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Tutorial material
I Tutorial mainly based on the book

Esparza, J. and Heljanko, K.: Unfoldings –
A Partial-Order Approach to Model Checking.
EATCS Monographs in Theoretical Computer Science,
Springer-Verlag, ISBN 978-3-540-77425-9, 172 p.
Final book draft available from:
http://users.ics.tkk.fi/kepa/publications/

Unfoldings-Esparza-Heljanko.pdf

I Please consult the book for bibliographical and historical
information about the unfolding method

I Using material from: Unfolding-Based Model Checking
Tutorial by Javier Esparza given in the UFO’07: Workshop
on UnFOlding and partial order techniques
(with permission)

http://users.ics.tkk.fi/kepa/publications/Unfoldings-Esparza-Heljanko.pdf
http://users.ics.tkk.fi/kepa/publications/Unfoldings-Esparza-Heljanko.pdf
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Introduction to model checking - Software failures

Two very expensive software bugs:
I Intel Pentium FDIV bug (1994, approximately $500 million)
I Ariane 5 floating point overflow (1996, approximately $500

million)
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Pentium FDIV - Software bug in HW

4195835 - ((4195835 / 3145727) * 3145727) = 256

The floating point division algorithm uses an array of constants
with 1066 elements. However, only 1061 elements of the array
were correctly initialized
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Ariane 5

Exploded 37 seconds after takeoff - the reason was an overflow
in a conversion of a 64 bit floating point number into a 16 bit
integer
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Models and properties

Modelling

Kripke

System Property

model
System

structure
Formalized

propertyModel checking

Formalization
of property

the model
Executing

ψM |= ψ ?M
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Model checking

In model checking every execution of the model of the system
is simulated obtaining a Kripke structure M (labelled version of
the reachability graph) describing all its behaviors. M is then
checked against a property ψ:

I Yes: The system functions according to the specified
property (denoted M |= ψ)

I No: The system is incorrect (denoted M 6|= ψ), a
counterexample is returned: an execution of the system
which does not satisfy the property
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Model checking in the industry

I Microprocessor design: Several major microprocessor
manufacturers use model checking methods as a part of
their design process

I Design of Data-communications Protocol Software: Model
checkers have been used as rapid prototyping systems for
new data-communications protocols under standardization

I Mission Critical Software: NASA space program is model
checking code used by the space program

I Operating Systems: Microsoft is using model checking to
verify the correct use of locking primitives in Windows
device drivers

I Safety Critical Systems: Model checking is used to find
bugs in many safety critical systems
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Part I: Basics of unfolding based model checking

I This part of the tutorial will introduce the unfolding method
and its use to model check reachability properties

I Basic knowledge of Petri nets is assumed
I To demonstrate the basic concepts, we limit ourselves to

products of transition systems that are equivalent in
expressive power to 1-safe (1-bounded) Petri nets
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The state explosion problem

I The number of reachable states of a concurrent system
can grow exponentially in the number of its components

I Hinders conventional model checking even for relatively
small systems

I Many different approaches to combat the state explosion
exists: e.g., partial order reduction methods (ample,
stubborn and persistent sets)

I The compression approach:
find compact symbolic but still manageable representations
for sets of states

I Binary Decision Diagrams. Exploit regularities of the state
space

I Unfoldings: Exploit concurrency
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Transition systems

A transition system is a tuple A = 〈S,T , α, β, is〉, where
I S is a set of states,
I T is a set of transitions,
I α : T → S associates to each transition its source state,
I β : T → S associates to each transition its target state,

and
I is ∈ S is the initial state
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Example
Transition system A = 〈S,T , α, β, is〉 where

I S = {s1, s2, s3, s4}, T = {t1, t2, t3, t4, t5},
I α(t1) = s1, β(t1) = s2, . . ., β(t5) = s1,
I is = s1

s1

s2 s3t5

s4

t1 t2

t3 t4
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Products of transition systems

A product of transition systems is a tuple 〈A1, . . . ,An,T〉 where
I A1, . . . ,An are transition systems called components, and
I T is a synchronization constraint

A synchronization constraint is a set of tuples of the form
〈u1,u2, . . .un〉 where ui is either a transition of Ai or the special
idling symbol ε
Example: 〈t1, ε, ε, t2〉
The tuples are called global transitions
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Peterson’s mutex
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b0:=T

b1:=T

t:=0

t:=1

b1=F

b0=F

ENT0

ENT1

b0:=F

b1:=F

t=1

t=0

b0=T

b1=T

t=1

b0:=F

b1:=F

t:=0

b0=F

b1=F

t=0

b0:=T

b1:=T

t:=1

t:=1t:=0
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Running example

s3

t3 t4

t2t1

s4

t5 s2

u1

r2

u2

r3

T = { 〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉 , 〈ε, u1〉 , 〈ε, u3〉 }

s1 r1

u3
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Petri net representation of products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉
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Interleaving representation of products

〈s4, r1〉〈s1, r3〉

〈ε,u1〉〈ε,u1〉

〈s1, r1〉
〈ε,u3〉

〈t1, ε〉 〈t2, ε〉〈ε,u1〉
〈s1, r2〉

〈s2, r1〉 〈s3, r1〉

〈t2, ε〉〈t1, ε〉

〈s2, r2〉 〈s3, r2〉

〈t4,u2〉〈t3,u2〉

〈s4, r3〉

〈t1, ε〉 〈t2, ε〉 〈ε,u1〉

〈ε,u3〉

〈ε,u3〉

〈ε,u3〉〈t5, ε〉

〈s4, r2〉〈s2, r3〉 〈s3, r3〉

〈t5, ε〉

〈t5, ε〉
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Unfolding transition systems: Computation tree
s1

s2 s3t5

s4

t1 t2

t3 t4

t1 t2

s2s3

s1

s2 s3

t4t3

s4 s4

t5 t5

s1 s1

s2 s3

t1 t2t1t2
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Unfolding as a Petri net
s1

s2 s3t5

s4

t1 t2

t3 t4

s1

1

7 8

2

3 4

5 6

109

t1

s2

t3

s4

t5

t2

s3

t4

s4

t5

s1 s1

t2

s3s2

t1 t1t2

s3 s2
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Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4
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Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4
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Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4
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Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉
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s4 r3
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s1 r1

〈t3, u2〉
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s2 s3
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s4 s4 r3r3

〈t4, u2〉
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Unfolding products

〈t3, u2〉

r2s3s2
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Unfolding products
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The Unfolding

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

I The transitions of the
unfolding are events

I The places of the
unfolding are conditions
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Fundamental property of unfoldings

Given a node x (place or event) of the unfolding, we denote the
label of x by λ(x). Furthermore, given a set X of nodes we
define λ(X ) = {λ(x) | x ∈ X}.

Proposition
Let s be a reachable state of product A, and let M be a
reachable marking of the unfolding of A such that λ(M) = s.
(a) If 〈M,e,M ′〉 is a step of the unfolding, then there is a step
〈s, t,s′〉 of A such that λ(e) = t, and λ(M ′) = s′.

(b) If 〈s, t,s′〉 is a step of A, then there is a step 〈M,e,M ′〉 of
the unfolding such that λ(e) = t, and λ(M ′) = s′.
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Corollary of the fundamental property

Corollary

(a) If σ is a (finite or infinite) occurrence sequence of the
unfolding, then λ(σ) is a history of A.

(b) If h is a history of A, then some occurrence sequence of
the unfolding satisfies λ(σ) = h.
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Unfoldings are synchronizations of trees

An unfolding of a transition system is a tree. Intuitively, an
unfolding of a product can be seen as a synchronization of
trees. We formalize this idea.

Definition
A place of an unfolding is an i -place if it is labeled by a state of
the i th component. The i -root is the unique i-place having no
input events. An event is an i -event if it is labeled by a global
transition 〈t1, . . . , tn〉 such that ti 6= ε. In other words, an event is
an i-event if the i th component participates in the global
transition it is labeled with.
It follows that an i-place can only be a j-place if j = i ; on the
contrary, an event can be an i-event and a j-event even for i 6= j
if both Ai and Aj participate in the transition it is labeled with.
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Properties of Unfoldings
Proposition
Let N be the unfolding of A. Then:
(1) N has no cycles, i.e., no (nonempty) path of arcs leads

from a node to itself.
(2) For every i ∈ {1, . . .n}, every reachable marking of N puts

a token in exactly one i-place.
(3) The set of i-nodes of the unfolding N forms a tree with the

i-root as root. Moreover, the tree only branches at places,
i.e., if a node of the tree has more than one child, then it is
a place.

(4) A place of N can get marked at most once (i.e., if along an
occurrence sequence it becomes marked and then
unmarked, then it never becomes marked again), and an
event of N can occur at most once in an occurrence
sequence.
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The Unfolding (recap)

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3
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Causality, conflict, and concurrency

Definition
Let x and y be two nodes of an unfolding.

I We say that x is a causal predecessor of y , denoted by
x < y , if there is a (non-empty) path of arcs from x to y ; as
usual we denote by x ≤ y that either x < y or x = y ; two
nodes x and y are causally related if x ≤ y or x ≥ y

I We say that x and y are in conflict, denoted by x#y , if
there is a place z, different from x and y , from which one
can reach x and y , exiting z by different arcs

I We say that x and y are concurrent, denoted by x co y , if x
and y are neither causally related nor in conflict
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Concurrent conditions are simultaneously
reachable

Proposition
Let N be an unfolding of A and let P be a set of places
(conditions) of N . There is a reachable marking M of N such
that P ⊆ M if and only if the places of P are pairwise concurrent



Unfoldings
22.9-2010

34/119

Causal, co, and concurrency relations

Proposition

(1) For every two nodes x , y of an unfolding exactly one of the
following holds: (a) x and y are causally related, (b) x and
y are in conflict, (c) x and y are concurrent.

(2) If x and y are causally related and x 6= y, then either x < y
or y < x, but not both.
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Configurations an cuts

Proposition
Let N be an unfolding of a product A and let C be a set of
events of N .
(1) C is a configuration if and only if it is causally closed, i.e., if

e ∈ C and e′ < e then e′ ∈ C, and conflict-free, i.e., no two
events of C are in conflict.

Note that all the firing sequences of transitions realizing a
configuration C lead to the same reachable marking of N ,
which is a set of conditions called the cut Cut(C).
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Model checking

The model checking problem:
Does some run of the system satisfy a given property ψ?
Some important instances:
(1) Executability: Does some run contain a given transition?
(2) Repeated executability: Does some run contain a given

transition infinitely often?
(3) Livelock: Does some run contain an infinite tail of “silent”

transitions?
Fact:
The model-checking problem for next-free LTL-formulas can be
reduced to (2) and (3), for safety properties to (1).
We use search procedures to construct prefixes of the
unfolding that decide (1), (2), and (3).
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Search procedures

A search procedure consists of:
I a search scheme:

I Termination condition: Determines which leaves of the
current prefix are terminals, i.e., nodes whose successors
need not be explored.
(Terminals are also called cut-offs.)

I Success condition: Determines which terminals are
successful, i.e., terminals proving that ψ holds.

I Search strategy: Tells which event should be added next
(nondeterministic search strategies allowed).
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Search procedure pseudo-code for products
procedure unfold(product A) {
N := net containing only the initial marking from A without events;
T := ∅; S := ∅; X := Ext(N ,T ); /* Compute possible extensions */
while (X 6= ∅) {

choose a (minimal) event e ∈ X according to the search strategy;
extend N with e;
if e is a terminal according to the search scheme then {

T := T ∪ {e};
if e is successful according to the search scheme then {

S := S ∪ {e}; /* A successful terminal found, add early exit here!*/
};
};
X := Ext(N ,T ); /* Compute possible extensions */
};
return 〈N ,T ,S〉; /* return 〈prefix, terminals, successful terminals〉 */
};
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A search procedure for executability in transition
systems

Search procedure to decide if some run executes a goal
transition g.
Search scheme:

I An event is a terminal if
(1) it is labeled by g or,
(2) it leads to the same state as some other event we have

already seen.
I A terminal is successful if it is of type (1).

Search strategy: Any.
It is easy to prove that all these search procedures (same
search scheme, different strategies e.g., DFS or BFS) are all
correct (always terminate with the right outcome but maybe
different set of explored nodes).
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Example
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s2 s4

g
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Example
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Example
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Example
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Example
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Example
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Example
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Second example with g = {t5}

t4 t5

s4

s3s2

t3
t2t1

s1
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Second example: Two prefixes
s1

5 t2

s3

1t1

s2

t3 2

s3

4 t5

s4s2

3t4

(a)

s1

s3

2

t4 3 t55

s4

t2t1 1

s2

t3

s2s3

4

(b)
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Generalization to products: search scheme

We want something like this:
An event is a terminal if
(1) it is labeled by g (and then it is successful) or,
(2) “it leads to the same global state as some other event we

have already seen.”
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But an event of an unfolding does not necessarily lead to one
global state!

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

Solution: attach to an event e the global state reached by
“executing its past”. (McMillan ’92,’95)
This is the global state reached by firing the local configuration
on an event.
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Running Example as Petri net

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉
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s4 r3

〈ε, u3〉



Unfoldings
22.9-2010

52/119

Example
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Example
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Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1
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Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1



Unfoldings
22.9-2010

62/119

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r3〉

s1
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Generalization to products: search strategies

I A search strategy determines which is the next event to be
added to the current prefix.
But it has to be defined before knowing the events!

I In the transition system case, an event is characterized by
its past, the unique transition sequence leading to it.

I Search strategy→ (partial) order ≺⊆ T ∗ × T ∗ that refines
the prefix order.
In the product case, an event is also characterized by its
past, but the past may consist of many transition
sequences!
Solution: these sequences are a Mazurkiewicz trace.
Search strategy→ (partial) order ≺⊆ [T∗]× [T∗] defined on
Mazurkiewicz traces that refines the prefix order.
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Example s1

s2 s3t5

s4

t1 t2

t3 t4

t1 t2

s2s3

s1

s2 s3

t4t3

s4 s4

t5 t5

s1 s1

s2 s3

t1 t2t1t2Two search strategies for
w ,w ′ ∈ T ∗:

1. w ≺ w ′ if |w | < |w ′|
2. w ≺ w ′ if w is

alphabetically smaller
than w ′
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Generalization to products: search strategies

I A search strategy determines which is the next event to be
added to the current prefix.
But it has to be defined before knowing the events!

I In the transition system case, an event is characterized by
its past, the unique transition sequence leading to it.

I Search strategy→ (partial) order ≺⊆ T ∗ × T ∗ that refines
the prefix order.

I In the product case, an event is also characterized by its
past, but the past may consist of many transition
sequences!
Solution: these sequences are a Mazurkiewicz trace.
Search strategy→ (partial) order ≺⊆ [T∗]× [T∗] defined on
Mazurkiewicz traces that refines the prefix order.
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Example
s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

The past of event labelled 〈t3,u2〉 are the transition sequences:
I w1 = 〈t1, ε〉 〈ε,u1〉 〈t3,u2〉
I w2 = 〈ε,u1〉 〈t1, ε〉 〈t3,u2〉



Unfoldings
22.9-2010

67/119

Generalization to products: search strategies

I A search strategy determines which is the next event to be
added to the current prefix.
But it has to be defined before knowing the events!

I In the transition system case, an event is characterized by
its past, the unique transition sequence leading to it.

I Search strategy→ (partial) order ≺⊆ T ∗ × T ∗ that refines
the prefix order.

I In the product case, an event is also characterized by its
past, but the past may consist of many transition
sequences!

I Solution: these sequences are a Mazurkiewicz trace.
I Search strategy→ (partial) order ≺⊆ [T∗]× [T∗] defined on

Mazurkiewicz traces that refines the prefix order.



Unfoldings
22.9-2010

68/119

Mazurkiewicz traces

I Two global transitions of a product are independent if no
component participates in both of them.

I Example: 〈t1, ε〉 and 〈ε,u1〉 are independent, 〈t1, ε〉 and
〈t3,u2〉 are not.

I Two sequences of global transitions are equivalent if the
one can be obtained from the other by repeatedly
swapping adjacent independent transitions.

I Example: 〈t1, ε〉 〈ε,u1〉 〈t3,u2〉 ∼ 〈ε,u1〉 〈t1, ε〉 〈t3,u2〉
I Mazurkiewicz trace: equivalence classes of sequences.

I Example: [〈t1, ε〉 〈ε,u1〉 〈t3,u2〉] =
{
〈t1, ε〉 〈ε,u1〉 〈t3,u2〉 ,
〈ε,u1〉 〈t1, ε〉 〈t3,u2〉

}
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Search procedure for executability of 〈t5, ε〉
s1

t1

s2

〈t3, u2〉

s3

t2 u1

r2

〈t4, u2〉

r1

s4

t5

r3r3 s4

u3

r1

u1

r2

s1

7

54

1 2 3

8

6
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Are these search procedures correct?

Not for every strategy!!
(Counterexample by Esparza, Römer and Vogler)
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t4

t6

t5

i2

h2

t2 t3

u4

u6

u5

i3

g3

u2 u3

v4

v6

v5

i4

h4

v2 v3

t1 u1 v1

G = {i}

T = {a = 〈a1, a2, a3, a4〉 ,b = 〈b1, b2, b3, b4〉 , c = 〈c1, c2, ε, ε〉 ,

s4

s5

i1

g1

s3s2

s6

s1

a1 b1

c1 e1 c2

a2 b2

e2

a3

d3

a4b3

d4f3

b4

f4

g = 〈g1, ε, g3, ε〉 ,h = 〈ε, h2, ε, h4〉 , i = 〈i1, i2, i3, i4〉}
d = 〈ε, ε, d3, d4〉 , e = 〈e1, e2, ε, ε〉 , f = 〈ε, ε, f3, f4〉 ,
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s3 t3 u3 v3s2 t2 u2 v2

s4 t4

s1

s5 t5

u4 v4

u5 v5

s6 t6 u6 v6

a b

d f

g h

i

c e

t1 u1 v1 s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4

s6 u6 v6 s6 t6 u6

s5 t5 v5

a b

c e f

g h

i i

d

1 2

3 4 5 6

h7 8 g 9

12

10

u5

11

t6 v6

v1u1t1
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Which are the correct strategies?

I Sufficient condition: adequate strategies
I Mazurkiewicz traces can be concatenated in the obvious

way: [w ] [w ′] def
= [w w ′]

I Definition: A strategy ≺ on Mazurkiewicz traces is
adequate if
(1) it is well-founded

(there is no infinite descending chain:
· · · ≺ [w2] ≺ [w1] ≺ [w0] ) and

(2) [w ′] ≺ [w ] implies [w ′] [w ′′] ≺ [w ] [w ′′]
(preservation by extensions).

I (Lemma [Chatain and Khomenko]: (1)→ (2).)
I Theorem: If the strategy is adequate, then the search

procedure is correct.
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Proof idea:
I To prove: if g can be executed, then the search procedure

explores some trace [u g].
I If g can be executed, then the full unfolding contains some

trace [w g].
I If [w g] is not explored by the procedure, then w it contains

a terminal event e1 with past [w1] such that there exists
another trace [w ′1] such that:

I [w g] = [w1 w2 g],
I [w1] leads to the same global state as the trace [w ′

1] ≺ [w1].
I But then [w ′1 w2 g] ≺ [w1 w2 g]. Iterating the procedure, and

by the well-foundedness of ≺, we finally reach some trace
[u′ g] that is explored by the procedure.
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Are there total adequate strategies?

I Fact 1: Every total adequate strategy on transition
sequences can be lifted to a total adequate strategy on
Mazurkiewicz traces.

I Fact 2: The following strategy is adequate and total on
transition sequences:
w1 ≺ w2 iff

I |w1| < |w2|, or;
I |w1| = |w2| and w1 is lexicographically smaller than w2.

I There are many other total adequate strategies!
(First one found by Vogler, reported in: Esparza, Römer
and Vogler, An improvement of McMillan’s unfolding
algorithm)
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Implementing an adequate strategy

I Please see the book for additional adequate total search
strategies

I One has to basically implement a comparison operator for
two Mazurkiewicz traces - tricky code but needs to be only
written once, see e.g.,
unfsmodels-0.9/eventq.cc/EventQueue::CompareERV()

I Use orders implemented by other tools to ease tool
cross-comparisons for both benchmarking and debugging!

I In order to do this, aim for source-code compability,
sometimes tool and a paper about it are not fully compliant
with each other



Unfoldings
22.9-2010

77/119

Recap: Search procedure
procedure unfold(product A) {
N := net containing only the initial marking from A without events;
T := ∅; S := ∅; X := Ext(N ,T ); /* Compute possible extensions */
while (X 6= ∅) {

choose a (minimal) event e ∈ X according to the search strategy;
extend N with e;
if e is a terminal according to the search scheme then {

T := T ∪ {e};
if e is successful according to the search scheme then {

S := S ∪ {e}; /* A successful terminal found, add early exit here!*/
};
};
X := Ext(N ,T ); /* Compute possible extensions */
};
return 〈N ,T ,S〉; /* return 〈prefix, terminals, successful terminals〉 */
};
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Computing possible extensions
Computing potential extensions uses 90%+ percent of running
time in the unfolding procedures.
Let k be the maximum in-degree of transitions and n be the
number of conditions in the prefix before calling the possible
extensions subroutine.

I Memory-intensive approach: Maintain the co-relation
between any two conditions. Takes O(n2) memory and
takes O(nk/kk−2) time. Also updating the co-relation takes
O(n) time for each added condition.

I Memory-light approach: Enumerate all potential extension
without any co-relation using O(n) memory but
O(nk+1/kk ) time.

I More refined search approach: Preset trees (Khomenko)
I Solver approach: Employ an NP solver to compute the

potential extensions.
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Computing possible extensions is NP-complete
A decision version of computing the possible extensions is
NP-complete in the size of the prefix. Consider the 3SAT
formula φ = ((x1 ∨ x2 ∨ x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (¬x1 ∨ x2 ∨ x3)):

x1 x2 x3

tpx1 tnx1 tpx2 tnx2 tpx3 tnx3

m1

nx11 nx12px12

px11 px13 nx13

m2
m3

c3c2c1

t

s

ts11 ts13ts12 ts21 ts22 ts23 ts31 ts32 ts33
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Computing possible extensions is NP-complete
A partial prefix of the system. Now t is in the possible
extensions iff φ is satisfiable.

bx1 bx2 bx3

enx1 epx2 enx2 epx3 enx3

bnx13

bm2
bm3

es11 es13es12 es21 es22 es23 es31 es32 es33

epx1

bpx11 bpx13

bpx12 bnx11bnx12

bm1

bc11 bc12 bc13 bc21 bc22 bc23 bc31 bc32 bc33



Unfoldings
22.9-2010

81/119

Optimal modelling style for the unfolding method

I Lots of concurrency is good, always try to avoid
synchronizing independent subsystems “by accident” when
modelling

I Using low in-degree of transitions when modelling systems
will make life easier for possible extensions subroutine, and
will on average speed up unfolding

I Try to avoid local non-determinism, as it can lead to
combinatorial explosion when multiple processes
synchronize
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Canonical prefixes
I All notations defined for unfoldings also carry over to

prefixes. However, terminal events (cut-off events) are not
to be included into any configuration of the prefix

I If we generate a prefix with a sound (i.e., correct) search
strategy we will generate a finite prefix that is identical up
to isomorphism for any (total) prefix extension order
compatible with the (partial order) search strategy

I This unique prefix has been named the canonical prefix
(theory by Khomenko, Koutny, and Vogler). The theory
also allows several generalizations of search procedures

I From a canonical finite prefix any simple reachability
questions such as deadlock detection can be solved using
an NP-solver

I Trade-off between compactness and query complexity
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Reachability of global states

Product/1-safe PN Canonical prefix Interleaving
PSPACE-complete NP-complete Linear

Reachability of local states with prefixes is even more efficient
than reachability of global states. However, current NP-solvers
such as SAT solvers also make NP-hard problems on prefixes
quite tractable in practice
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Reachability of local states

Product/1-safe PN Canonical prefix Interleaving
PSPACE-complete Linear Linear

Reachability of local states with prefixes is even more efficient
than reachability of global states. However, current NP-solvers
such as SAT solvers also make NP-hard problems on prefixes
quite tractable in practice
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Checking for dead transitions (product)

b4 = 〈ε, ε, ε, ε, b4〉 , c = 〈c0, c1, c2, c3, c4〉}

T = {a = 〈a0, a1, ε, ε, ε〉 ,b1 = 〈ε, b1, ε, ε, ε〉 ,
b2 = 〈ε, ε, b2, ε, ε〉 ,b3 = 〈ε, ε, ε, b3, ε〉 ,

r1 s1 t1 u1 v1

b1

c1 c3 c4

b2 b4a0

c0

r3 s3 t3 u3 v3

r2

c2

b3a1

t2 u2 v2s4 s2
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Checking for dead transitions (Petri net)
r1 s1 t1 u1 v1

r2 s2 t2 u2 v2

r3 s3 t3 u3 v3

c

a b3b2b1 b4

s4
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Checking for dead transitions (unfolding)

r1 s1 t1 u1 v1

r2 s2 t2 u2 v2

b4b3b2b1a

s4



Unfoldings
22.9-2010

88/119

Canonical finite prefix sizes
Prefixes can be often smaller than the state space, and in case
of total search strategies prefixes have never more
(non-terminal/non-cutoff) events than reachable states.

Problem(size) |S| |T | |B| |E | #c States
DPD(5) 45 45 1582 790 211 3488
DPD(6) 54 54 3786 1892 499 19860
DPD(7) 63 63 8630 4314 1129 109964
DPH(5) 48 67 2712 1351 547 3112
DPH(6) 57 92 14590 7289 3407 16896
DPH(7) 66 121 74558 37272 19207 79926
ELEVATOR(2) 146 299 1562 827 331 1061
ELEVATOR(3) 327 783 7398 3895 1629 7120
ELEVATOR(4) 736 1939 32354 16935 7337 43439
FURNACE(1) 27 37 535 326 189 343
FURNACE(2) 40 65 4573 2767 1750 3777
FURNACE(3) 53 99 30820 18563 12207 30860
RING(7) 91 77 813 403 79 16999
RING(9) 117 99 1599 795 137 211527
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A canonical finite prefix can be very succinct

The class of Petri nets containing the following representative
for n = 4 has a state space of size 2n but a prefix of linear size
in the parameter n:

p2

t1

p1

p4

p3

p6

p5

p8

p7

t2 t3 t4

The prefix is identical to the original net system!
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A canonical finite prefix can be very large
A worst case is a system with no concurrency but lots of
non-determinism. p1

t5 p6

p7

t1 t2 p2

p3

t3 t4

t6

p4

p5
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A canonical finite prefix

s1 r1

a c e

r2s2

b d f

r3s3

c

s2

s3

λ

1

γ δ

3 2 4

5 6

θ

8 9 7

ξνµ

βs1 r1

c

bea

s1 r1

r2 ι κs2 r3

s3s1 r2

α

r2s2

ζ ε η

d

a fb
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Reducing reachability to SAT or ILP

c

s2

s3

λ

1

γ δ

3 2 4

5 6

θ

8 9 7

ξνµ

βs1 r1

c

bea

s1 r1

r2 ι κs2 r3

s3s1 r2

α

r2s2

ζ ε η

d

a fb

p φp

α α↔ ¬e1
β β ↔ ¬e1
γ ((e3 ∨ e4)→ e1) ∧ ¬(e3 ∧ e4)∧

(γ ↔ (e1 ∧ ¬e3 ∧ ¬e4))
δ ((e2 ∨ e6)→ e1) ∧ ¬(e2 ∧ e6)∧

(δ ↔ (e1 ∧ ¬e2 ∧ ¬e6))
ε ε↔ e2
ζ ζ ↔ e3
η (e6→ e4) ∧ (η ↔ (e4 ∧ ¬e6))
κ ((e8 ∨ e9)→ e6) ∧ ¬(e8 ∧ e9)∧

(κ↔ (e6 ∧ ¬e8 ∧ ¬e9))
λ λ↔ e6
µ µ↔ e8
ν ν ↔ e9
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SAT encoding
I A conjunction of all the formulas for the conditions gives a

formula encoding all reachable configurations of the prefix
I It is easy to project this on the markings of the original net

by introducing variables for the original places of the net
and adding to the formula a conjunction for each place of
the original net:

s1 ↔ (α ∨ ζ ∨ µ)
...

...
r2 ↔ δ

I Now a global state marking both s1 and r2 can be reached
if after conjuncting formula with (s1 ∧ r2) has a satisfying
truth assignment

I Deadlock detection is just another reachability property
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Deadlock checking running time
Unfolding much slower than deadlock detection (old results but
the trend is still the same). Fastest tools currently are PUnf
(unfolding) and CLP (reachability) by Victor Khomenko

Problem(size) DL UnfERVunfold DCmcsmodels -n
DPD(5) N 0.1 0.1
DPD(6) N 0.5 0.3
DPD(7) N 2.2 0.8
DPH(5) N 0.2 0.1
DPH(6) N 4.1 1.3
DPH(7) N 101.7 11.3
ELEVATOR(2) Y 0.1 0.0
ELEVATOR(3) Y 1.3 0.2
ELEVATOR(4) Y 27.4 1.0
FURNACE(1) N 0.0 0.0
FURNACE(2) N 0.4 0.1
FURNACE(3) N 14.3 1.1
RING(7) N 0.1 0.0
RING(9) N 0.2 0.1
RW(9) N 0.5 0.2
RW(12) N 25.3 2.2
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Part II: Advanced unfoldings - Research issues

I This part of the tutorial will cover the advanced unfolding
based model checking research issues

I This is aimed at students having a good basic knowledge
of unfoldings as well as at researcher looking for open
problems with unfoldings of products/1-safe Petri nets

I We discuss advanced topics on unfoldings to attract
interest in open research problems in the area

I Disclaimer: This is a highly personal view of unfoldings
research directions
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Minimizing canonical prefixes
Note that in the proof on slide 74 the corresponding
configuration w ′1 did not have to be a local configuration. Out of
curiosity, we can try and see what happens to canonical prefix
size if we allow for non-local corresponding configurations, thus
“minimizing prefixes” as allowed by the canonical prefix theory
(Heljanko: Minimizing finite complete prefixes)

Original Prefix Minimal Prefix Time (s)
Problem(size) |B| |E| #c |B| |E| #c Unf Minsmo
BDS(1) 12310 6330 3701 3167 1660 832 2.5 11.6
DPD(6) 3786 1892 499 1282 640 258 0.5 3.6
DPD(7) 8630 4314 1129 2488 1243 502 2.2 14.6
DPH(6) 14590 7289 3407 3338 1663 636 4.1 17.0
DPH(7) 74558 37272 19207 7840 3913 1580 101.4 117.9
FURNACE(2) 4573 2767 1750 1966 1168 688 0.4 4.6
FURNACE(3) 30820 18563 12207 10177 5995 3710 14.3 162.3
HART(75) 529 302 1 529 302 1 0.1 2.3
HART(100) 704 402 1 704 402 1 0.2 4.0
DAC(12) 260 146 0 128 80 11 0.0 0.1
DAC(15) 371 206 0 161 101 14 0.0 0.1
SENT(75) 533 266 40 440 207 23 0.1 0.8
SENT(100) 608 291 40 515 232 23 0.1 1.1
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Complete finite prefixes
I We can define the prefix “completeness” fully semantically

as was classically done before the canonical
prefixes/search procedures ways of defining prefixes. This
leads to a different definition of what prefixes are!
A prefix is complete if it is both marking and transition
complete:

I A prefix is marking complete if every reachable global state
is represented by a configuration of the prefix

I A prefix is transition complete if every enabled global
transition exists as a (non-terminal or terminal) event of the
prefix

I It is unknown whether prefixes generated by search
procedures have structural properties that would make
algorithms working on them easier than algorithms working
on complete prefixes as defined above!
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Beyond reachability properties
I Intuition: Prefixes are best suited for reachability properties
I Safety properties are also easily handled by prefixes if the

property only needs to observe the firing of a small number
of visible transitions V ⊆ T

I The strategy: Compile the negation of a safety property ψ
to a finite state automaton A¬ψ

I Add the automaton A¬ψ as a new component that
observes the firing of all transition in V by synchronizing
with all of them (sequentializing the firing of transitions in V)

I If a condition labelled with the final state of the observer
automaton is added to the prefix, the safety property is
violated

I Note: If V = T the prefix is guaranteed to be as large as
the state space of the system!
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Model checking without observers

I Linear time temporal logic properties can also be model
checked with unfoldings but with significant complications

I We first want to show that using an observer component is
probably a good idea for any nested reachability questions

I To demonstrate the complications, we will use the simplest
possible nested reachability temporal logic question and
we will try to avoid using any observer components
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Model checking nested reachability
I Let us first consider a simple question: Does the system

have an execution which is a witness for the CTL formula:
EF (q0 ∧ EF (qF )) where q0 and qF are local states of a
component

I This formula holds iff the system has an execution to a
global state where q0 holds, and from there some global
state where qF holds can be reached

I Note: The negation of this safety property can be encoded
using a 3-state observer component shown below:

o,{q0} o,{q0},{qF},{qF,q0}o,{qF}

s1s0 s2
{q0} {qF},{qF,q0}

{qF,q0}
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Example: A binary counter for three bits
We model random initialization at asynchronous circuit power
on for all bits and carries of an asynchronous three bit counter.

s(ib1)

t(ib1h) t(ib1l)

t(b1lh) s(c1)s(b1l)t(b1hl)s(b1h)

s(ib0) s(ic)

t(ib0l)t(ib0h)

t(b0lh) s(c0)s(b0l)

t(ic0)

t(ic1)
t(b0hl)s(b0h)

s(ib2)

t(ib2h) t(ib2l)

t(b2lh) s(c2)s(b2l)t(b2hl)s(b2h)

t(ic2)
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Some observations from the counter
I The initialization is extremely parallel→ should be good for

unfolding based methods. Also max in-degree is small
I All the reachable states of the counter system can be

reached using some subset of the random initialization
transitions enabled in the initial state!

I Therefore, all events on the “second level of the unfolding”
can be made into cut-off events (using the semantic notion
of prefix completeness!) without making the prefix
incomplete.

I In other words: All information about the reachable states
and enabled transition of the original net remains in this
compact prefix.

I Note: We are cheating a bit here, no practical prefix
generation algorithm has been able to create this compact
prefix allowed by the semantic definition of completeness.
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Compact prefix for three bit binary counter
Here we exploit the semantic definition of prefix completeness!

b(ib0)

b(ib1)

b(ic)

e(ib0l)

e(ib1h) e(ib1l)

e(ib0h)

e(b0lh)

e(b1lh)

b(c0)b(b0l)

e(ic0)

e(ic1)

b(c1)b(b1l)e(b1hl)

e(b0hl)

b(b1h)

b(b0h)

b(b0l.2) b(c1.2) b(b0h.2) b(c0.2)

b(b1l.2) b(b1h.2) b(c0.3)b(c2.2)

b(ib2)

e(ib2h) e(ib2l)

b(b2h) b(b2l)e(b2hl)

b(b2l.2) b(b2h.2) b(c0.5)b(c0.4)

e(b2lh) b(c2)

e(ic2)
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Compact prefix vs. search procedure prefix sizes

Results for counter systems of different numbers of bits.

System Reachability Graph McMillan/ERV Prefix Compact Prefix
Size |S| |T | Markings Arcs |B| |E | #c |E |−#c |B| |E | #c |E |−#c

2 9 10 27 66 43 23 7 16 17 10 4 6
3 13 15 108 351 105 55 16 39 25 15 6 9
4 17 20 405 1620 225 116 30 86 33 20 8 12
5 21 25 1458 6885 453 231 50 181 41 25 10 15
6 25 30 5103 27702 887 449 77 372 49 30 12 18
7 29 35 17496 107163 1721 867 112 755 57 35 14 21
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More observations

I The prefix is of same size as the original 1-safe net system
I Any asynchronous circuit model with parallel random

initialization will have a similar compact prefix
I Now let us use another system in place of the binary

counter
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Turing machines with linearly bounded tape

I A Turing machine with a linearly bounded tape can be
simulated by a 1-safe Petri net which is only polynomially
larger

I Thus any question on such Turing machines can be
reduced to a question on 1-safe Petri nets that are at most
polynomially larger

I For example, the following question is PSPACE-complete:
Does Turing machine with linearly bounded tape accept on
some initial tape contents and initial read head position?
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Turing machine simulator net (black box)

t(n(a,c1))

t(nc2)

s(nc1)

t(n(b,c1)) t(n(#,c2))

t(n(a,c2))

t(n(#,c1))

tn(q1)

Random initialization

s(nq)

tn(q0)

s(nc2)

t(n(b,c2))tn(q2)

s(nc)

t(nc1)

s(q0)

s(q2)

s(q1)

s(#,c2)

s(a,c2)

s(#,c1)

s(a,c1)

s(b,c1)

s(b,c2)

Turing machine simulator Petri net

s(c1) s(c2)
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Adding random initialization to the Turing machine

Turing machine simulator Petri net

Random initialization

s(c1) s(c2)

s(q0)

s(nq)

s(q2)

s(q1)

tn(q1)

tn(q0)

s(#,c2)

s(a,c2)

s(nc2)

t(n(#,c2)) t(n(b,c2))

t(n(a,c2))

s(#,c1)

s(a,c1)

s(b,c1)

s(nc1)

t(n(#,c1)) t(n(b,c1))

t(n(a,c1))

s(b,c2)

tn(q2)

t(nc2)

s(nc)

t(nc1)
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Observations

I In a complete prefix all the Turing machine simulator
transitions are terminal (cut-off) events

I A fully random initialization is not what is wanted, as then
the final state qF of a Turing machine can always be
reached, i.e., the simulation “cheats” by going directly to
the accepting state of the Turing machine.

I The “non-cheating” simulations of the Turing machine are
exactly those where the execution satisfies the CTL
formula: EF (q0 ∧ EF (qF )), where q0 is the correct initial
state of the Turing machine.
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Model checking compact prefixes is PSPACE hard

I Because the complete prefix is also of polynomial size in
the size of the Turing machine we have:
Model checking of nested temporal properties is
PSPACE-complete in the size of the complete prefix!
(Recall, we are using the semantic definition of prefix
completeness from slide 97!)

I Open research question:
Does this PSPACE-completeness result also hold for
prefixes created by search procedures?1

1As defined on slide 38 combined with any adequate order for the search
strategy.
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Adding an observer

If we would add the following observer component to the prefix,
the problem would become a local state reachability question of
the state s2 of the observer, and thus the problem would
become linear in the size of the prefix:

o,{q0} o,{q0},{qF},{qF,q0}o,{qF}

s1s0 s2
{q0} {qF},{qF,q0}

{qF,q0}

Thus sequentializing very few transitions of the original net can
create exponential size changes in the compact prefix!
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Second open problem

Formulation of another problem of very similar nature:
I Given a prefix generated by a search procedure2, decide if

the original product/1-safe net can execute some infinite
sequence of global transitions.

I Is this problem PSPACE-complete in the size of the prefix?

I My conjecture: Yes, it is. (Many colleagues disagree. . .)

2As defined on slide 38 combined with any adequate order for the search
strategy.
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Model checking linear temporal logic (LTL)

A quick summary on how to do LTL model checking with
unfoldings starting from a product A

I Restrict to LTL without the next-time operator (LTL-X):
Otherwise the need to synchronize with all transitions
leads to no concurrency and no savings from unfoldings

I Translate the negation of the LTL-X property ψ to Büchi
automaton A¬ψ

I Find the set of visible transition V that can change the
value of atomic propositions, synchronize A¬ψ as an
observer component with all transitions in V, call the
resulting product P

I Detect the “bad infinite behaviours” of A that are executions
violating ψ using P as input to the unfolding procedure
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Bad infinite behaviours of A
There are two classes of bad infinite behaviours of A
(1) The bad behaviour executes infinitely many visible

transitions in V: This reduces to the repeated executability
problem for a subset of transitions R of P. (Basically all
transition of A¬ψ that go to an accepting Büchi state.)

(2) The bad behaviour executes only finitely many visible
transitions in V: This reduces to the livelock problem for a
subset of transitions L of P and a set of visible transitions
V. (One needs to analyze the structure of A¬ψ to identify
the transitions after which a livelock of invisible transitions
would result in bad infinite behaviour.)

This is basically the temporal testers approach of Antti Valmari
but used in combination with unfoldings. See the book for
details.
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DFS and unfoldings do not mix well
I The repeated executability problem is basically the

generalization of the Büchi emptiness checking problem for
transition systems (automata)

I The Büchi emptiness checking problem can be solved in
linear time for automata. However, all linear time
algorithms are depth-first-search (DFS) based

I DFS based search strategies are incompatible with the
search procedure on slide 38 (result by Esparza, Kanade,
and Schwoon). Thus non-DFS based emptiness checking
algorithm is needed!

I Going to non-DFS algorithms makes the size of the prefix
for the repeated executability problem of size O(n2), where
n is the number of reachable states of the system3

3Doing a DFS compatible unfolding procedure is potentially possible by
using a larger than O(n2) prefix. We do not consider this a viable possibility.
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Third open problem

I Open problem: Come up with a unfolding based LTL model
checker with better than O(n2) prefix size, where the
complexity of the algorithm run on the prefix is easier than
PSPACE-hard in the size of the prefix
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A search procedure for repeated executability

This procedure has a “BFS” emptiness checker flavor to it, the
livelock problem has a similar algorithmic solution:

I Given an event e, let #ge be the number of occurrences
of g in the past of e.

I Search scheme:
An event e is a terminal if there is an event e′ ≺ e leading
to the same state as e and such that either
(1) e′ is a causal predecessor of e, or
(2) e is not a causal predecessor of e, and #ge′ ≥ #ge.

I A terminal is successful if it is of type (1) and some event
between e′ and e is labelled by g.

I Search strategy: any adequate strategy.
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Example: repeated executability of 〈t1, ε〉
s1

t1

s2

〈t3, u2〉

s3

t2 u1

r2

〈t4, u2〉

s4

t5

t1

s2 s3

t2

r3 s4s4

r3 s4

u3

r1

u1

r2

〈t3, u2〉

s1

r3

r3

r1

〈t4, u2〉

1 2 3

54

6 7

1098

11 12
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Tutorial summary
I We have introduced unfoldings, a symbolic method to

compactly represent the state space of the system using:
Esparza, J. and Heljanko, K.: Unfoldings –
A Partial-Order Approach to Model Checking.
EATCS Monographs in Theoretical Computer Science,
Springer-Verlag, ISBN 978-3-540-77425-9, 172 p.

I The book bases its theory on a system model that can
describe any synchronization of transition systems
(automata)

I The unfolding theory of the book is built on top of the
theory of Mazurkiewicz traces

I We show the algorithmic details of unfolding procedures
and reachability checking with based on SAT solvers

I We discuss advanced topics on unfoldings to attract
interest in open research problems in the area


