
Testing Multithreaded Programs with DPOR
Keijo Heljanko, Olli Saarikivi, Kari Kähkönen
Helsinki Institute for Computer Science (HIIT) and
Department of Computer Science and Engineering,
Aalto University
{ Keijo.Heljanko, Olli.Saarikivi, Kari.Kahkonen}@aalto.fi

9th of June 2014

HSST 2014 - Testing with DPOR
June 7, 2014

2/18

Introduction

I Testing programs is hard due to state space explosion.

I Some solutions:
I Single threaded with inputs: dynamic symbolic execution

(DSE)
I Multithreaded with no inputs: partial order reduction.
I Multithreaded with inputs: combination of both.

HSST 2014 - Testing with DPOR
June 7, 2014

3/18

Topics of this Slideset

1. Introduction to testing multithreaded programs and partial
order reduction

2. Our contributions in the ACSD 2012 paper:
Saarikivi, O., Kähkönen, K., and Heljanko, K.: Improving
Dynamic Partial Order Reductions for Concolic Testing:

I Our improvement to dynamic partial order reduction
(DPOR)

I How to combine DPOR with dynamic symbolic execution

I Our implementation and experiments

HSST 2014 - Testing with DPOR
June 7, 2014

4/18

Testing multithreaded programs

I Behavior is affected by schedule → we must be able to
control scheduling.

I Scheduling can be done on the level of visible operations,
which are operations that can affect other threads.

I In our approach an execution tree formed of the scheduling
decisions is explored.

I Explore the execution tree by repeatedly exploring
alternate interleavings.

HSST 2014 - Testing with DPOR
June 7, 2014

5/18

Example: Exploring execution trees

I Globals:

i n t a = 1;

I Thread 1:

i n t m = a ;
a = 2;

I Thread 2:

i n t t = a ;

I Final state:
m==1

t==1

a==2

a = 2

t = a a = 2

m = a t = a

HSST 2014 - Testing with DPOR
June 7, 2014

6/18

Example: Exploring execution trees

I Globals:

i n t a = 1;

I Thread 1:

i n t m = a ;
a = 2;

I Thread 2:

i n t t = a ;

I Final state:
m==1

t==2

a==2

a = 2

t = a

t = a

a = 2

m = a t = a

HSST 2014 - Testing with DPOR
June 7, 2014

7/18

Example: Exploring execution trees

I Globals:

i n t a = 1;

I Thread 1:

i n t m = a ;
a = 2;

I Thread 2:

i n t t = a ;

I Final state:
m==1

t==1

a==2

a = 2

t = a

t = a

a = 2

m = a

a = 2

m = a

t = a

HSST 2014 - Testing with DPOR
June 7, 2014

8/18

Partial order reduction

I In this work we consider the case of finding deadlocks and
assertion errors.

I For some visible operations the order of execution doesn’t
matter.

I Partial order reduction methods exploit these
independencies to reduce the amount of interleavings
explored.

HSST 2014 - Testing with DPOR
June 7, 2014

9/18

DPOR

I The dynamic partial order reduction (DPOR) algorithm by
Flanagan and Godefroid (2005) calculates what additional
interleavings need to be explored from the history of the
current execution.

I Once DPOR has fully explored the subtree from a state it
will have explored a persistent set of operations from that
state.

I When a race condition is identified during execution, a
backtracking point is added to explore the alternate
schedule later.

I Backtracking points are explored until no unexplored ones
remain.

HSST 2014 - Testing with DPOR
June 7, 2014

10/18

Identifying backtracking points

I DPOR tracks the causal relationships of visible operations
for identifying backtracking points.

I Our implementation uses vector clocks for tracking the
causality.

I Also last accesses to communication objects (COs) are
tracked.

I A backtracking point is added if:
1. A thread’s next operation uses a previously accessed CO,

and
2. the two visible operations are concurrent.

HSST 2014 - Testing with DPOR
June 7, 2014

11/18

DPOR and concurrent reads

I DPOR uses vector clocks
to detect independence of
operations

I Original DPOR does not
exploit the independence
of multiple reads on the
same shared variable.

I In the previous example
the original DPOR would
not have achieved any
reduction.

a = 2

t = a a = 2

m = a t = a

HSST 2014 - Testing with DPOR
June 7, 2014

12/18

Our modification to DPOR

I Extends DPOR to track the
causal structure of reads
and writes.

I We have refined the vector
clock operations to
implement the tracking.

I When identifying
backtracking points:

I For reads we only
consider the previous
write operation.

I For writes all reads up to
the previous write are
examined.

a = 2

t = a a = 2

m = a

Unnecessary

t = a

HSST 2014 - Testing with DPOR
June 7, 2014

13/18

Dynamic Symbolic Execution
I Globals:

i n t a = 1;
i n t b = inpu t ;

I Code:

i n t m = a ;
i f (b == 13) {

a = 2;
}

I First random execution with b = 109 on
the right.

I Constraint from first execution:
¬(b = 13)

I Solve new inputs with an SMT solver.

b!=13 b==13

HSST 2014 - Testing with DPOR
June 7, 2014

14/18

Combining the DPOR and DSE

I Globals:

i n t a = 1;
i n t b = inpu t ;

I Thread 1:

i n t m = a ;
i f (b == 13) {

a = 2;
}

I Thread 2:

i n t t = a ;

t=a

b!=13

a = 2

t = a

t = a

a = 2

b==13

m = a

b!=13

a = 2

b==13

m = a

t = a

HSST 2014 - Testing with DPOR
June 7, 2014

15/18

About our tool

I The LIME Concolic Tester (LCT) is a tool that uses a
client-server model to distribute work to multiple computers
over a network.

I Open source and available for download at:
http://www.tcs.hut.fi/Software/lime/

I We have also implemented sleep sets in our tool.

I Further details on how DPOR and sleep sets were
implemented in the client-server model with multiple
concurrent clients are available in our paper.

http://www.tcs.hut.fi/Software/lime/

HSST 2014 - Testing with DPOR
June 7, 2014

16/18

Experiments

I We have evaluated our modified DPOR against unmodified
DPOR and the “race detection and flipping algorithm” of
jCUTE by Koushik Sen and Gul Agha.

I The reduction achieved by DPOR depends on the first
random schedules explored. We report the average of
several independent measurements.

I For our modified DPOR the effect of using sleep sets was
also evaluated.

HSST 2014 - Testing with DPOR
June 7, 2014

17/18

Experiments cont.

Number of test executions to achieve path coverage

Program DPOR DPOR-CR DPOR-CR,
sleep sets

jCUTE

Indexer (12) 8614.6 154 27 8
Indexer (13) > 10000 > 10000 722.4 343
File System (14) 6.8 3.2 2.6 2
File System (16) 568.4 26.8 19.5 31
File System (18) > 10000 250.2 145.8 2026
Parallel Pi (3) > 10000 3217.8 19.2 6
Parallel Pi (5) > 10000 > 10000 1220.6 120
Bounded Buffer 64.4 67.2 16 8
Sync Queue > 10000 > 10000 9 N/A

Numbers for DPOR columns are averages of 5 separate measurements.

HSST 2014 - Testing with DPOR
June 7, 2014

18/18

Conclusion

I We have modified the DPOR algorithm to exploit the
commutativity of read operations.

I We have implemented the modified DPOR algorithm with
sleep sets in our testing tool LCT, an open source DSE tool
designed for distributed use.

I Our modifications to DPOR allow it to achieve competitive
amounts of reduction.

