
Scalable Cloud Computing
5.6-2012

1/44

Scalable Cloud Computing

Keijo Heljanko

Department of Information and Computer Science
School of Science
Aalto University

keijo.heljanko@aalto.fi

5.6-2012



Scalable Cloud Computing
5.6-2012

2/44

Business Drivers of Cloud Computing

I Large data centers allow for economics of scale
I Cheaper hardware purchases
I Cheaper cooling of hardware

I Example: Google paid 40 MEur for a Summa paper mill site
in Hamina, Finland: Data center cooled with sea water from
the Baltic Sea

I Cheaper electricity
I Cheaper network capacity
I Smaller number of administrators / computer

I Unreliable commodity hardware is used
I Reliability obtained by replication of hardware components

and a combined with a fault tolerant software stack



Scalable Cloud Computing
5.6-2012

3/44

Cloud Computing Technologies
A collection of technologies aimed to provide elastic “pay as
you go” computing

I Virtualization of computing resources: Amazon EC2,
Eucalyptus, OpenNebula, Open Stack Compute, . . .

I Scalable file storage: Amazon S3, GFS, HDFS, . . .
I Scalable batch processing: Google MapReduce, Apache

Hadoop, PACT, Microsoft Dryad, Google Pregel, Spark, . . .
I Scalable datastore:Amazon Dynamo, Apache Cassandra,

Google Bigtable, HBase,. . .
I Distributed Consensus: Google Chubby, Apache

Zookeeper, . . .
I Scalable Web applications hosting: Google App Engine,

Microsoft Azure, Heroku, . . .



Scalable Cloud Computing
5.6-2012

4/44

Clock Speed of Processors

I Herb Sutter: The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal, 30(3),
March 2005 (updated graph in August 2009).



Scalable Cloud Computing
5.6-2012

5/44

Implications of the End of Free Lunch

I The clock speeds of microprocessors are not going to
improve much in the foreseeable future

I The efficiency gains in single threaded performance are
going to be only moderate

I The number of transistors in a microprocessor is still
growing at a high rate

I One of the main uses of transistors has been to increase
the number of computing cores the processor has

I The number of cores in a low end workstation (as those
employed in large scale datacenters) is going to keep on
steadily growing

I Programming models need to change to efficiently exploit
all the available concurrency - scalability to high number of
cores/processors will need to be a major focus



Scalable Cloud Computing
5.6-2012

6/44

Warehouse-scale Computing (WSC)

I The smallest unit of computation in Google scale is:
Warehouse full of computers

I [WSC]: Luiz André Barroso, Urs Hölzle: The Datacenter as
a Computer: An Introduction to the Design of
Warehouse-Scale Machines Morgan & Claypool
Publishers 2009
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006

I The WSC book says:
“. . . we must treat the datacenter itself as one massive
warehouse-scale computer (WSC).”

http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006


Scalable Cloud Computing
5.6-2012

7/44

Jeffrey Dean (Google): LADIS 2009 keynote failure
numbers

I LADIS 2009 keynote: “Designs, Lessons and Advice from
Building Large Distributed Systems”
http://www.cs.cornell.edu/projects/ladis2009/

talks/dean-keynote-ladis2009.pdf

I At warehouse-scale, failures will be the norm and thus fault
tolerant software will be inevitable

I Hypothetically assume that server mean time between
failures (MTBF) would be 30 years (highly optimistic and
not realistic number!). In a WSC with 10000 nodes roughly
one node will fail per day.

I Typical yearly flakiness metrics from J. Dean (Google,
2009):

I 1-5% of your disk drives will die
I Servers will crash at least twice (2-4% failure rate)

http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf


Scalable Cloud Computing
5.6-2012

8/44

Big Data

I As of May 2009, the amount of digital content in the world
is estimated to be 500 Exabytes (500 million TB)

I EMC sponsored study by IDC in 2007 estimates the
amount of information created in 2010 to be 988 EB

I Worldwide estimated hard disk sales in 2010:
≈ 675 million units

I Data comes from: Video, digital images, sensor data,
biological data, Internet sites, social media, . . .

I The problem of such large data massed, termed Big Data
calls for new approaches to storage and processing of data



Scalable Cloud Computing
5.6-2012

9/44

Example: Simple Word Search

I Example: Suppose you need to search for a word in a 2TB
worth of text that is found only once in the text mass using
a compute cluster

I Assuming 100MB/s read speed, in the worst case reading
all data from a single 2TB disk takes ≈ 5.5 hours

I If 100 hard disks can be used in parallel, the same task
takes less than four minutes

I Scaling using hard disk parallelism is one of the design
goals of scalable batch processing in the cloud



Scalable Cloud Computing
5.6-2012

10/44

Google MapReduce

I A scalable batch processing framework developed at
Google for computing the Web index

I When dealing with Big Data (a substantial portion of the
Internet in the case of Google!), the only viable option is to
use hard disks in parallel to store and process it

I Some of the challenges for storage is coming from Web
services to store and distribute pictures and videos

I We need a system that can effectively utilize hard disk
parallelism and hide hard disk and other component
failures from the programmer



Scalable Cloud Computing
5.6-2012

11/44

Google MapReduce (cnt.)

I MapReduce is tailored for batch processing with hundreds
to thousands of machines running in parallel, typical job
runtimes are from minutes to hours

I As an added bonus we would like to get increased
programmer productivity compared to each programmer
developing their own tools for utilizing hard disk parallelism



Scalable Cloud Computing
5.6-2012

12/44

Google MapReduce (cnt.)

I The MapReduce framework takes care of all issues related
to parallelization, synchronization, load balancing, and fault
tolerance. All these details are hidden from the
programmer

I The system needs to be linearly scalable to thousands of
nodes working in parallel. The only way to do this is to
have a very restricted programming model where the
communication between nodes happens in a carefully
controlled fashion

I Apache Hadoop is an open source MapReduce
implementation used by Yahoo!, Facebook, and Twitter



Scalable Cloud Computing
5.6-2012

13/44

MapReduce and Functional Programming

I Based on the functional programming in the large:
I User is only allowed to write side-effect free functions

“Map” and “Reduce”
I Re-execution is used for fault tolerance. If a node executing

a Map or a Reduce task fails to produce a result due to
hardware failure, the task will be re-executed on another
node

I Side effects in functions would make this impossible, as
one could not re-create the environment in which the
original task executed

I One just needs a fault tolerant storage of task inputs
I The functions themselves are usually written in a standard

imperative programming language, usually Java



Scalable Cloud Computing
5.6-2012

14/44

Why No Side-Effects?

I Side-effect free programs will produce the same output
irregardless of the number of computing nodes used by
MapReduce

I Running the code on one machine for debugging purposes
produces the same results as running the same code in
parallel

I It is easy to introduce side-effect to MapReduce programs
as the framework does not enforce a strict programming
methodology. However, the behavior of such programs is
undefined by the framework, and should therefore be
avoided.



Scalable Cloud Computing
5.6-2012

15/44

Yahoo! MapReduce Tutorial

I We use a Figures from the excellent MapReduce tutorial of
Yahoo! [YDN-MR], available from:
http://developer.yahoo.com/hadoop/tutorial/

module4.html

I In functional programming, two list processing concepts
are used

I Mapping a list with a function
I Reducing a list with a function

http://developer.yahoo.com/hadoop/tutorial/module4.html
http://developer.yahoo.com/hadoop/tutorial/module4.html


Scalable Cloud Computing
5.6-2012

16/44

Mapping a List

Mapping a list applies the mapping function to each list element
(in parallel) and outputs the list of mapped list elements:

Figure: Mapping a List with a Map Function, Figure 4.1 from
[YDN-MR]



Scalable Cloud Computing
5.6-2012

17/44

Reducing a List
Reducing a list iterates over a list sequentially and produces an
output created by the reduce function:

Figure: Reducing a List with a Reduce Function, Figure 4.2 from
[YDN-MR]



Scalable Cloud Computing
5.6-2012

18/44

Grouping Map Output by Key to Reducer
In MapReduce the map function outputs (key, value)-pairs.
The MapReduce framework groups map outputs by key, and
gives each reduce function instance (key, (..., list of

values, ...)) pair as input. Note: Each list of values having
the same key will be independently processed:

Figure: Keys Divide Map Output to Reducers, Figure 4.3 from
[YDN-MR]



Scalable Cloud Computing
5.6-2012

19/44

MapReduce Data Flow
Practical MapReduce systems split input data into large
(64MB+) blocks fed to user defined map functions:

Figure: High Level MapReduce Dataflow, Figure 4.4 from [YDN-MR]



Scalable Cloud Computing
5.6-2012

20/44

Recap: Map and Reduce Functions

I The framework only allows a user to write two functions: a
“Map” function and a “Reduce” function

I The Map-function is fed blocks of data (block size
64-128MB), and it produces (key, value) -pairs

I The framework groups all values with the same key to a
(key, (..., list of values, ...)) format, and these
are then fed to the Reduce function

I A special Master node takes care of the scheduling and
fault tolerance by re-executing Mappers or Reducers



Scalable Cloud Computing
5.6-2012

21/44

MapReduce Diagram

22.1.2010 2

Worker

Worker

Worker

Worker

split 0

split 1

split 2

split 3

split 4

(3)read

(1)fork

output
file 0(4)

local write

output
file 1

User
program

Master

(1)fork

(2)assign
map

(6)write

Worker

(5)Remote 
read

(1)fork

(2)
assign
reduce

Input
files

Map
phase

Intermediate files
(on local disks)

Reduce
phase

Output
files

Figure: J. Dean and S. Ghemawat: MapReduce: Simplified Data Processing on Large Clusters, OSDI 2004



Scalable Cloud Computing
5.6-2012

22/44

Example: Word Count

I Classic word count example from the Hadoop MapReduce
tutorial:
http://hadoop.apache.org/common/docs/current/

mapred_tutorial.html

I Consider doing a word count of the following file using
MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html


Scalable Cloud Computing
5.6-2012

23/44

Example: Word Count (cnt.)

I Consider a Map function that reads in words one a time,
and outputs (word, 1) for each parsed input word

I The Map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)



Scalable Cloud Computing
5.6-2012

24/44

Example: Word Count (cnt.)

I The Shuffle phase between Map and Reduce phase
creates a list of values associated with each key

I The Reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1))

(Hello, (1, 1))

(World, (1, 1))



Scalable Cloud Computing
5.6-2012

25/44

Example: Word Count (cnt.)

I Consider a reduce function that sums the numbers in the
list for each key and outputs (word, count) pairs. The
output of the Reduce function is the output of the
MapReduce job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)



Scalable Cloud Computing
5.6-2012

26/44

Phases of MapReduce

1. A Master (In Hadoop terminology: Job Tracker) is started
that coordinates the execution of a MapReduce job. Note:
Master is a single point of failure

2. The master creates a predefined number of M Map
workers, and assigns each one an input split to work on. It
also later starts a predefined number of R reduce workers

3. Input is assigned to a free Map worker 64-128MB split at a
time, and each user defined Map function is fed (key,

value) pairs as input and also produces (key, value)

pairs



Scalable Cloud Computing
5.6-2012

27/44

Phases of MapReduce(cnt.)

4. Periodically the Map workers flush their (key, value)

pairs to the local hard disks, partitioning by their key to R
partitions (default: use hashing), one per reduce worker

5. When all the input splits have been processed, a Shuffle
phase starts where M × R file transfers are used to send
all of the mapper outputs to the reducer handling each key
partition. After reducer receives the input files, reducer
sorts (and groups) the (key, value) pairs by the key

6. User defined Reduce functions iterate over the (key,

(..., list of values, ...)) lists, generating output
(key, value) pairs files, one per reducer



Scalable Cloud Computing
5.6-2012

28/44

Google MapReduce (cnt.)

I The user just supplies the Map and Reduce functions,
nothing more

I The only means of communication between nodes is
through the shuffle from a mapper to a reducer

I The framework can be used to implement a distributed
sorting algorithm by using a custom partitioning function

I The framework does automatic parallelization and fault
tolerance by using a centralized Job tracker (Master) and a
distributed filesystem that stores all data redundantly on
compute nodes

I Uses functional programming paradigm to guarantee
correctness of parallelization and to implement
fault-tolerance by re-execution



Scalable Cloud Computing
5.6-2012

29/44

Apache Hadoop

I An Open Source implementation of the MapReduce
framework, originally developed by Doug Cutting and
heavily used by e.g., Yahoo! and Facebook

I “Moving Computation is Cheaper than Moving Data” - Ship
code to data, not data to code.

I Map and Reduce workers are also storage nodes for the
underlying distributed filesystem: Job allocation is first tried
to a node having a copy of the data, and if that fails, then to
a node in the same rack (to maximize network bandwidth)

I Project Web page: http://hadoop.apache.org/

http://hadoop.apache.org/


Scalable Cloud Computing
5.6-2012

30/44

Apache Hadoop (cnt.)

I When deciding whether MapReduce is the correct fit for an
algorithm, one has to remember the fixed data-flow pattern
of MapReduce. The algorithm has to be efficiently mapped
to this data-flow pattern in order to efficiently use the
underlying computing hardware

I Builds reliable systems out of unreliable commodity
hardware by replicating most components (exceptions:
Master/Job Tracker and NameNode in Hadoop Distributed
File System)



Scalable Cloud Computing
5.6-2012

31/44

Apache Hadoop (cnt.)

I Tuned for large (gigabytes of data) files
I Designed for very large 1 PB+ data sets
I Designed for streaming data accesses in batch processing,

designed for high bandwidth instead of low latency
I For scalability: NOT a POSIX filesystem
I Written in Java, runs as a set of user-space daemons



Scalable Cloud Computing
5.6-2012

32/44

Hadoop Distributed Filesystem (HDFS)

I A distributed replicated filesystem: All data is replicated by
default on three different Data Nodes

I Inspired by the Google Filesystem
I Each node is usually a Linux compute node with a small

number of hard disks (4-12)
I A single NameNode that maintains the file locations, many

DataNodes (1000+)



Scalable Cloud Computing
5.6-2012

33/44

Hadoop Distributed Filesystem (cnt.)

I Any piece of data is available if at least one datanode
replica is up and running

I Rack optimized: by default one replica written locally,
second in the same rack, and a third replica in another rack
(to combat against rack failures, e.g., rack switch or rack
power feed)

I Uses large block size, 128 MB is a common default -
designed for batch processing

I For scalability: Write once, read many filesystem



Scalable Cloud Computing
5.6-2012

34/44

Implications of Write Once

I All applications need to be re-engineered to only do
sequential writes. Example systems working on top of
HDFS:

I HBase (Hadoop Database), a database system with only
sequential writes, Google Bigtable clone

I MapReduce batch processing system
I Apache Pig and Hive data mining tools
I Mahout machine learning libraries
I Lucene and Solr full text search
I Nutch web crawling



Scalable Cloud Computing
5.6-2012

35/44

Two Large Hadoop Installations

I Yahoo! (2009): 4000 nodes, 16 PB raw disk, 64TB RAM,
32K cores

I Facebook (2010): 2000 nodes, 21 PB storage, 64TB RAM,
22.4K cores

I 12 TB (compressed) data added per day, 800TB
(compressed) data scanned per day

I A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J.
Sen Sarma, R. Murthy, H. Liu: Data warehousing and
analytics infrastructure at Facebook. SIGMOD Conference
2010: 1013-1020.
http://doi.acm.org/10.1145/1807167.1807278

http://doi.acm.org/10.1145/1807167.1807278


Scalable Cloud Computing
5.6-2012

36/44

Cloud Software Project

I ICT SHOK Program Cloud Software (2010-2013)
I A large Finnish consortium, see:

http://www.cloudsoftwareprogram.org/
I Case study at Aalto: CSC Genome Browser Cloud Backend
I Co-authors: Matti Niemenmaa, André Schumacher (Aalto

University, Department of Information and Computer
Science), Aleksi Kallio, Eija Korpelainen, Taavi Hupponen,
and Petri Klemelä (CSC — IT Center for Science)

http://www.cloudsoftwareprogram.org/


Scalable Cloud Computing
5.6-2012

37/44

CSC Genome Browser

I CSC provides tools and infrastructure for bioinformatics
I Bioinformatics is the largest customer group of CSC (in

user numbers)
I Next-Generation Sequencing (NGS) produces large data

sets (TB+)
I Cloud computing can be harnessed for analyzing these

data sets
I 1000 Genomes project (http://www.1000genomes.org):

Freely available 50 TB data set of human genomes

http://www.1000genomes.org


Scalable Cloud Computing
5.6-2012

38/44

CSC Genome Browser

I Cloud computing technologies will enable scalable NGS
data analysis

I There exists prior research into sequence alignment and
assembly in the cloud

I Visualization is needed in order to understand large data
masses

I Interactive visualization for 100GB+ datasets can only be
achieved with preprocessing in the cloud



Scalable Cloud Computing
5.6-2012

39/44

Genome Browser Requirements

I Interactive browsing with zooming in and out, “Google
Earth”-style

I Single datasets 100GB-1TB+ with interactive visualization
at different zoom levels

I Preprocessing used to compute summary data for the
higher zoom levels

I Dataset too large to compute the summary data in real time
using the real dataset

I Scalable cloud data processing paradigm map-reduce
implemented in Hadoop used to compute the summary
data in preprocessing (currently upto 15 x 12 = 180 cores)



Scalable Cloud Computing
5.6-2012

40/44

Genome Browser GUI



Scalable Cloud Computing
5.6-2012

41/44

Experiments

I One 50 GB (compressed) BAM input file from 1000
Genomes

I Run on the Triton cluster 1-15 compute nodes with 12
cores each

I Four repetitions for increasing number of worker nodes
I Two types of runs: sorting according to starting position

(“sorted”) and read aggregation using five summary-block
sizes at once (“summarized”)



Scalable Cloud Computing
5.6-2012

42/44

Mean speedup

0

2

4

6

8

10

12

14

16

1 2 4 8 15

M
e
a
n
 s
p
e
e
d
u
p

Workers

50 GB sorted

Ideal

Input file import

Sorting

Output file export

Total elapsed

0

2

4

6

8

10

12

14

16

1 2 4 8 15
M

e
a

n
 s

p
e

e
d

u
p

Workers

50 GB summarized for B=2,4,8,16,32

Ideal

Input file import

Summarizing

Output file export

Total elapsed



Scalable Cloud Computing
5.6-2012

43/44

Results

I An updated CSC Genome browser GUI
I Chipster: Tools and framework for producing visualizable

data
I An implementation of preprocessing for visualization using

Hadoop
I Scalability studies for running Hadoop on 50 GB+ datasets

on the Triton cloud testbed
I Software released:

http://sourceforge.net/projects/hadoop-bam/

http://sourceforge.net/projects/hadoop-bam/


Scalable Cloud Computing
5.6-2012

44/44

Current Research Topics

I Aalto and CSC both have datacenters which can be used
as testbeds for cloud computing technologies

I Focus on cloud based data analysis for “Big Data”
I MapReduce (Hadoop) scalable batch processing

technologies in the cloud
I Scalable datastores: HBase (Hadoop Database) has been

evaluated, also other cloud based datastores such as
Cassandra are of interest


