a−→ q′ and q

a−→ q′′

implies q′ = q′′; reachable if ∀q ∈ Q∃qin ∈ I, w ∈ Σ∗ : qin w−→ q; and finite if
Q is finite. All transition systems in this paper are considered to be finite and
reachable.

To model synchronization, we need as ingredient the notion of distributed
alphabet or (shorter) distribution: A distribution is a tuple (Σ,Proc,∆), where
Σ is a nonempty, finite set of actions, Proc is a nonempty, finite set of process
labels, and ∆ ⊆ Σ × Proc is a relation between actions and processes such that
each action is in relation with at least one process and vice versa. ∆ provides for
each action the (nonempty) set of processes that are able to execute that action
through the function dom : Σ → 2Proc defined as dom(a) := {p ∈ Proc | (a, p) ∈
∆}. Dually, ∆ provides for each process the (nonempty) set of actions that may
be executed by that process through the function Σloc : Proc → 2Σ defined as
Σloc(p) := {a ∈ Σ | (a, p) ∈ ∆}. In unequivocal contexts we will simply use ∆ to
denote (Σ,Proc,∆).

The two models of distributed transition systems considered in this paper
are based on synchronization on common actions for a family of (local) tran-
sition systems: We study the (well known) synchronous products of transition
systems [Arn94] and a generalization of them, asynchronous automata [Zie87].

Let (Σ,Proc,∆) be a distribution. In the first synchronization model, we
associate a local transition system with each process in Proc. A synchronization
on a common action a ∈ Σ occurs only when all the local states of the processes
in dom(a) enable a and execute it (i.e., update their local states). In the second
synchronization model, we associate a transition relation with each action a ∈ Σ.
A synchronization on a occurs only when the tuple of the local states of the
processes in dom(a) enable a in the ‘hand-shake’ relation associated with a (the
local states are then updated according to this ‘hand-shake’). In both cases, the
execution of a only changes the local states of the processes in dom(a).

3

Definition 1. A synchronous product of transition systems SP over a distri-
bution (Σ,Proc,∆) is a transition system (Q,Σ,→, I) for which there exist a
family of local state sets (Qp)p∈Proc and a family of local transition relations
(→p)p∈Proc with →p⊆ Qp × Σloc(p)×Qp such that:

Q ⊆∏

p∈Proc
Qp and Q consists of all the states reachable from I by

(qp)p∈Proc

a−→ (q′p)p∈Proc ⇔
{

qp
a−→p q′p for all p ∈ dom(a) and

qp = q′p for all p 6∈ dom(a).

Definition 2. An asynchronous automaton AA over a distribution (Σ,Proc,∆)
is a transition system (Q,Σ,→, I) for which there exist a family of local state
sets (Qp)p∈Proc and a transition relation→a⊆

∏

p∈dom(a) Qp×
∏

p∈dom(a) Qp for
each a ∈ Σ, such that:

Q ⊆∏

p∈Proc
Qp and Q consists of all the states reachable from I by

(qp)p∈Proc

a−→ (q′p)p∈Proc ⇔
{

(qp)p∈dom(a) →a (q′p)p∈dom(a) and
qp = q′p for all p 6∈ dom(a).

The problem whose computational complexity we will study in this paper is:

Problem 3. Given a distribution (Σ,Proc,∆) and a finite transition system TS ,
does there exist a distributed transition system over ∆ equivalent to TS?

Mukund [Muk02] surveyed solutions for the above problem when the ‘dis-
tributed transition system’ is one of {synchronous product of transition systems,
asynchronous automaton} and ‘equivalent’ is one of {isomorphic, language equiv-
alent, bisimilar1}. Mukund presents characterizations results without a compu-
tational complexity analysis viewpoint. Since we are interested to know which
cases are tractable in practice, in this paper we study the complexity of the
implementability problem (in many cases, solving this problem also provides
an implementation). We follow the presentation of [Muk02] and in addition we
study the special cases when the input transition system is supposed to be deter-
ministic and/or acyclic, for which the complexity results turn out to be usually
more favorable. Also, we go a bit more general, allowing the (nondeterministic)
distributed systems (Def. 1, 2) to have a set of initial states as opposed to only
one initial state in [Muk02].

3 Implementability modulo Isomorphism

This section presents the complexity of checking whether an input transition
system is isomorphic to the global state space of a distributed transition system.

We mention that, although in practice the initial specification is usually not
isomorphic to a distributed transition system, the synthesis modulo isomorphism
is still of relevance because it can be used to guide heuristics of constructing a
distributed system exhibiting the same behaviour with the specification (see for
instance the approach of [ŞEM03] for the synthesis of asynchronous automata).

1This case was only solved for deterministic distributed implementations [CMT99].

4

3.1 Synchronous Products of Transition Systems

The theory of regions [ER90] proposed an approach of solving the synthesis
modulo isomorphism for Petri nets. Along the same lines goes Theorem 4 below
that characterizes the transition systems for which there exists an isomorphic
synchronous product of transition systems. If such synchronous product exists,
each of its local states Qp (cf. Def. 1) is constructed as the quotient of the input
state space under a local equivalence relation ≡p. These equivalences must be
chosen such that the following hold: (SP1) an a-labeled transition does not affect
the local states of the processes not contained in dom(a); (SP2) the global state
space is no more than the cartesian product of the Qp’s; and (SP3) for an action
a ∈ Σ, if the local states of the processes in dom(a) are able to perform an
a-labeled transition, then a global synchronization must also be possible.

To simplify the notation, we use the following convention: For two given sets
I and J such that J ⊆ I and a given indexed family of binary relations (≡i)i∈I ,
the expression (q1 ≡J q2) abbreviates (∀j ∈ J : q1 ≡j q2).

Theorem 4. [CMT99,Muk02] Let (Σ,Proc,∆) be a distribution and TS =
(Q,Σ,→, I)2 be a transition system. Then, TS is isomorphic to a synchronous
product of transition systems over ∆ if and only if for each p ∈ Proc there exists
an equivalence relation ≡p⊆ Q×Q such that the following conditions hold:

SP1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

SP2 : If q1 ≡Proc q2, then q1 = q2.
SP3 : Let a ∈ Σ and q ∈ Q. If for each p ∈ dom(a), there exist qp, q

′
p ∈ Q such

that qp
a−→ q′p and q ≡p qp, then for each choice of such qp’s and q′p’s, there

exists q′ ∈ Q such that q
a−→ q′ and q′ ≡p q′p for each p ∈ dom(a).

Theorem 5. The implementability problem for synchronous products modulo
isomorphism is NP-complete, even for acyclic specifications.

Proof. First, it is easy to see that the problem is in NP: Given a distribution
(Σ,Proc,∆) and a transition system TS , a nondeterministic machine can ‘guess’
a family of equivalences (≡p)p∈Proc and then verify in polynomial time (in the
size of the distribution and of the transition system), whether the properties
SP1–SP3 from Theorem 4 are satisfied or not.

For the NP-hardness part, we use a polynomial reduction from the classical
SAT problem. Before going into details, we present an overview of the construc-
tion: Given a formula in conjunctive normal form, we associate to each variable
and each clause, a group of three states and two transitions (as in Fig. 1). The
nondeterminism is used to implement a choice gadget between the Boolean val-
ues True and False for each variable. We connect then the triples according to
the occurrence of variables as literals in the clauses (these edges will be the wires
that will transmit the information from variables to clauses). The distribution is

2In [CMT99,Muk02], Th. 4 is restricted to the case when |I| = 1. By inspecting the
proof of [CMT99], it is easy to see that the theorem holds in fact for an arbitrary I.

5

chosen such that a clause will evaluate to False if and only if the condition SP3

will be violated for the triple associated to the given clause. The application of
Theorem 4 finishes the job.

Let φ be a formula in conjunctive normal form with variables x1, . . . , xn

appearing in the clauses c1, . . . , cm. For technical reasons and w.l.o.g., we assume
that no clause contains some variable both as a positive and as a negative literal.

We will construct a distribution (Σφ,Procφ,∆φ) and a (nondeterministic)
transition system TSφ = (Qφ, Σφ,→φ, Iφ) such that: φ is satisfiable if and only
if TSφ is isomorphic to a synchronous product of transition systems over ∆φ.
To relieve a bit the notation, we will drop all φ indices.

First, the set of processes Proc consists of two processes for each variable and
one process for each clause:

Proc := {pxi
, pxi
| i ∈ [1..n]} ∪ {pcj

| j ∈ [1..m]}.

Then, the set Σ of actions and their domains (which determine ∆) consist of:

– one action for each variable: {axi
| i ∈ [1..n]} with dom(axi

) := {pxi
, pxi
}.

– two actions for each positive literal from each clause: {axicj
, a′

xicj
| j ∈ [1..m],

xi ∈ cj} with dom(axicj
) = dom(a′

xicj
) := Proc \ {pxi

}.
– two actions for each negative literal from each clause: {axicj

, a′
xicj
| j ∈

[1..m], xi ∈ cj} with dom(axicj
) = dom(a′

xicj
) := Proc \ {pxi

}.
– two actions for each clause: {acj

, a′
cj
| j ∈ [1..m]} with dom(acj

) := {pcj
} ∪

{pxi
|xi ∈ cj} ∪ {pxi

|xi ∈ cj} (the domain of acj
consists of the pro-

cess associated to cj and the processes associated to the literals of cj) and
dom(a′

cj
) := Proc \ {pcj

}.

Last, we construct the transition system TS . The state space Q consists of:

– three states for each variable: {q0
xi

, qxi
, q′xi
| i ∈ [1..n]} and

– three states for each clause: {qcj
, q′cj

, q0
cj
| j ∈ [1..m]}.

The transition relation →⊆ Q×Σ ×Q is defined as follows:

– for each i ∈ [1..n]: q0
xi

axi−→ qxi
and q0

xi

axi−→ q′xi
(nondeterminism is allowed).

– for each j ∈ [1..m]: qcj

axicj−→ qxi
for xi ∈ cj , qcj

axicj−→ qxi
for xi ∈ cj , and

qcj

acj−→ q0
cj

.

– for each j ∈ [1..m]: q′cj

a′

xicj−→ q′xi
for xi ∈ cj , q′cj

a′

xicj−→ q′xi
for xi ∈ cj , and

q′cj

a′

cj−→ qcj
.

The set of initial states I is chosen such that all states of Q are reachable from
I. For instance, I := {q0

xi
| i ∈ [1..n]} ∪ {q′cj

| j ∈ [1..m]}. 3

An example is provided in Fig. 1 (the initial states are not marked).

3It is easy to modify the construction such that there is only one initial state.

6

q0
x1

qx1 q′

x1

ax1
ax1

Variable x2

Variable x2

q0
x2

qx2 q′

x2

ax2
ax2

q0
x3

qx3 q′

x3

ax3
ax3

qc1 q′

c1

q0
c1

ax1c1 ax2c1 a′

x1c1
a′

x2c1

ac1

a′

c1

Clause c2

Clause c2

qc2 q′

c2

q0
c2

ax2c2 ax3c2 a′

x2c2
a′

x3c2

ac2

a′

c2

Fig. 1. The transition system TS associated to φ = (x1 ∨ x2) ∧ (x2 ∨ x3)

The ‘choice gadget’ is provided by the three states for each variable xi and
their associated transitions. The Boolean ‘value’ of each choice (this will be a
local equivalence relation: either qxi

≡pxi
q′xi

or qxi
≡pxi

q′xi
) is then propagated

further to the clauses using the transitions labeled axicj
and axicj

, respectively.
More precisely, to each clause we forward only the information that a variable
was set to False in such a way that the clause cj is not satisfied iff qcj

and
q′cj

are equivalent on all processes of the domain of acj
. Thus, a clause cj will

have all the literals evaluated to False if and only if the condition SP3 will be
violated for a := acj

, q := q′cj
, and qp := qcj

, q′p := q0
cj

for all p ∈ dom(acj
).

The above construction is polynomial in the size of the initial formula φ and
we claim that φ is satisfiable if and only if TS is isomorphic to a synchronous
product of transition systems over ∆ (given by dom).

First Implication. We first prove the easier part: φ is not satisfiable implies TS
is not isomorphic to a synchronous product of transition systems over ∆. If φ is
not satisfiable, then for any assignment of the variables x1, . . . , xn there exists a
clause that is evaluated to False. We must show that in this case, there are no
(≡p)p∈Proc satisfying all SP1–SP3.

By contradiction, assume that there exist (≡p)p∈Proc satisfying all SP1–SP3.
For each i ∈ [1..n], we use first the condition SP3 which we have assumed to

hold. Let a := axi
and q := q0

xi
. We choose qp

a−→ q′p from SP3 for each p ∈
dom(axi

) = {pxi
, pxi
} as follows: q0

xi

axi−→ qxi
for p = pxi

and q0
xi

axi−→ q′xi
for

p = pxi
. Since q ≡pxi

q0
xi

and q ≡pxi
q0
xi

(recall that q = q0
xi

), the hypothesis

of SP3 is satisfied, so there must exist a state q′ such that q0
xi

axi−→ q′, and also
q′ ≡pxi

qxi
and q′ ≡pxi

q′xi
.

There are only two possible cases:

1. q′ = qxi
. In this case, we have qxi

≡pxi
qxi

and qxi
≡pxi

q′xi
.

2. q′ = q′xi
. In this case, we have q′xi

≡pxi
qxi

and q′xi
≡pxi

q′xi
.

So, we have that either qxi
≡pxi

q′xi
(case 1) or qxi

≡pxi
q′xi

(case 2), but not
both at the same time (otherwise, on one hand we have that qxi

≡dom(axi
) q′xi

7

and on the other hand, by SP1 applied to the transitions qxi

axi←− q0
xi

axi−→ q′xi
, we

have qxi
≡Proc\dom(axi

) q′xi
, so qxi

≡Proc q′xi
which contradicts SP2).

Let us choose an assignment of the variables given by the equivalences in the
following way. For each i ∈ [1..n]:

xi is evaluated to False if and only if qxi
≡pxi

q′xi
.

Since φ is not satisfiable, there exists a clause, say ck, that has all its literals
evaluated to False. Let xi be a positive literal in ck (if any). Since the literal xi

is evaluated to False, we have that the variable xi is False, so qxi
≡pxi

q′xi
. In

addition, we have qck

axick−→ qxi
and q′ck

a′

xick−→ q′xi
(see the construction of TS) and,

using SP1, we deduce that qck
≡pxi

qxi
and q′ck

≡pxi
q′xi

. By the transitivity of
≡pxi

, we obtain that qck
≡pxi

q′ck
. A similar argument for the negative literals

xi in ck (if any) proves that qck
≡pxi

q′ck
(qxi
≡pxi

q′xi
is used). Moreover, using

SP1 for q′ck

a′

ck−→ qck
, we have that qck

≡pck
q′ck

.
Summing up, we proved that q′ck

≡p qck
, for each p ∈ dom(ack

) (recall the

definition of dom(ack
)). But this contradicts SP3, because qck

ack−→ q0
ck

and there

is no state q′ such that q′ck

ack−→ q′.

Second Implication. We move now to the second part of the proof, assuming
that φ is satisfiable. Then, there exists an assignment to the variables x1, . . . , xn

such that each clause is True. We prove that TS is isomorphic to a synchronous
product of transition systems over (Σ,Proc,∆). For that, we construct a family
of equivalences (≡p)p∈Proc in the following way:

Step 0 For each p ∈ Proc, initialize the binary relation ≡p⊆ Q×Q to ∅.
Step 1 For each q

a−→ q′, choose q ≡p q′ for each p ∈ Proc \ dom(a).
Step 2 For each i ∈ [1..n], if variable xi is evaluated to False, then choose

qxi
≡pxi

q′xi
, otherwise choose qxi

≡pxi
q′xi

.
Step 3 For each p ∈ Proc, close≡p under reflexivity, symmetry, and transitivity.

Table 3 describes the equivalence classes of our equivalences generated above.
Each cell gives the partition of the state space Q into the equivalence classes for
each type of process (rows) depending on the value of the associated variable
(columns). Each equivalence class is given as a set in curly brackets. It is tedious,
but not hard to check the correctness of Table 3 (i.e., the equivalence classes
presented are the ones generated by the Steps 0–3 above). Based on it, we prove
that the chosen (≡p)p∈Proc satisfy SP3, SP2, and SP1 (in this order):

Remark 6. 4 SP3 holds for action a := axi
, for each i ∈ [1..n].

Note that each action a ∈ Σ \ {axi
| i ∈ [1..n]} has the property that there

exists only one transition labeled with a in the transition system TS . In this
case, the condition SP3 can be simplified as below:

4The proof can be found in the Appendix A.1.

8

Table 3. The equivalence classes constructed in the 2nd part of the proof of Th. 5

xi = False xi = True

≡pxi

{q0
xi
}, {q0

xi′
, qxi′

, q′

xi′
} for each i′ 6= i,

{qxi
, q′

xi
} ∪ {qcj

, q′

cj
|xi ∈ cj},

{q0
cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′

cj′
} for each cj′

not containing the positive literal xi

{q0
xi
}, {q0

xi′
, qxi′

, q′

xi′
} for each i′ 6= i,

{qxi
} ∪ {qcj

|xi ∈ cj},
{q′

xi
} ∪ {q′

cj
|xi ∈ cj},

{q0
cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′

cj′
} for each cj′

not containing the positive literal xi

≡pxi

{q0
xi
}, {q0

xi′
, qxi′

, q′

xi′
} for each i′ 6= i,

{qxi
} ∪ {qcj

|xi ∈ cj},
{q′

xi
} ∪ {q′

cj
|xi ∈ cj},

{q0
cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′

cj′
} for each cj′

not containing the negative literal xi

{q0
xi
}, {q0

xi′
, qxi′

, q′

xi′
} for each i′ 6= i,

{qxi
, q′

xi
} ∪ {qcj

, q′

cj
|xi ∈ cj},

{q0
cj
} for each cj containing lit. xi,

and {qcj′
, q0

cj′
}, {q′

cj′
} for each cj′

not containing the negative literal xi

≡pcj
{q0

xi
, qxi

, q′

xi
} for i ∈ [1..n], {qcj

, q′

cj
}, {q0

cj
}, and {qcj′

, q0
cj′

}, {q′

cj′
} for j′ 6= j

Table 4. Details for the satisfaction of the SP3 property

a q Why SP3 holds (a process p from dom(a) is given)

axi
See Remark 6.

axicj
{q0

cj
} p := pcj

. Indeed, qcj
6≡pcj

q0
cj

.

(for xi ∈ cj) Q \ {qcj
, q0

cj
} p := pxi

. Indeed, xi ∈ cj implies xi 6∈ cj (see construc-
tion of φ), so qcj

6≡pxi
q, ∀q ∈ Q \ {qcj

, q0
cj
}.

a′

xicj
Q \ {q′

cj
} p := pxi

. Same as above, xi ∈ cj implies xi 6∈ cj and in

(for xi ∈ cj) this case q′

cj
6≡pxi

q, ∀q ∈ Q \ {q′

cj
}.

axicj
, a′

xicj
Similar to the cases axicj

, a′

xicj
above.

(for xi ∈ cj)

acj
{q′

cj
} Since cj evaluates to True, there exists a literal ` of cj

evaluated to True. Assume ` = xi, such that xi ∈ cj and
xi = True (a similar analysis is made if ` is negative).
Then, for p := pxi

we have that pxi
∈ dom(acj

) and
qcj

6≡pxi
q′

cj
.

Q \ {qcj
, q′

cj
} p := pcj

. Indeed, qcj
6≡pcj

q, ∀q ∈ Q \ {qcj
, q′

cj
}.

a′

cj
Q \ {q′

cj
} For a given variable xi, the literals xi and xi cannot

appear both in cj . If xi 6∈ cj , then p := pxi
(and indeed,

q′

cj
6≡pxi

q, ∀q ∈ Q \ {q′

cj
}). If xi 6∈ cj , then p := pxi

.

Table 5. Details for the SP2 property (only cases not solved already by Table 4)

q1 q2 Why SP2 holds (a process p from Proc is given)

q0
xi

Q′ \ {q0
xi
} p := pxi

. Indeed, q0
xi

6≡pxi
q, ∀q ∈ Q′ \ {q0

xi
}.

qxi
{q0

xi
, q′

xi
} If xi is True then p := pxi

else p := pxi
.

Q′ \ {q0
xi

, qxi
, q′

xi
} p := pcj

for an arbitrary j ∈ [1..m].

q′

xi
Similar to the case qxi

above.

q0
cj

Q′ \ {q0
cj
} p := pcj

.

9

Remark 7. 4 Let a ∈ Σ such that there is only one transition, say qa
a−→ q′a,

labeled with a in TS . Then, SP3 holds for the chosen a if and only if for each
state q 6= qa, there exists a process p ∈ dom(a) such that q 6≡p qa.

Since Remark 6 shows that SP3 holds for a ∈ {axi
| i ∈ [1..n]}, the remaining

cases are solved in Table 4 using Remark 7. The first column picks a value for a,
while the second one gives a range to the state q ∈ Q\{qa} from the formulation
of Remark 7. In the last column, we give a process p ∈ dom(a) such that qa 6≡p q,
for all q in the range given by second column. The correctness of the solutions
provided is verified using the equivalence classes given in Table 3.

Remark 8. SP2 holds iff for each q1 6= q2, there exists p ∈ Proc with q1 6≡p q2.

Table 5 presents only the cases for which Table 4 did not give a process to
‘distinguish’ two different states q1 (column 1) and q2 (in the range given in
column 2), i.e., we give a process p ∈ Proc such that q1 6≡p q2. More precisely,
we only have to consider pairs of states from the subset:

Q′ := {q0
xi

, qxi
, q′xi
| i ∈ [1..n]} ∪ {q0

cj
| j ∈ [1..m]}.

Condition SP1 is fulfilled by construction (Step 1). ut

Going into the proof details of Theorem 4 given in [CMT99], we can show
that if there exist a set of equivalences (≡p)p∈Proc satisfying only conditions SP1

and SP3 (but not necessarily SP2), then we can synthesize a synchronous prod-
uct of transition systems accepting the same language as the initial transition
system.5 This trick widens the class of ‘implementable’ transition systems, while
preserving the behavior. Yet, the problem is as hard as the implementability
modulo isomorphism (from which we do the reduction – see the proof in the
Appendix A.2):

Corollary 9. Let (Σ,Proc,∆) be a distribution and TS a transition system.
The problem of finding a set of equivalences (≡p)p∈Proc satisfying only conditions
SP1 and SP3 of Theorem 4, is NP-complete.

Proposition 10. [Mor98] The implementability problem for synchronous prod-
ucts modulo isomorphism becomes decidable in polynomial time, if the input
transition system is deterministic.

3.2 Asynchronous Automata

Similar results to those for synchronous products of transition systems hold for
asynchronous automata. The NP-completeness proof of Theorem 12 has a similar
structure to the proof of Theorem 5, but the details are different. The proof can
be found in the Appendix A.3.

5In fact, the synthesized synchronous product is even bisimilar (in the sense of
Milner) to the initial transition system.

10

Theorem 11. [Mor99,Muk02] Let (Σ,Proc,∆) be a distribution and TS =
(Q,Σ,→, I) be a transition system. Then, TS is isomorphic to an asynchronous
automaton over ∆ if and only if for each p ∈ Proc there exists an equivalence
relation ≡p⊆ Q×Q such that the following conditions hold:

AA1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

AA2 : If q1 ≡Proc q2, then q1 = q2.
AA3 : If q1

a−→ q′1 and q1 ≡dom(a) q2, then there exists q′2 such that q2
a−→ q′2

and q′1 ≡dom(a) q′2.

Theorem 12. The implementability problem for asynchronous automata mod-
ulo isomorphism is NP-complete, even for acyclic specifications.

Corollary 13. Let (Σ,Proc,∆) be a distribution and TS a transition system.
The problem of finding a set of equivalences (≡p)p∈Proc satisfying only conditions
AA1 and AA3 of Theorem 11, is NP-complete.

Proposition 14. [Mor98] The implementability problem for asynchronous au-
tomata modulo isomorphism becomes decidable in polynomial time, if the input
transition system is deterministic.

4 Implementability modulo Language Equivalence

This section presents the complexity of checking whether an input transition
system admits the same sequences of actions as a distributed transition system.

A run of a transition system TS is a sequence of labels a1 . . . an ∈ Σ∗ such
that: ∃qin ∈ I, q ∈ Q : qin a1−→ . . .

an−→ q (also written as qin a1...an−→ q). The
language of TS is the set of all its runs, L(TS) := {w ∈ Σ∗ | ∃qin ∈ I, q ∈
Q, qin w−→ q}. Note that the language of a transition system is prefix-closed,
i.e., ∀u,w ∈ Σ∗ : uw ∈ L⇒ u ∈ L. In fact, we have:

Lemma 15. A language L ⊆ Σ∗ is accepted by a finite transition system if and
only if L is a prefix-closed regular language.

The language of a distributed transition system is defined to be the language
of its underlying global transition system.

4.1 Synchronous Products of Transition Systems

The synthesis modulo language equivalence for synchronous products is based on
projections onto the local alphabets of the distribution. The solution provided
in [Muk02] works only for the class of synchronous products with just one initial
state (|I| = 1 in Def. 1). In this section we discuss only the complexity of this
problem and we will touch upon the general case at the end of the next section.

Problem 16. Given a distribution (Σ,Proc,∆) and a finite transition system TS ,
does there exist a synchronous product of transition systems over ∆ with only
one initial state that is language equivalent to TS?

11

We present, following [Muk02], the algorithm of deciding Problem 16:
Let (Σ,Proc,∆) be a distribution and TS a transition system:

1. W.l.o.g. we suppose that TS has only one initial state.
2. Let TS = (Q,Σ,→, {qin}). For each process p ∈ Proc, we construct a pro-

jection TS p := (Q,Σloc(p),→p, {qin}) obtained from a copy of TS in which
the labels from Σ \ Σloc(p) are replaced by ε and →p is the ε-closure of →
(a polynomial algorithm for ε-closure can be found in [HU79, Chap. 2.4]).

3. Problem 16 has a positive answer iff TS is language equivalent to the syn-
chronous product over ∆ of the transition systems (TS p)p∈Proc with one
global initial state (qin, . . . , qin).

We introduce now the reachability problem used in a subsequent reduction:

Problem 17. (Reachability in synchronous products) Given (Σ,Proc,∆) a distri-
bution, a set of local transition systems (TS p)p∈Proc with TS p = (Qp,Σloc(p),→p

, {qin
p }), and a global state q ∈ ∏

p∈Proc
Qp, is the state q reachable from the

global initial state (qin
p)p∈Proc via the global synchronization of→p’s as in Def. 1?

Lemma 18. The non-reachability problem (i.e., the complement of Problem 17)
for synchronous products can be in polynomial time reduced to Problem 16.

Proof. Given a distribution (Σ,Proc,∆), we suppose Proc := {1, . . . , n}. Also,
we are given a local transition system TS p = (Qp,Σloc(p),→p, {qin

p }) for each
p ∈ [1..n] and a global state q ∈ ∏

p∈Proc
Qp.

We construct a distribution (Σ ′,Proc′,∆′) and a transition system R such
that: Problem 16 has a solution for ∆′ and R if and only if the global state
q := (q1, . . . , qn) is not reachable from the global initial state (qin

1 , . . . , qin
n).

The new distribution (Σ′,Proc′,∆′) is chosen as follows:

– Σ′ := Σ ∪ {ap | p ∈ [1..n]} ∪ {√}. (Note that Σ =
⋃

p∈[1..n] Σloc(p).)

– Proc′ := Proc ∪ {p0}, and
– ∆′ ⊆ Σ′ × Proc′ is given by the local alphabets Σ ′

loc
(p) as:

• Σ ′
loc

(p) := Σloc(p) ∪ {ap′ | p′ ∈ [1..n] ∧ p′ 6= p} ∪ {√} for p ∈ [1..n] and
• Σ ′

loc
(p0) := Σ′ \ {√}.

This gives the following domains dom ′ for the actions of Σ′:
• dom ′(a) = dom(a) ∪ {p0}, for all a ∈ Σ (where dom(a) is given by ∆),
• dom ′(ap) = Proc′ \ {p}, for all p ∈ [1..n], and
• dom ′(

√
) = Proc′ \ {p0} = Proc.

The transition system R := (Q′, Σ′,→, {q0}) is sketched in Fig. 2 and defined as:

– Q′ := {q0, q
′
0}∪

⋃

p∈[1..n] Qp ∪{q′p | p ∈ [1..n]} (with Qp ∩Qp′ = ∅ for p 6= p′),

– → := {q0
a−→ q′0 | a ∈ Σ} ∪ {q′0

a−→ q′0 | a ∈ Σ} ∪
⋃

p∈[1..n]

(

{q0
ap−→ qin

p } ∪ →p ∪ {qp

√
−→ q′p}

)

.

12

q0

q′

0

Σ

Σ

TS1

qin
1

q1

q′

1

a1

√

. . . TSn

qin
n

qn

q′

n

an

√

Fig. 2. A schematic representation of the reduction in Lemma 18

Remark 19. According to Step 2 in the decision algorithm for Problem 16, we
construct the projections Rp of R onto the local alphabets Σ ′

loc
(p) as follows:

For p ∈ [1..n], Rp is obtained from R replacing the labels from Σ ′ \Σ ′
loc

(p) by ε
and applying an ε-closure. Since ap 6∈ Σ ′

loc
(p) and Σloc(p) ∪ {√} ⊆ Σ ′

loc
(p), we

have that all the states reachable by a run v from qin
p in TSp can also be reached

by the same run v from q0 in Rp. For p := p0, since Σ ′
loc

(p0) = Σ′ \ {√}, the
projection Rp0

is just R without the
√

-labeled transitions.

First Implication. We assume that R is implementable over ∆′ and we prove
that the global state q := (q1, . . . , qn) is not reachable from qin := (qin

1 , . . . , qin
n)

in the synchronous product of the TS p’s over ∆.
By contradiction, suppose that there exists a run w ∈ Σ∗ such that q is

reachable from qin after executing the sequence w of actions. We show that R
is not language equivalent to the synchronous product over ∆′ of its projections
Rp as described in the decision algorithm for Problem 16:

On one hand, the run w
√ 6∈ L(R) because all the runs of R containing

√
start with an ap action and ap 6∈ Σ, for any p ∈ [1..n].

On the other hand, we can show that w
√

is a run of the synchronization of
the Rp’s. Informally, we will simulate the synchronizations of TS p’s on w ∈ Σ∗

by synchronizations of Rp’s and at the end we will also have a synchronization

of the local transitions qp

√
−→ q′p:

In the synchronous product of the TS p’s, we can execute w from qin and we
reach q. According to Def. 1, the synchronization on each a ∈ Σ involves only
the processes of dom(a). When synchronizing the projections Rp on a ∈ Σ, we
must observe dom ′(a) = dom(a) ∪ {p0}. For p := p0, we can always execute

a ∈ Σ from q0
a−→ q′0

a−→ q′0 which is part of Rp0
. For p ∈ dom(a), we can

move in Rp (starting in q0) similar to the synchronization of the TS p (starting
in qin

0) according to Remark 19. In this way, we are able to execute w in the
synchronous product of the Rp starting from the global state (q0, . . . , q0) and to
reach the state qp in Rp for each p ∈ [1..n]. Since dom ′(

√
) = Proc = [1..n] and

we have qp

√
−→ q′p in each p ∈ [1..n], we can finally have a

√
-synchronization.

Therefore, the run w
√

belongs to the synchronization of the Rp’s over ∆′.

Second Implication. We assume that q is not reachable from qin in the synchro-
nization of the TS p’s, and we prove that R is language equivalent to the synchro-
nization of its projections over ∆′. Since it is easy to show that in general the

13

language of a transition system is included in the language of the synchronization
of its projections, we only have to prove the reverse inclusion.

Let v ∈ Σ′ be a run of the synchronization of the Rp’s. We will show that
v ∈ L(R). It is easy to see that v can only have two forms:

v ∈ (Σ′ \ {√})∗ : From Σ ′
loc

(p0) = Σ′ \ {√}, we necessarily have that v ∈
L(Rp0

). Then, with the help of Remark 19, L(Rp0
) ⊆ L(R), so v ∈ L(R).

v = w
√

with w ∈ (Σ′ \{√})∗ : Again, from Σ ′
loc

(p0) = Σ′ \{√}, we necessarily
have that w ∈ L(Rp0

). Looking at Rp0
, w can only have two forms:

w ∈ Σ∗ : We show that this is not possible, given the fact that w
√

is a run
of the synchronization of the Rp’s. The action

√
will be executed only

if all Rp’s with p ∈ dom ′(
√

) = [1..n] will execute a
√

-labeled transition
and this implies that no Rp with p ∈ [1..n] will ever synchronize on a

q0
a−→ q′0 transition for a ∈ Σ, because no run from q′0 can contain

√
.

That means that the synchronization of the Rp’s on w ∈ Σ∗ simulates a
synchronization of the TS p’s on w. From the hypothesis, q = (q1, . . . , qn)
is not reachable, so no

√
-synchronization will be possible.

w = aiu with i ∈ [1..n] and u ∈ L(TS i) : Since the first action of w (and
v) is ai and dom ′(ai) = Proc′ \ {i}, all Rp’s except Ri must execute

their local q0
ai−→ qin

p transition (this transition belongs to Rp for p 6= i,
because in this case ai ∈ Σ ′

loc
(p)). Then, the Rp’s must synchronize

on u such that at the end also a
√

-synchronization is possible. Since
u ∈ L(TS i), we have that u ∈ (Σ ′

loc
(i))∗ and also u

√ ∈ (Σ ′
loc

(i))∗. That
means that Ri will take part in all synchronizations on u

√
starting from

q0 and the only possibility for Ri to do this is by q0
u−→ qi

√
−→ q′i. This

necessarily implies a run qin
i

u−→i qi in TS i (because Σloc(i) ⊆ Σ ′
loc

(i)),

which further implies a run q0
ai−→ qin

i

u−→ qi

√
−→ q′i in R, so v ∈ L(R).

ut

The next results are based on the complexity results for checking non-reachability
and language equivalence of synchronous products from [SHRS96]:

Theorem 20. The implementability problem for synchronous products with |I| =
1 modulo language equivalence is PSPACE-complete.

Proof. The PSPACE-hardness follows from Lemma 18 and the PSPACE-hardness
of the non-reachability problem for synchronous products [SHRS96, Th. 3.10].

According to Step 3 of the decision algorithm of our problem, it is enough to
check whether TS is language equivalent to the synchronization of its projections
TSp. But this test can be done in PSPACE as proved by [SHRS96, Th. 3.12]. ut

Proposition 21. The implementability problem for synchronous products with
|I| = 1 modulo language equivalence remains PSPACE-complete, when the input
transition system TS is deterministic. For acyclic specifications the problem is
coNP-complete, and it remains so even for deterministic ones.

14

Proof. The PSPACE-hardness proof of [SHRS96, Th. 3.10] works in fact for
deterministic TS p’s. The reduction of Lemma 18 constructs a deterministic input
transition system R if the components TS p’s are all deterministic (see Fig. 2).

When TS is supposed to be acyclic, the coNP-hardness follows from the
coNP-hardness of the non-reachability problem for synchronous products of
acyclic and deterministic transition systems [SHRS96, Th. 3.16] and from Lemma

18 in which we modify the construction of R by replacing the loops {q′0
a−→

q′0 | a ∈ Σ} by a set of new transitions
⋃

j∈[0..M]{sj
a−→ sj+1 | a ∈ Σ}, where

s0 = q′0 and M = max{|w| |w ∈ L(TS p), p ∈ [1..n]} (this maximum exists if
all the TS p’s are acyclic). In this way R is acyclic if all the TS p’s are acyclic
and the reduction is still correct. The coNP-completeness follows from [SHRS96,
Th. 3.17], which easily proves that checking language equivalence of synchronous
products of acyclic transition systems is in coNP. ut

4.2 Asynchronous Automata

The ‘engine’ of the synthesis modulo language equivalence for asynchronous au-
tomata is a classical result by Zielonka [Zie87] which constructs a (deterministic)
asynchronous automaton accepting a regular trace language.

We go now a bit more into details. Each distribution (Σ,Proc,∆) generates
an independence relation between the actions of Σ: a‖b iff dom(a)∩dom(b) = ∅.
Then, we say T ⊆ Σ∗ is a trace language if T is closed under the independence
relation: ∀w,w′ ∈ Σ∗, a, b ∈ Σ : wabw′ ∈ T ∧ a‖b ⇒ wbaw′ ∈ T . According to
[Zie87], for any regular trace language T there exists an asynchronous automaton
equipped with a set of global accepting states recognizing T . Zielonka devoted a
subsequent paper [Zie89] to obtain the same result for the restricted class of safe
asynchronous automata which have the property that any run from an initial
state can be extended to an accepted run. 6 Global accepting states are not
really suitable for a distributed setting and for this reason we defined in this
paper the language of an asynchronous automaton as the set of all possible runs
from an initial state. Using [Zie89] we easily get the following characterization
(see proof in the Appendix A.4):

Proposition 22. A language T ⊆ Σ∗ is accepted by an asynchronous automa-
ton if and only if T is a prefix-closed regular trace language.

Theorem 23. The implementability problem for asynchronous automata mod-
ulo language equivalence is PSPACE-complete.

Proof. Our implementability problem is in PSPACE, due to Proposition 22 and
[PWW98, Th. 8 with Cor. 10] which proved that checking whether the language
of a finite automaton is a trace language can be decided in PSPACE.

For the PSPACE-hardness part, we use a simple reduction from the totality
problem ‘= Σ∗?’ for nondeterministic finite automata, which is known to be

6However, for a regular trace language, there exists a deterministic asynchronous
automaton accepting it [Zie87], but not necessarily a deterministic safe one [Zie89].

15

a

Σ

b

c

A

a

c

b

with b‖c

A1

a

b

c

A2

a

c

b

Fig. 3. Schematic representations of the reductions in Th. 23 (left) and Prop. 24 (right)

PSPACE-hard [GJ79]. For each nondeterministic finite automaton A over Σ,
which we can suppose w.l.o.g. that has only one initial qin, respectively only one
accepting state qacc, we build a transition system TS over Σ ∪ {a, b, c} as in
Fig. 3 (left) and a distribution such that b‖c is the only independence. It is easy
to prove that L(A, {qacc}) = Σ∗ iff L(TS) is a trace language (this is enough
according to Proposition 22). The details are given in the Appendix A.4. ut

Proposition 24. The implementability problem for asynchronous automata mod-
ulo language equivalence for deterministic specifications is decidable in polyno-
mial time. For acyclic specifications, the problem is coNP-complete.

Proof. The first part follows directly from Proposition 22 and [PWW98, Th.
7] proving that it is decidable in polynomial time whether the language of a
deterministic finite automaton is a trace language.

For the second part, we use a simple reduction sketched in Fig. 3 (right) from
the NP-complete problem if two acyclic nondeterministic automata A1 and A2

accept different languages [GJ79]. The proof is similar to the proof of Theorem 23
and the details are given in the Appendix A.4. ut

Based on the observation that the language accepted by a synchronous prod-
uct is necessarily a trace language, we can recycle the constructions in Fig. 3 to
derive complexity bounds for synchronous products with multiple initial states.
(The proof details are given in the Appendix A.4.)

Theorem 25. The implementability problem for synchronous products of tran-
sition systems modulo language equivalence is PSPACE-hard. For acyclic speci-
fications, the problem is coNP-complete.

However, we suspect that the above general problem is much harder than PSPACE.
Moreover, we do not know anything about its complexity when the specification
is deterministic.

Non-regular Specifications The following result suggests that there is no
hope to test the implementability once we move higher in Chomsky’s hierarchy:

Proposition 26. Checking that a context-free language is a trace language is
undecidable.

16

The proof (given in the Appendix A.4) uses the fact that the set of invalid
computations of a Turing machine is a context-free language [HU79, Lemma 8.7],
together with the trick of making the first two letters of an accepting computa-
tion independent (see the proof technique of [PWW98, Th. 11]). Given the fact
that the language of any distributed system exhibiting independence of actions
is a trace language, one could dare to interpret this result in a programming
language framework as: The synthesis problem for distributed programs with
(possibly recursive) procedures and variables over finite domains is undecidable.

5 Deterministic Implementability modulo Bisimulation

Based on the observation that bisimilarity and language equivalence coincide
for deterministic transitions systems, [Muk02] provides characterizations for the
synthesis modulo bisimulation with the restriction that the distributed implemen-
tation is deterministic (the specification may still be nondeterministic). More
precisely, the deterministic implementability problem modulo bisimulation for
a given input TS reduces to checking whether the quotient TS/∼TS

(with ∼TS

the largest bisimulation on TS) is deterministic and then checking deterministic
implementability modulo language equivalence. As a consequence, we can infer
basically the same complexity results as for implementability with deterministic
specifications from Propositions 21 and 24. Appendix A.5 gives the details.

However, the synthesis problem modulo bisimulation is still open in the case
of nondeterministic implementations.

6 Prototype Implementations

Comparing the deterministic and nondeterministic assumptions, dealing with de-
terministic specifications/implementations has a computational advantage. Nev-
ertheless, it is worth considering also the nondeterministic case: In case the orig-
inal specification is given as a regular language, a nondeterministic transition
system exhibiting the given behavior may be exponentially more succinct than
a deterministic one with the same behavior. Moreover, the nondeterministic
distributed systems that we considered are strictly more expressive than their
deterministic counterparts as the simple example below shows:

Example 27. Let us choose the language L = {ε, a, b} with the distribution
Σ := {a, b}, Proc := {1, 2}, and ∆ := {(a, 1), (b, 2)}. L is accepted by a nondeter-
ministic synchronous product, but not by a deterministic one and L is accepted
by a nondeterministic asynchronous automaton, but not by a deterministic one.

Briefly, L is accepted by the nondeterministic transition system of Fig. 4
which is isomorphic to a synchronous product (using Th. 4). On the other hand,
the only deterministic transition systems accepting L are given in Fig. 4, but
none of them is isomorphic to a synchronous product (using again Th. 4). The
same holds for asynchronous automata (using Th. 11).

17

Distribution Nondeterministic Deterministic

Σ := {a, b}
Proc := {1, 2}

∆ := {(a, 1), (b, 2)}

1 2

3

a b

0

1 2

a b
0

1

ba

Fig. 4. Transition systems for Example 27

In this section, we will present some prototype implementations intended to
complement the tool Synasync [ŞEM03] which synthesizes asynchronous au-
tomata from deterministic specifications. 7 More precisely, we consider the NP-
complete test provided by Theorem 11 (working for general transition systems)
and use it as a heuristic for the synthesis of asynchronous automata. More-
over, we provide an alternative implementation for another NP-complete prob-
lem (namely, finding an implementable subautomaton) involved in Synasync.

We used a constraint-based logic programming framework called Smodels

(http://www.tcs.hut.fi/Software/smodels/). It consists of smodels, an efficient
implementation of the stable model semantics for normal logic programs, and
lparse, a grounder front-end that transforms normal logic programs (with vari-
ables) to ground logic programs (without variables). We translate the synthesis
problem into the problem of finding a stable model of a logic program. The
program itself is written in the input syntax of lparse. The synthesis solutions
(if any!) are given as stable models of the input program. A more detailed de-
scription of the Smodels system can be found in the lparse 1.0 User’s Man-
ual (http://www.tcs.hut.fi/Software/smodels/lparse.ps) and a general tutorial
on the stable model semantics in [SNS02].

We chose to use logic programs with stable model semantics over the more
widely used SAT for the main reason that in the stable model semantics the
notion of a least fixpoint is trivial to express (we need this e.g. for the reacha-
bility property). However, in a SAT encoding we would have to encode the least
fixpoint computation procedure itself (e.g. as a series of approximations) which
would have resulted in additional blow-up of the translation not to mention im-
plementation effort. An additional advantage of using Smodels is that the code
is very concise. The actual implementation of synthesis without any optimiza-
tions has no more than 20 lines of code and it is given in the Appendix B.1.

The existing tools implementing the notion of regions for the synthesis of
a distributed system (see Synet [Cai97], Petrify [CKK+97], and Synasync

[ŞEM03]) do not handle nondeterministic specifications. In this sense, we can
say that our implementation widens the class of systems tackled. Of course, one
can always determinize the specification and the behavior is preserved, but then
the tests of isomorphism to a distributed system are incomparable w.r.t. the two
inputs because the structure is changed in the process of determinization.

7The implementation for synchronous products is left for future investigations.

18

Experience has shown that in most cases the initial specification is not iso-
morphic to the global state space of a distributed system (see, for example,
[Cai97,ŞEM03,Yak98]). Several approaches to tackle this problem have been
proposed (most of them are at least NP-hard and at the level of heuristics):
label-splitting, introduction of silent events (both not really suitable for our
framework8), changing the distribution, cutting transitions followed by unfold-
ing. We opt for the last type of heuristics which proved fruitful in the experiments
of [ŞEM03] in the context of asynchronous automata.

We introduce first some definitions needed in the presentation of the heuristic.
Let TS = (Q,Σ,→, I) be a transition system. TS is deadlock-free if: ∀q ∈ Q∃a ∈
Σ, q′ ∈ Q : q

a−→ q′. The set of actions appearing in TS is Σ(TS) := {a ∈
Σ | ∃q, q′ ∈ Q : q reachable and q

a−→ q′}. Also, we say that TS ′ = (Q′, Σ,→′, I ′)
is a subautomaton of TS if Q′ ⊆ Q, I ′ ⊆ I, and →′⊆→. Finally, TS satisfies the
independent and forward diamond rules if:

ID : q1
a−→ q2

b−→ q4 ∧ a‖b⇒ ∃q3 : q1
b−→ q3

a−→ q4, and

FD : q1
a−→ q2 ∧ q1

b−→ q3 ∧ a‖b⇒ ∃q4 : q2
b−→ q4 ∧ q3

a−→ q4.
(The global transition system of a distributed system satisfies ID and FD.)

The (relaxed) synthesis problem considered in [ŞEM03] is: Given a distribu-
tion ∆ and a deterministic transition system TS , synthesize an asynchronous
automaton AA over ∆ such that L(AA) ⊆ L(TS) and Σ(AA) = Σ(TS) 9. This
problem was shown to be undecidable in general and the heuristic proposed was
to search only for asynchronous automata language equivalent to a subautoma-
ton A of TS satisfying ID and FD. Therefore, the implementation of Synasync

[ŞEM03] includes a heuristic to solve the following NP-complete problem:

Problem 28. (SubautIDFD) Given a transition system TS , find a subautomaton
A with Σ(A) = Σ(TS), reachable, deadlock-free, and satisfying ID and FD.

The basic idea is then to ‘unfold’ the subautomaton into an asynchronous au-
tomaton accepting the same language (see [ŞEM03]). Here we propose the fol-
lowing new heuristic, which has also been implemented with Smodels, that tries
to directly find an asynchronous automaton in the class of subautomata (with
this heuristic, we try to avoid the unfolding procedure which may, theoretically,
produce asynchronous automata superexponentially larger than the input):

Problem 29. (SubautAsync) Given a transition system TS , find a subautoma-
ton A with Σ(A) = Σ(TS), reachable, deadlock-free, and isomorphic to an
asynchronous automaton.

The main idea behind the implementation is to ‘guess’ the transitions of the sub-
automaton and then to test the required properties. The logic program code was
optimized to include some rudimentary symmetry reductions and the relaxation
obtained by dropping the condition AA2 (see Corollary 13).

8The label splitting cannot solve the conflicts without changing the distribution
and the silent events must have the whole set Proc as domain, and so we force a global
synchronization, which is not something that we would like do in a concurrent setting.

9This condition is used to rule out some unwanted (trivial) synthesis solutions.

19

We have implemented using Smodels the above heuristics SubautIDFD and
SubautAsync (Problems 28,29) and applied them to parametrized benchmarks
of the mutual exclusion and dining philosophers problems. The experimental
results can be found in the Appendix B.2 together with a short discussion.

We end the section with some remarks. There are alternative ways to find
stable models of a logic program. The Cmodels2 system is a viable alterna-
tive to Smodels in this domain as shown by the experiments based on earlier
versions of our synthesis implementations [GLM04] (neither of the systems is
consistently better than the other). It would also be interesting to see how a re-
cently introduced new translation of the stable model semantics to SAT [Jan03]
performs on our examples.

7 Conclusions

A summary of the complexity results obtained is presented in the introduction.
We discover that the models of synchronous products of transition systems and
asynchronous automata have similar complexities for the implementability test.
For both models, deciding the implementability modulo isomorphism provides
a distributed implementation for free. For implementability modulo language
equivalence, this bonus is still available for synchronous products (recall the
algorithm of deciding Problem 16). This is not the case for asynchronous au-
tomata for which the computationally expensive construction of Zielonka is the
best known approach to be used after we have decided that the specification is
implementable. However, there is a balance. The complexity results suggest that
starting with a deterministic specification is an advantage for asynchronous au-
tomata. Also, the asynchronous automata are strictly more expressive than the
synchronous products (for the case studies in [ŞEM03], solutions for the synthe-
sis problem were obtained for asynchronous automata, but not for synchronous
products, due to the expressiveness power of the former).

Acknowledgments We are grateful to Javier Esparza and Petr Jančar for use-
ful discussions. The financial support from Academy of Finland (Project 53695,
grant for research work abroad, research fellow post) is gratefully acknowledged.
This work has also been financially supported by FET project ADVANCE con-
tract No IST-1999-29082 and EPSRC grants 64322/01 (Automatic Synthesis of
Distributed Systems) and 93346/01 (An Automata Theoretic Approach to Soft-
ware Model Checking) while the first author was affiliated with University of
Stuttgart, Institute for Formal Methods in Computer Science.

20

References

[Arn94] A. Arnold. Finite transition systems and semantics of communicating sys-
tems. Prentice Hall, 1994.

[BBD95] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms
for the synthesis of bounded nets. In TAPSOFT’95, volume 915 of LNCS,
pages 364–378. Springer, 1995.

[BBD97] E. Badouel, L. Bernardinello, and P. Darondeau. The synthesis problem for
elementary net systems is NP-complete. TCS, 186(1–2):107–134, 1997.

[Cai97] B. Caillaud. SYNET: un outil de synthèse de réseaux de Petri bornés,
applications. Technical Report 3155, INRIA, 1997.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. IEICE Trans. Information and
Systems, E80-D(3):315–325, 1997.

[CMT99] I. Castellani, M. Mukund, and P.S. Thiagarajan. Synthesizing distributed
transition systems from global specifications. In FSTTCS19, volume 1739
of LNCS, pages 219–231. Springer, 1999.

[Dub86] C. Duboc. Mixed product and asynchronous automata. TCS, 48:183–199,
1986.

[ER90] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures I and II. Acta
Informatica, 27(4):315–368, 1990.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A guide to the
theory of NP-completeness. Freeman, 1979.

[GLM04] E. Giunchiglia, Y. Lierler, and M. Maratea. SAT-based answer set program-
ming. In Proc. of AAAI’04, pages 61–66. AAAI Press, 2004.

[HU79] J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and
computation. Addison Wesley, 1979.

[Jan03] T. Janhunen. A counter-based approach to translating logic programs into
set of clauses. In Proceedings of the 2nd International Workshop on Answer
Set Programming (ASP’03), volume 78, pages 166–180. Sun SITE Central
Europe (CEUR), 2003.

[Mor98] R. Morin. Decompositions of asynchronous systems. In CONCUR’98, vol-
ume 1466 of LNCS, pages 549–564. Springer, 1998.

[Mor99] R. Morin. Hierarchy of asynchronous automata. In WDS’99, volume 28 of
Electronic Notes in Theoretical Computer Science, pages 59–75, 1999.

[Muk02] M. Mukund. From global specifications to distributed implementations. In
B. Caillaud, P. Darondeau, and L. Lavagno, editors, Synthesis and control
of discrete event systems, pages 19–34. Kluwer, 2002.

[Mus94] A. Muscholl. Über die Erkennbarkeit unendlicher Spuren. PhD thesis, Uni-
versität Stuttgart, 1994. Published by Teubner, 1996.

[NRT92] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition
systems. TCS, 96:3–33, 1992.

[PWW98] D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking
closure properties of temporal logic specifications and ω-regular languages.
TCS, 195(2):183–203, 1998.

[ŞEM03] A. Ştefănescu, J. Esparza, and A. Muscholl. Synthesis of distributed algo-
rithms using asynchronous automata. In R. Amadio and D. Lugiez, editors,
CONCUR’03, volume 2761 of LNCS, pages 27–41. Springer, 2003.

21

[SHRS96] S.K. Shukla, H.B. Hunt III, D.J. Rosenkrantz, and R.E. Stearns. On the
complexity of relational problems for finite state processes. In ICALP’96,
volume 1099 of LNCS, pages 466–477. Springer, 1996.

[SNS02] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

[Vog99] W. Vogler. Concurrent implementation of asynchronous transition systems.
In ICAPTN’99, volume 1639 of LNCS, pages 284–303. Springer, 1999.

[Yak98] A. Yakovlev. Designing control logic for counterflow pipeline processor using
Petri nets. Formal Methods in System Design, 12(1):39–71, 1998.

[Zie87] W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. Inform.
Théor. Appl., 21:99–135, 1987.

[Zie89] W. Zielonka. Safe executions of recognizable trace languages by asynchro-
nous automata. In Logical Foundations of Computer Science, volume 363 of
LNCS, pages 278–289. Springer, 1989.

22

A Appendix

A.1 Proofs of Remarks 6 and 7

Proof of Remark 6.
Let i ∈ [1..n] and q ∈ Q. Following SP3, for each p ∈ dom(axi

) = {pxi
, pxi
},

we try to choose qp and q′p such that qp

axi−→ q′p and q ≡p qp. Since the only

transitions labeled with axi
are q0

xi

axi−→ qxi
and q0

xi

axi−→ q′xi
, qp must be equal

to q0
xi

and q′p must belong to {qxi
, q′xi
}, for each p ∈ dom(axi

). Moreover, if in
q ≡p qp = q0

xi
, we instantiate p with pxi

(from dom(axi
)), we obtain q ≡pxi

q0
xi

.

Since the ≡pxi
-equivalence class of q0

xi
is {q0

xi
} (see Table 3), we deduce that

q = q0
xi

. We have now that the hypotheses of SP3 are satisfied.
For the various choices for q′p ∈ {qxi

, q′xi
} with p ∈ {pxi

, pxi
}, we will give a q′

such that q = q0
xi

axi−→ q′ and q′ ≡p q′p for each p ∈ {pxi
, pxi
}: If q′pxi

= q′pxi
:= qxi

,

take q′ := qxi
. If q′pxi

= q′pxi
:= q′xi

, take q′ := q′xi
. If q′pxi

:= qxi
and q′pxi

:= q′xi
,

we have two subcases: If xi is False, take q′ := q′xi
. This is correct, because we

have q′xi
≡pxi

qxi
(by Step 2) and q′xi

≡pxi
q′xi

(by reflexivity). If xi is True, take
q′ := qxi

. This is correct for similar reasons as above. The last case, q′pxi
:= q′xi

and q′pxi
:= qxi

, is similar to the above one. ut

Proof of Remark 7.
(⇒) Assume that SP3 holds for the given action a. By contradiction, assume
that there exists q 6= qa such that q ≡dom(a) qa. The hypothesis of SP3 holds
for the above a, q, and qp, q

′
p chosen to be qa, q′a, respectively. Then, there must

exist q′ such that q
a−→ q′ (and also q′ ≡p q′a, ∀p ∈ dom(a)). But this is a

contradiction, because q
a−→ q′ would be an a-labeled transition different than

the supposedly unique transition qa
a−→ q′a.

(⇐) Assume now that ∀q 6= qa ∃p ∈ dom(a) : q 6≡p qa. We must prove that

SP3 holds for the given a. Let q, qp, q
′
p ∈ Q such that qp

a−→ q′p and q ≡p qp,

for each p ∈ dom(a). Since qa
a−→ q′a is the only a-labeled transition, we have

that qp = qa and q′p = q′a, ∀p ∈ dom(a). This implies q ≡dom(a) qa (because
q ≡p qp, ∀p ∈ dom(a)). Using the (⇐)-assumption above, we necessarily have

that q = qa. Now, it is easy to find a state q′ satisfying q
a−→ q′ and q′ ≡p q′p = q′a,

∀p ∈ dom(a): We simply choose q′ := q′a. ut

A.2 Proof of Corollary 9

The problem is in NP for the same reasons given in the proof of Theorem 5.
To prove that the problem is NP-hard, we use a reduction from the imple-
mentability problem for synchronous products modulo isomorphism. Given a
distribution (Σ,Proc,∆) and a (possibly nondeterministic) transition system
TS , we construct a new distribution (Σ ′,Proc,∆′) (over the same set of pro-
cesses Proc) and a new transition system TS ′ such that: There exist (≡p)p∈Proc

on the states of TS satisfying SP1-SP2-SP3 in Theorem 4 (i.e., TS is isomorphic

23

to a synchronous product of transition systems over (Σ,Proc,∆)) if and only if
there exist (≡′

p)p∈Proc on the states of TS ′ satisfying SP1 and SP3 for the new
(Σ′,Proc,∆′).

For each (Σ,Proc,∆) and TS = (Q,Σ,→, I), we build (Σ ′,Proc,∆′) and
TS ′ = (Q′, Σ′,→′, I ′) in the following way:

– We add one new action for each state of TS : Σ ′ := Σ ∪ {aq | q ∈ Q} with
the new distribution relation: ∆′ := ∆ ∪ {(aq, p) | q ∈ Q, p ∈ Proc}.
The domains generated by ∆′ are dom ′(a) := dom(a) for all a ∈ Σ and
dom ′(aq) := Proc for all q ∈ Q.

– Q′ := Q ∪ {q0} where q0 is a new state and I ′ := I.

– →′ :=→ ∪{(q, aq, q0) | q ∈ Q}. For simplicity, we denote →′ also by →.

For the direct implication, let us assume that there exist (≡p)p∈Proc on the
states of TS satisfying SP1-SP2-SP3. We extend each ≡p⊆ Q×Q to ≡′

p⊆ Q′×Q′,
simply by choosing ≡′

p:=≡p ∪{(q0, q0)} (i.e., the new state q0 is equivalent only
to itself). We prove that SP1 and SP3 hold for (≡′

p)p∈Proc :

SP1 : Because SP1 holds for the transitions in TS and dom ′(a) := dom(a) for all
a ∈ Σ, we only have to prove that SP1 holds for the newly added transitions

q
aq−→ q0, but this is trivial given the fact that dom ′(aq) := Proc.

SP3 : We prove that SP3 holds for each a ∈ Σ′ distinguishing two cases:

– For a ∈ Σ, SP3 holds in TS ′ because SP3 holds for TS (this is easy).

– For a ∈ Σ′ \Σ, by construction, dom(a) = Proc and there exists q ∈ Q

such that a = aq and the transition q
a−→ q0. Since the transition q

a−→ q0

is the only one labeled with a = aq in TS ′, we prove that SP3 holds for a
in TS ′, applying Remark 7: We have to prove that for each r ∈ Q′ with
r 6= q, there exists a process p ∈ dom(a) = Proc such that r 6≡′

p q. We
have two subcases:

• For r ∈ Q, we have that r and q belong to Q and r 6= q. From
the hypothesis, (≡p)p∈Proc satisfies SP2 In this case, we can apply
Remark 8 for r 6= q and we obtain that there exists a process p ∈ Proc
such that r 6≡p q, so also r 6≡′

p q.
• For r = q0, by construction, r = q0 6≡′

p q for any q ∈ Q and p ∈ Proc.

For the reverse implication, assume that there exist (≡′
p)p∈Proc on the states

of TS ′ satisfying SP1 and SP3. Let us choose (≡p)p∈Proc as the projection of
(≡′

p)p∈Proc on Q×Q. It is easy to see that SP1 and SP3 are satisfied for TS and

(≡p)p∈Proc because the same properties hold for TS ′ and (≡′
p)p∈Proc . To prove

SP2, we use the equivalent condition given by Remark 8: SP2 holds for TS and
(≡p)p∈Proc iff for each pair of states q 6= r from Q, there exists p ∈ Proc such

that q 6≡p r. Let q 6= r from Q. Since q
aq−→ q0 is the only transition labeled with

aq from TS ′ and SP3 holds for TS ′ and (≡′
p)p∈Proc , we can apply Remark 7 and

we obtain that there exists a process p ∈ dom ′(aq) = Proc such that q 6≡′
p r.

This implies also that q 6≡p r (because q, r ∈ Q). ut

24

A.3 Proof of Theorem 12

First, it is easy to see that the problem is in NP: Given a distribution (Σ,Proc,∆)
and a transition system TS , a nondeterministic machine can ‘guess’ a family of
equivalences (≡k)k∈Proc and then verify in polynomial time (in the size of the
distribution and of the transition system) whether the properties AA1–AA3 from
Theorem 11 are satisfied or not.

For the NP-hardness part, we use a polynomial reduction from the classical
SAT problem. Let φ be a formula in conjunctive normal form with variables
x1, . . . , xn appearing in the clauses c1, . . . , cm. For technical reasons, we construct
first a new formula φ′ that satisfy the following properties:

1. each variable appears in at least two different clauses,
2. each clause contains at least two different literals, and
3. φ′ is satisfiable if and only if φ is satisfiable.

The formula φ′ is constructed from φ as follows. We start with φ′ being equal to
a new clause c0 := x0 ∨x0 ∨x1 ∨x2 ∨ . . .∨xn, where x0 is a fresh variable. Then
we add to φ′ the clauses of φ that contain at least two different literals. Finally,
if cj := xi (resp. cj := xi) is a clause of φ, we add to φ′ two new clauses xi ∨ x0

and xi ∨x0 (resp. xi ∨x0 and xi ∨x0). It is easy to see that φ′ satisfies the three
properties above. For convenience, we denote φ′ also by φ in the following.

We will construct a distribution (Σφ,Procφ,∆φ) and a (nondeterministic)
transition system TSφ = (Qφ, Σφ,→φ, Iφ) such that: φ is satisfiable if and only
if TSφ is isomorphic to an asynchronous automaton over ∆φ. To relieve a bit
the notation, we will drop all φ indices.

First, the set of processes Proc consists of one process for each (positive or
negative) literal from each clause:

Proc := {pxicj
| j ∈ [0..m], xi ∈ cj} ∪ {pxicj

| j ∈ [0..m], xi ∈ cj}.

Then, the set Σ of actions and their domains (which determine ∆) consist of:

– one action for each positive literal from each clause: {axicj
| j ∈ [0..m], xi ∈

cj} with dom(axicj
) := Proc \ {pxicj

}.
– one action for each negative literal from each clause: {axicj

| j ∈ [0..m], xi ∈
cj} with dom(axicj

) := Proc \ {pxicj
}.

– one action for each variable: {axi
| i ∈ [0..n]} with the domain of axi

consist-
ing of the processes associated to the literals where xi appears:

dom(axi
) :=

⋃

j : xi∈cj
{pxicj

} ∪⋃

j : xi∈cj
{pxicj

}.
– one action for each clause: {acj

| j ∈ [0..m]} with the domain of acj
consisting

of the processes associated to the literals of cj :
dom(acj

) :=
⋃

i : xi∈cj
{pxicj

} ∪⋃

i : xi∈cj
{pxicj

}.

Last, we construct the transition system TS : The state space Q consist of:

– six states for each variable: {q0
xi

, q1
xi

, q′xi
, qxi

, qF
xi

, qT
xi
| i ∈ [0..n]} and

– three states for each clause: {qcj
, q′cj

, q0
cj
| j ∈ [0..m]}.

25

q0
x1

q1
x1

q′

x1
qx1 qF

x1
qT

x1

ax1c0

ax1c1

ax1
ax1

ax1
ax1

Choice gadget for x2

Choice gadget for x2

q0
x2

q1
x2

q′

x2
qx2 qF

x2
qT

x2

ax2c0

ax2c1 , ax2c2

ax2
ax2

ax2
ax2

q0
x3

q1
x3

q′

x3
qx3 qF

x3
qT

x3

ax3c0

ax3c2

ax3
ax3

ax3
ax3

qc1 q′

c1

q0
c1

ax1c1 ax1c1
ax2c1 ax2c1

ac1

Clause c2

Clause c2

qc2 q′

c2

q0
c2

ax2c2 ax2c2
ax3c2

ax3c2

ac2

Fig. 5. The transition system TS associated to φ = (x1 ∨ x2) ∧ (x2 ∨ x3) (without the
states and transitions associated to clause c0)

The transition relation →⊆ Q×Σ ×Q is defined below:

– for each i ∈ [0..n]: q0
xi

axi−→ q′xi
, q0

xi

axi−→ qxi
, and q0

xi

a−→ q1
xi

for each action
a ∈ {axicj

|xi ∈ cj} ∪ {axicj
|xi ∈ cj}.

– for each i ∈ [0..n]: q1
xi

axi−→ qF
xi

, q1
xi

axi−→ qT
xi

.

– for each j ∈ [0..m]: qcj

axicj−→ qxi
for xi ∈ cj , qcj

axicj−→ qxi
for xi ∈ cj , and

qcj

acj−→ q0
cj

.

– for each j ∈ [0..m]: q′cj

axicj−→ qF
xi

for xi ∈ cj and q′cj

axicj−→ qT
xi

for xi ∈ cj .

The set of initial states I is chosen such that all states of Q are reachable from
I. For instance, I := {q0

xi
, q1

xi
| i ∈ [0..n]} ∪ {qcj

, q′cj
| j ∈ [0..m]}. (It is easy to

modify the construction such that there is only one initial state.)
An example is provided in Fig. 5. We omitted, for legibility, the states qc0

,
q′c0

, and q0
c0

and their associated transitions (those states were introduced for
some consistency reasons - see construction of φ′). Also, we did not mark the
initial states, because they do not play any rôle here.

The ‘choice gadget’ is provided by the six states for each variable xi and
their associated transitions. The ‘value’ of each choice is then propagated further
to the clauses using the transitions labeled axicj

and axicj
, respectively. More

precisely, to each clause we forward only the information that a variable was set
to False in such a way that: A clause cj has all the literals evaluated to False

iff the condition AA3 is violated for q1 := qcj
, q′1 := q0

cj
, q2 := q′cj

.
The above construction is polynomial in the size of the initial formula φ and

we claim that φ is satisfiable if and only if TS is isomorphic to an asynchronous
automaton over ∆ (given by dom).

First Implication. We first prove the easier part: φ is not satisfiable implies TS
is not isomorphic to an asynchronous automaton over ∆. If φ is not satisfiable,
then for any assignment of the variables x0, . . . , xn there exists a clause that
evaluates to False. We must show that in this case, there are no (≡p)p∈Proc

satisfying all AA1–AA3.
By contradiction, assume that there exist (≡p)p∈Proc satisfying all AA1–AA3.

26

For each i ∈ [0..n], from q0
xi

a−→ q1
xi

for all a ∈ {axicj
|xi ∈ cj} ∪ {axicj

|xi ∈
cj}, using AA1, we have that q0

xi
≡p q1

xi
for all p ∈ {pxicj

|xi ∈ cj}∪{pxicj
|xi ∈

cj}, and so q0
xi
≡dom(axi

) q1
xi

. Next, from q0
xi
≡dom(axi

) q1
xi

and q0
xi

axi−→ qxi
, using

AA3, we have that either qxi
≡dom(axi

) qF
xi

, or qxi
≡dom(axi

) qT
xi

, but not both

in the same time (otherwise, by transitivity we have qF
xi
≡dom(axi

) qT
xi

and also

qF
xi
≡Proc\dom(axi

) qT
xi

by AA1 applied to qF
xi

axi←− q1
xi

axi−→ qT
xi

, so qF
xi
≡Proc qT

xi

and this would contradict AA2). Let us choose an assignment of the variables
given by the equivalences in the following way. For each i ∈ [0..n]:

xi is evaluated to False if and only if qxi
≡dom(axi

) qF
xi

.

Because φ is not satisfiable, there exists a clause, say ck, that has all its literals
evaluated to False. Let xi be a positive literal in ck (if any). Since the literal xi

is evaluated to False, we have that the variable xi is False, so qxi
≡dom(axi

) qF
xi

and this implies qxi
≡pxick

qF
xi

(because pxick
∈ dom(axi

)). In addition, we have

qck

axick−→ qxi
and q′ck

axick−→ qF
xi

(see the construction of TS) and, using AA1,
we deduce that qck

≡pxick
qxi

and q′ck
≡pxick

qF
xi

. By transitivity of ≡pxick
, we

obtain that qck
≡pxick

q′ck
. A similar argument for the negative literals xi in ck

(if any), proves that qck
≡pxick

q′ck
.

Summing up, qck
and q′ck

are equivalent on all the processes associated to the
literals in ck, and so, by the definition of dom(ack

), we obtain that qck
≡dom(ack

)

q′ck
. But this contradicts AA3 because qck

ack−→ q0
ck

and there is no state q′ such

that q′ck

ack−→ q′.

Second Implication. We move now to the second part of the proof, assuming that
φ is satisfiable. Then, there exists an assignment to the variables x0, . . . , xn such
that each clause is True. We prove that TS is isomorphic to an asynchronous
automaton over ∆. For that, we construct a family of equivalences (≡p)p∈Proc

in the following way:

Step 0 For each p ∈ Proc, initialize the binary relation ≡p⊆ Q×Q to ∅.
Step 1 For each q

a−→ q′, choose q ≡p q′ for each p ∈ Proc \ dom(a).
Step 2 For each i ∈ [0..n], if variable xi is evaluated to False, then choose

qxi
≡dom(axi

) qF
xi

and q′xi
≡dom(axi

) qT
xi

, otherwise choose qxi
≡dom(axi

) qT
xi

and q′xi
≡dom(axi

) qF
xi

.
Step 3 For each p ∈ Proc, close≡p under reflexivity, symmetry, and transitivity.

We prove that the chosen (≡p)p∈Proc satisfy all AA1–AA3 and this implies,
by Theorem 11, that TS is isomorphic to an asynchronous automaton over ∆.

Let us start making some remarks:

– Step 1 directly imposes AA1 to be satisfied.
– Step 2 implements the choice gadget for the variables: For each i ∈ [0..n],

from q0
xi

a−→ q1
xi

for all a ∈ {axicj
|xi ∈ cj} ∪ {axicj

|xi ∈ cj}, using Step 1
(i.e., AA1), we have that q0

xi
≡dom(axi

) q1
xi

. It is not difficult to check that

27

Table 6. The equivalence classes constructed in the 2nd part of the proof of Th. 12

xi = False xi = True

≡pxicj

(for xi ∈ cj)

{q0
xi

, q1
xi
}, {q′

xi
, qT

xi
},

{qxi
, qF

xi
, qcj

, q′

cj
}, {q0

cj
},

for each i′ 6= i, {q0
xi′

, q′

xi′
, qxi′

},
{q1

xi′
, qF

xi′
, qT

xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′

cj′
}

{q0
xi

, q1
xi
}, {q′

xi
, qF

xi
, q′

cj
},

{qxi
, qT

xi
, qcj

}, {q0
cj
}

for each i′ 6= i, {q0
xi′

, q′

xi′
, qxi′

},
{q1

xi′
, qF

xi′
, qT

xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′

cj′
}

≡pxicj

(for xi ∈ cj)

{q0
xi

, q1
xi
}, {q′

xi
, qT

xi
, q′

cj
},

{qxi
, qF

xi
, qcj

}, {q0
cj
}

for each i′ 6= i, {q0
xi′

, q′

xi′
, qxi′

},
{q1

xi′
, qF

xi′
, qT

xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′

cj′
}

{q0
xi

, q1
xi
}, {q′

xi
, qF

xi
},

{qxi
, qT

xi
, qcj

, q′

cj
}, {q0

cj
},

for each i′ 6= i, {q0
xi′

, q′

xi′
, qxi′

},
{q1

xi′
, qF

xi′
, qT

xi′
}, and

for each j′ 6= j, {qcj′
, q0

cj′
}, {q′

cj′
}

AA3 holds for the states q0
xi

, q1
xi

and each of the axi
-labeled edges coming

out of them. For example, let us take q0
xi

, q1
xi

, for which we have q0
xi

axi−→ qxi

and q0
xi
≡dom(axi

) q1
xi

. The first part of AA3 is satisfied, so there must exist

a state q′ such that q1
xi

axi−→ q′ and qxi
≡dom(axi

) q′. If xi is False, we take

q′ := qF
xi

, otherwise q′ := qT
xi

. Loosely speaking, we can tell the value of xi

checking which of the states qF
xi

and qT
xi

is equivalent on dom(axi
) with qxi

.
– Step 3 ensures that (≡p)p∈Proc are equivalences.
– Moreover, Step 3 transmits further the information from the variables to the

literals in the clauses. In the example in Fig. 5, x2 appears in c1. If x2 is
evaluated to False, then we know that qx2

≡dom(ax2
) qF

x2
and this implies

qx2
≡px2c1

qF
x2

. We also have qc1

ax2c1−→ qx2
and q′c1

ax2c1−→ qF
x2

and, using Step 1

(i.e., AA1), we deduce that qc1
≡px2c1

qx2
and q′c1

≡px2c1
qF
x2

. By Step 3 (i.e.,
transitivity of ≡px2c1

), we obtain that qc1
≡px2c1

q′c1
. Therefore, we have

indeed that x2 = False implies qc1
≡px2c1

q′c1
(at the level of equivalences).

Table 6 describes the equivalence classes of our equivalences generated above.
Each cell gives the partition of the state space Q into the equivalence classes for
each type of process (rows) depending on the value of the associated variable
(columns). Each equivalence class is given as a set in curly brackets. It is tedious,
but not hard to check the correctness of Table 6. Based on it, we prove that the
chosen (≡p)p∈Proc satisfy AA3, AA2, and AA1 (in this order):

Remark 30. A sufficient condition for AA3 to hold for q1 6= q2 and q1
a−→ q′1 is

that there exists p ∈ dom(a) such that q1 6≡p q2.

First, Table 7 solves the cases for AA3. The first column picks a value for q1,
the second one gives the transition q1

a−→ q′1 we are considering, while the third
column gives a range to q2. In the last column we either give a state q′2 as in the
formulation of AA3 or we give a process p ∈ dom(a) such that q1 6≡p q2 as in
Remark 30. The correctness of the solutions provided is verified using Table 6.

Remark 31. AA2 holds iff for each q1 6= q2, there exists p ∈ Proc with q1 6≡p q2.

28

Table 7. Details for the satisfaction of the AA3 property

q1 q1
a−→ q′

1 q2 Why AA3 holds (either a state q′

2 or a process
p ∈ dom(a) are given)

q0
xi

q0
xi

axi−→ q′

xi
{q1

xi
} We have q0

xi
≡dom(axi

) q1
xi

(because of Step 1;

see also Table 6). If xi is True, choose q′

2 :=
qF

xi
, otherwise choose q′

2 := qT
xi

.
Q \ {q0

xi
, q1

xi
} p := pxic0 .

q0
xi

axi−→ qxi
Similar to the case q0

xi

axi−→ q′

xi
above.

q0
xi

axicj−→ q1
xi

{q1
xi
} p := pxi′ c0 , where i′ 6= i (by constr. xi′ ∈ c0).

(for xi ∈ cj) Q \ {q0
xi

, q1
xi
} p can be any process from dom(axi

)\{pxicj
}.

Such p exists, because card(dom(axi
)) ≥ 2

(remember that we forced each variable of φ

to appear in at least two clauses).

q0
xi

axicj−→ q1
xi

(for xi ∈ cj)
Similar to the case q0

xi

axicj−→ q1
xi

above.

q1
xi

Similar to the case q0
xi

above.

qcj

qcj

axicj−→ qxi

(for xi ∈ cj)
{q0

cj
} We choose p to be the process associated to a

literal ` of cj differenta from xi.
So, p := p`cj

for ` ∈ cj and ` 6= xi.

Q \ {qcj
, q0

cj
} p := p`cj′

, for cj′ differentb from cj and ` ∈ cj′

qcj

axicj−→ qxi

(for xi ∈ cj)
Similar to the case qcj

axicj−→ qxi
above.

qcj

acj−→ q0
cj

Since cj evaluates to True, there exists a literal ` of cj evaluated
to True. Assume ` = xi, such that xi ∈ cj and xi = True (a
similar analysis is made if ` is negative). Then:
{qxi

, qT
xi
} p := p`cj

for ` ∈ cj and ` 6= xi
a.

Q \ {qcj
, qxi

, qT
xi
} p := pxicj

.

q′

cj
Similar to the case qcj

above.

aSuch different literal ` exists because we forced each clause to contain at least two
different literals.

bOur formula φ contains at least two clauses.

Table 8. Details for the AA2 property (only cases not solved already in Table 7)

q1 q2 Why AA2 holds (a process p ∈ Proc is given)

q′

xi
{qxi

} p := pxic0 (by construction xi ∈ c0).
Q′ \ {q′

xi
, qxi

} p := pxi′ c0 , where i′ 6= i (by construction xi′ ∈ c0).

qxi
Q′ \ {qxi

, q′

xi
} p := pxi′ c0 , where i′ 6= i (by construction xi′ ∈ c0).

qF
xi

{qT
xi
} p := pxic0 (by construction xi ∈ c0).

Q′ \ {qF
xi

, qT
xi
} p := pxi′ c0 , where i′ 6= i (by construction xi′ ∈ c0).

qT
xi

Q′ \ {qT
xi

, qF
xi
} p := pxi′ c0 , where i′ 6= i (by construction xi′ ∈ c0).

q0
cj

Q′ \ {q0
cj
} p := p`cj

, where ` is a literal of cj .

29

Table 8 presents only the cases for which Table 7 did not give a process to
‘distinguish’ two different states q1 (column 1) and q2 (in the range given in
column 2), i.e., we give p ∈ Proc such that q1 6≡p q2. More precisely, we only
have to consider pairs of states from the subset:

Q′ := {q′xi
, qxi

, qF
xi

, qT
xi
| i ∈ [0..n]} ∪ {q0

cj
| j ∈ [0..m]}.

(Note that the elements of Q′ are those state with no outgoing edges.)
Condition AA1 is fulfilled by construction (Step 1). ut

A.4 Details for the proofs in Section 4.2

Proof of Proposition 22
The direct implication is easy. For the reverse, let T be a prefix-closed regular
trace language. From [Zie89, Th. 4.8], there exists a safe asynchronous automaton
AA with a set of global initial states I and a set of global accepting states F such
that L(AA, F) = T , where L(AA, F) := {w ∈ Σ∗ | ∃qin ∈ I, q ∈ F, qin w−→ q}.

We show that L(AA, F) = L(AA), where L(AA) is our definition of language
containing all the runs starting in an initial state of I.

Since inclusion L(AA, F) ⊆ L(AA) is obvious, we only prove L(AA) ⊆
L(AA, F) using the hypothesis that T = L(AA, F) is prefix-closed. Let w ∈
L(AA). Then, there exists the run qin w→ q with qin ∈ I in AA. By construction,
AA is a safe asynchronous automaton, so any run of AA from an initial state
can be extended to an accepting run. In particular, w can be extended to a run

qin w′

→ q′ with q′ ∈ F . Hence w is a prefix of w′ ∈ L(AA, F) and since L(AA, F)
is prefix-closed, we conclude that w ∈ L(AA, F). ut

Proof of Theorem 23
The ‘totality problem for regular languages’ is defined as: Given a nondetermi-
nistic finite automata A over the alphabet Σ, is the language accepted by A
(given by a set of accepting states) equal to Σ∗? It is a classical result that this
problem is PSPACE-complete [GJ79].

We reduce the above totality problem to the implementability problem for
asynchronous automata modulo language equivalence. For each nondeterministic
finite automaton A = (Q,Σ,→, {qin}, {qacc}) where Q is the set of states, Σ
the alphabet, →⊆ Q × Σ × Q the transition relation, qin the initial state, and
qacc the accepting state (we can suppose w.l.o.g. that A has only one initial,
respectively only one accepting state), we build a distribution (Σ ′,Proc,∆) and
a transition system TS over Σ ′ such that L(A, {qacc}) = Σ∗ iff L(TS) is a trace
language (this is enough according to Proposition 22).

We choose Σ′ := Σ ∪ {a, b, c} with a, b, c 6∈ Σ, Proc := {1, 2}, and ∆ such
that Σloc(1) := Σ ∪ {a, b} and Σloc(2) := Σ ∪ {a, c}. We can see that b‖c is
the only independence generated by ∆. Then, we choose the transition system
TS := (Q′, Σ′,→′, {q0}) as in Fig. 3 (left). More precisely, we have

– Q′ := Q ∪ {q0, q1, q2, q3, q
′
2, q

′
3} and

30

– →′:= {q0
a−→ q1} ∪ {q1

α−→ q1 |α ∈ Σ} ∪ {q1
b−→ q2

c−→ q3}
∪ {q0

a−→ qin} ∪ (→) ∪ {qacc c−→ q′2
b−→ q′3}.

For a language L, we denote by Prefix (L) the language which contains all the
prefixes of the words of L. Then, it is easy to see that

L(TS) = Prefix (aΣ∗bc + aL(A, {qacc}) cb).

If we assume that L(A, {qacc}) = Σ∗, then L(TS) = Prefix (aΣ∗(bc + cb)),
which is obviously a trace language (the only independence is b‖c). On the
other hand, if L(A, {qacc}) 6= Σ∗, there exists w ∈ Σ∗ \ L(A, {qacc}), which
implies that L(TS) is not a trace language because awbc ∈ L(TS) and b‖c, but
awcb 6∈ L(TS).

We mention that our proof is reminiscent of the PSPACE-hardness proof
for checking the trace closure of the language of a nondeterministic I-diamond
Büchi automaton [Mus94, Th. 7.2.3]. An alternative proof to our result can be
obtained modifying the PSPACE-hardness proof of checking the trace closure of
the language of a nondeterministic automaton [PWW98, Th. 11]. The difference
is that the language of a transition system is always prefix-closed, so the con-
structions must accommodate this detail (and this is not immediate). ut

Proof of Proposition 24
First, given an acyclic transition system TS together with a distribution ∆,
checking that L(TS) is not trace-closed is in NP. A machine can guess a pair
of independent actions a‖b and two strings w,w′ and check in polynomial time
whether wabw′ ∈ L(TS) and wbaw′ 6∈ L(TS) (notice that, since TS is acyclic,
the length of w and w′ is bounded by the size of TS).

For the coNP-hardness part, we use a reduction from the NP-complete prob-
lem of ‘language inequivalence for acyclic finite nondeterministic automata’ (see
[GJ79]): Given two acyclic nondeterministic finite automata A1 and A2 over the
same alphabet Σ, do they accept different languages?

Given A1 = (Q1, Σ,→1, {qin
1 }, {qacc

1 }) and A2 = (Q2, Σ,→2, {qin
2 }, {qacc

2 })
two acyclic nondeterministic finite automata assumed w.l.o.g. to have only one
initial, respectively one accepting state, we construct a transition system TS as
in Fig. 3 (right) and a distribution such that b‖c (cf. the proof of Th. 23). We
have then:

L(TS) = Prefix (aL(A1, {qacc
1 })bc + aL(A2, {qacc

2 }) cb),

which easily implies that L(TS) is a not a trace language if and only if the
languages L(A1, {qacc

1 }) and L(A2, {qacc
2 }) are different. ut

Proof of Theorem 25
To prove the PSPACE-hardness of the implementability problem for synchronous
products of transition systems modulo language equivalence, we use the con-
struction of TS and the distribution (Σ ′,Proc,∆) from the proof of Th. 23 (see

31

Fig. 3). We show that L(A, {qacc}) = Σ∗ iff L(TS) is the language of a synchro-
nous product over ∆: If L(A, {qacc}) = Σ∗, then L(TS) = Prefix (aΣ∗(bc + cb))
and we can easily construct a synchronous product accepting L(TS) (we choose
the two local components accepting the projections Prefix (aΣ∗b), respectively
Prefix (aΣ∗c)). If L(A, {qacc}) 6= Σ∗, then L(TS) is not a trace language and
therefore cannot be the language of a synchronous product (because the language
of a synchronous product of transition systems is always a trace language).

For acyclic specifications, it was proved in [Dub86] that the class of finite lan-
guages accepted by synchronous products is equal to the class of finite languages
accepted by asynchronous automata, viz. the class of finite prefix-closed trace
languages. Therefore the complexity of the implementability problem for acyclic
specifications is settled by the coNP-completeness result of Proposition 24.

As a remark, the above constructions cannot be used for the proof of Propo-
sition 21 treating the case of deterministic specifications. ut

Proof of Proposition 26
We use a reduction from the emptiness problem for Turing machines:

Given an arbitrary Turing machine M = (Q,Γ, Γ0, δ, q0, B, F), we construct
a context-free grammar G such that L(G) is a trace language iff L(M) = ∅.

By definition, a valid computation of M is a string #w1#wR
2 #w3#wR

4 #...
over the alphabet Q∪Γ ∪{#} (with Q and Γ disjoint and # belonging to none
of them) such that:

1. each wi is an instantaneous description (ID) of M , that is, a string in Γ ∗QΓ ∗

not ending with B (where B is the blank symbol),

2. w1 is an initial ID, one of the form q0x for x ∈ Γ ∗
0 ,

3. wn is a final ID, that is, one in Γ ∗FΓ ∗, and

4. wi `M wi+1 for 1 ≤ i < n (wi and wi+1 are consecutive IDs).

Let Σ := Q ∪ Γ ∪ {#}. We choose a context-free grammar G over Σ able to
compute exactly all the invalid computations of M . Such a grammar G exists
according to the construction of [HU79, Lemma 8.7]. We have then that:

– if L(M) = ∅, then L(G) = Σ∗

– if L(M) 6= ∅, then L(G) = Σ∗ \ {the set of all valid computations of M}.

The trick now is to choose a distribution over Σ such that # and q0 are
independent. We show that L(M) = ∅ iff L(G) is a trace language. If L(M) = ∅,
it is obvious that L(G) = Σ∗ is a trace language. If L(M) 6= ∅, then there is a
valid computation of M , say w, which will not belong to L(G). On one hand,
by definition, w has the form #q0w

′. On the other hand, q0#w′ is an invalid
computation (any valid computation starts with #) and therefore belongs to
L(G). So, we have that q0 and # are independent and q0#w′ ∈ L(G), but
#q0w

′ 6∈ L(G), which means that L(G) is not a trace language. ut

32

A.5 Details for Section 5

Definition 32. A (strong) bisimulation between a pair of transition systems
TS 1 = (Q1, Σ,→1, I1) and TS 2 = (Q2, Σ,→2, I2) is a binary relation ∼⊆ Q1×
Q2 (for which we use the infix notation) such that:

– For each qin
1 ∈ I1, there exists qin

2 ∈ I2 such that qin
1 ∼ qin

2 .

– For each qin
2 ∈ I2, there exists qin

1 ∈ I1 such that qin
1 ∼ qin

2 .

– If q1 ∼ q2 and q1
a−→1 q′1, there exists q′2 such that q2

a−→2 q′2 and q′1 ∼ q′2.

– If q1 ∼ q2 and q2
a−→2 q′2, there exists q′1 such that q1

a−→1 q′1 and q′1 ∼ q′2.

Having defined the bisimulation, for a transition system TS one can define
∼TS as the largest bisimulation between TS and itself. Constructing the largest
bisimulation can be done in polynomial time. Since ∼TS defines an equivalence
relation on Q, we can construct (in the usual way) the quotient transition system
TS/∼TS

.

Synchronous Products of Transition Systems The synthesis problem mod-
ulo bisimulation in solved in [Muk02] for deterministic synchronous products by:

Theorem 33. [CMT99,Muk02] Let (Σ,Proc,∆) be a distribution and TS a
transition system over Σ. Then, TS is bisimilar to a deterministic synchronous
product of transition systems over ∆ if and only if the bisimulation quotient
TS/∼TS

is deterministic and TS is language equivalent to a deterministic syn-
chronous product over ∆.

For a given transition system, checking the language equivalence with a de-
terministic synchronous product uses the same algorithm as for checking lan-
guage equivalence with a synchronous product with only one initial state, i.e.,
the decision algorithm for Problem 16 (this follows from the observations that
a deterministic synchronous product has only one initial state and that the lo-
cal components (TS p)p∈Proc can be determinized to build up a deterministic
synchronous product).

Theorem 34. The implementation problem for deterministic synchronous prod-
ucts modulo bisimulation is PSPACE-complete.

Proof. The problem is in PSPACE: Checking the language equivalence of TS
with a deterministic synchronous product is in PSPACE (the decision algorithm
for Problem 16 is in PSPACE) and checking that TS/∼TS

is deterministic takes
polynomial time (constructing the largest bisimulation takes polynomial time).

The PSPACE-hardness proof is the similar to the proof of Proposition 21
observing that TS/∼TS

is deterministic, whenever TS is deterministic. ut

33

Asynchronous Automata Given a distribution (Σ,Proc,∆), we say a lan-
guage L ⊆ Σ∗ is forward-independence closed iff ∀w ∈ Σ∗, a, b ∈ Σ : wa,wb ∈
L ∧ a‖b ⇒ wab ∈ L. It is easy to see that the languages of deterministic asyn-
chronous automata are forward-closed. Moreover, Zielonka’s construction [Zie87]
can be slightly modified to obtain the following characterization:

Proposition 35. [Muk02,ŞEM03] A language L ⊆ Σ∗ is accepted by a determi-
nistic asynchronous automaton if and only if L is a prefix-closed regular forward-
closed trace language. 10

The synthesis problem modulo bisimulation is solved in [Muk02] for deter-
ministic asynchronous automata by:

Theorem 36. [Muk02] Let (Σ,Proc,∆) be a distribution and TS a transition
system over Σ. Then, TS is bisimilar to a deterministic asynchronous automaton
over ∆ if and only if the bisimulation quotient TS/∼TS

is deterministic and TS
is language equivalent to a deterministic asynchronous automaton over ∆.

Theorem 37. The implementation problem for deterministic asynchronous au-
tomata modulo bisimulation can be decided in polynomial time.

Proof. A polynomial algorithm to decide this problem works as follows:

Input: a distribution (Σ,Proc,∆) and a transition system TS
Output: Is TS bisimilar to a deterministic asynchronous automaton?

Construct TS/∼TS

if TS/∼TS
is deterministic then

if L(TS/∼TS
) is a forward-closed trace language then

output ‘yes’
else output ‘no’

else output ‘no’.

The algorithm is polynomial because the construction of TS/∼TS
is polynomial,

the first test is obviously polynomial, and the second test is polynomial for tran-
sition systems that are deterministic (which is the case for TS/∼TS

, because
of the if-nesting). The algorithm is correct according to Theorem 36, Proposi-
tion 35, and the language equality L(TS/∼TS

) = L(TS). ut

B Implementation

B.1 Code of the implementation described in Section 6

% Input: a distribution (as a domain) and

% a (possible nondeterministic) transition system TS

10This result together with Proposition 22 show that the nondeterministic asynchro-
nous automata are strictly more expressive than their deterministic counterparts (as
opposed to [Zie87] where they have same expressivity due to the flexibility of choosing
a set of global accepting states).

34

% Question: is TS reachable, deadlock-free, and isomorphic

% to an asynchronous automaton?

% Strategy: guess a set of equivalences satisfying AA1-AA2-AA3

%===specify the input as a database of facts

%...the translation of the distribution from Fig. 4

dom(a,1). dom(b,2).

%...the translation of the nondeterministic TS from Fig. 4

initialstate(1). initialstate(2).

trans(1,a,3). trans(2,b,3).

trans(3,c,3). dom(c,1). dom(c,2). % added only for deadlock freedom

%...fix an upper bound on the number of local states

const max_local_state = 3.

%=== code for the implementation of Problem 29 (by Th. 11) begins here

%...derive the actions and processes of the distributed alphabet

action(A) :- dom(A,K).

process(K):- dom(A,K).

%...derive the states of TS

state(Q1) :- trans(Q1,A,Q2).

state(Q2) :- trans(Q1,A,Q2).

%===reachability (least fixpoint procedure)

reach(Q) :- initialstate(Q).

reach(Q2) :- reach(Q1), trans(Q1,A,Q2), neq(Q1,Q2).

%...rule out solutions which contain unreachable states

:- state(Q), not reach(Q).

%===deadlock-freedom

live(Q1) :- trans(Q1,A,Q2).

%...rule out solutions which contain reachable deadlocks

:- state(Q), reach(Q), not live(Q).

%===choose for each state a local representative from a set of local states.

% Two states are equivalent iff they have the same local representative.

%...derive the set of local states

local_state(1..max_local_state).

%...guess exactly one k-representative lq for the each state q

%...(choice gadget)

1 {local_repr(K,Q,LQ) : local_state(LQ)} 1 :- process(K), state(Q).

%...(q1 equiv_k q2) iff they have the same local representative

equal_local(K,Q1,Q2) :- local_repr(K,Q1,LQ), local_repr(K,Q2,LQ),

process(K), state(Q1), state(Q2), local_state(LQ).

%...equivalence of q1 and q2 on dom(a)

equiv_dom(A,Q1,Q2) :- equal_local(K,Q1,Q2):dom(A,K),

action(A), state(Q1), state(Q2).

%===AA1: q1-a->q2 and k not in dom(a) => local_state_k(q1)=local_state_k(q2)

35

Table 9. Experimental results for SubautIDFD and SubautAsync (Problems 28,29)

Problem Input SubIDFD SubIDFD SubAsync SubAsync
|Q| |→| |Σ| |P | -synasync -logic -determ. -nondeterm.

Mutex(2) 14 22 6 4 0.01 0.01 0.47 0.24

Mutex(3) 107 210 9 6 0.01 0.10 349.52 –

Mutex(4) 1340 3040 12 8 2.21 20.87 – –

Phil(2) 7 10 6 4 0.01 0.01 0.09 0.05

Phil(3) 27 63 9 6 x 0.03 6.39 4.69

Phil(4) 81 252 12 8 x 0.27 – –

%...rule out solutions not satisfying AA1

:- trans(Q1,A,Q2), not dom(A,K),

process(K), local_state(LQ1), local_state(LQ2),

local_repr(K,Q1,LQ1), local_repr(K,Q2,LQ2), neq(LQ1,LQ2).

%===AA2: (for all k in Proc: q1 equiv_k q2) => q1 = q2

%...rule out solutions not satisfying AA2

:- neq(Q1,Q2), equal_local(K,Q1,Q2):process(K), state(Q1), state(Q2).

%===AA3: q1-a->q11 and equiv_dom(a)(q1,q2)

% => exists q22 s.t. q2-a->q22 and equiv_dom(q11,q22)

matched(A,Q1,Q11,Q2) :- trans(Q1,A,Q11), trans(Q2,A,Q22),

equiv_dom(A,Q1,Q2), equiv_dom(A,Q11,Q22).

%...rule out solutions not satisfying AA3

:- trans(Q1,A,Q11), state(Q2), equiv_dom(A,Q1,Q2),

not matched(A,Q1,Q11,Q2).

B.2 Experimental results

Some preliminary experiments are presented in Table 9. We considered as bench-
marks the parametrized specifications for the mutual exclusion problem given
in [ŞEM03] and also for the dining philosophers problem11. We present the times
for running smodels 2.27 on a Linux machine with a 2.4 GHz Intel processor
and 2 GB of RAM. In case an execution did not terminate within 30 minutes, a
‘–’ is assigned in the table.

The first and second column of Table 9 give the instances of the problems
considered together with the sizes of the deterministic12 transitions systems mod-
eling them and the number of processes |Proc| (shortly, |P |) of the distributions.

11We considered only the safety requirement that no shared fork can be used simul-
taneously by the two philosophers that can have access to it.

12Despite our efforts to obtain nondeterministic specifications for the given problems
(i.e., transition systems where nondeterministic choice really occurs), we ended up with
deterministic transition systems (mainly due to complementation operations in the
specifications).

36

Columns three and four show the times for solving Problem 28 by the heuris-
tic of Synasync that search for an ID and FD subautomaton, respectively a
new Smodels-based logic implementation (using the idea of guessing the tran-
sitions of the subautomaton). For the instances of Mutex(N), the heuristic of
Synasync performs better than the new one (the original transition systems al-
ready satisfies ID and FD and apparently this helps the heuristic). For Phil(N)
(where ID and FD does not hold initially), no solution for N = 3, 4 is found by
Synasync (fact denoted by ‘x’ in Table 9), because its current implementation
employs a heuristic greedy algorithm which is not a complete method. The new
implementation finds, in turn, solutions for N = 3, 4.

Columns five and six present the times for solving Problem 29 by two logic
implementations in Smodels, based on Proposition 14 and Theorem 11, respec-
tively. Since the specifications are deterministic, after we guess a subautomaton,
we can implement either the (polynomial) characterization mentioned in Propo-
sition 14 (see the details in [Mor99]) or the characterization of Theorem 11
(see the implementation given in the Appendix). As expected, due to the more
difficult algorithms, we perform worse in the nondeterministic version. One op-
timization worth mentioning is that the logic program for the nondeterministic
case has a tunable constant max local state which gives the maximum num-
ber of local states for each process (for Table 9, we used max local state=3).
By tuning this constant, we can limit the logic program to look for synthesis
solutions which are systems composed out of ‘small’ components.

To conclude, using a logic implementation we achieved the following:

– For SubautIDFD we have an implementation doing a complete search in
the state space of solutions able to find solutions missed by the current
implementation of the polynomial heuristic of Synasync.

– For SubautAsync we are able to find solutions for N = 3. This is not impres-
sive compared with Synasync which for Mutex can go up to N = 5 (see
[ŞEM03] for details). However, it beats the original construction of Zielonka
which only works for N = 2 due to state space explosion. Moreover, the
gain of this heuristic is that it makes a complete search in the state space
of ‘small’ asynchronous automata whose global transition system is isomor-
phically embedded in the specification (so we are guaranteed solutions not
exceeding the size of the specification).

The prototype implementations given in this work can be used as a starting
point for more optimized synthesis procedures. Namely, the memory overheads
involved in the implementation are (polynomial but still) very significant in
larger instances. A special purpose synthesis procedure (i.e., a special purpose
NP-solver) could potentially eliminate quite a lot of this memory overhead.

The benchmarks together with the above mentioned Smodels-based logic
implementations can be found at:
http://www.fmi.uni-stuttgart.de/szs/tools/synasync/smodels/

37

