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Abstract. In this work, novel symbolic step encodings of the transition
relation for object based communicating state machines are presented.
This class of systems is tailored to capture the essential data manipu-
lation features of UML state machines when enriched with a Java-like
object oriented action language. The main contribution of the work is
the generalization of the ∃-step semantics approach, which Rintanen has
used for improving the efficiency of SAT based AI planning, to a much
more complex class of systems. Furthermore, the approach is extended
to employ a dynamic notion of independence. To evaluate the encodings,
UML state machine models are automatically translated into NuSMV
models and then symbolically model checked with NuSMV. Especially
in bounded model checking (BMC), the ∃-step semantics often signif-
icantly outperforms the traditional interleaving semantics without any
substantial blowup in the BMC encoding as a SAT formula.

1 Introduction

This paper describes a method that allows UML state machine models en-
riched with a Java-like object oriented action language to be efficiently model
checked with symbolic model checking techniques. We describe the theoretical
background of a tool that encodes the transition relation of these object based
communicating state machines in the NuSMV [1] model checker input language
in a novel way that, in particular, makes the search for short counterexamples
competitive with the state-of-the-art explicit state model checker Spin [2].

The model checking approach our encoding is best suited for is bounded
model checking (BMC) [3] that has been introduced as an alternative to binary
decisions diagrams (BDDs) to implement symbolic model checking. The main
contributions of our work are symbolic step semantics encodings of the transition
relation for object based communicating state machines. Similarly to partial
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order reduction techniques such as stubborn, ample, persistent, or sleep sets for
explicit state model checking (see e.g., [4]) the idea is to exploit the concurrency
available in the analyzed system to make the model checking for it more efficient.
The main idea in the above mentioned partial order reduction methods is to try
to generate a reduced state space of the system by removing some of the edges
of the state space while still preserving the property (such as the existence of a
deadlock state) being verified. However, the considerations for BMC are usually
quite different from explicit state model checking. Instead of removing edges
from the state space trying to minimize the size of the reduced state space,
the idea here is to try to minimize the bound needed to reach each state of the
system. Our approach will not remove any edges but will instead add a number of
“shortcut edges” to the state space of the analyzed system, intuitively executing
several actions at the same time step, as allowed by the concurrency of the system
being analyzed. The hope is that by making more states reachable with smaller
bounds, the worst case exponential behavior of the bounded model checker wrt.
the bound k can be alleviated by allowing bugs to be found with smaller values
of k. The decrease in the bound k needs of course to be balanced against the size
of the transition relation encoding as well as the efficiency of the SAT checker
in solving the generated BMC instances.

As the system model we consider object based communicating state ma-
chines, a model tailored to capture the essential data manipulation features of
UML state machines when enriched with a Java-like object oriented action lan-
guage. The work aims at analyzing object oriented data communications protocol
software designed using UML state machines, see [5]. The model checking tool
we have developed can also handle other aspects of UML state machines not
covered in this paper for the sake of clarity, see Sect. 4 for details.

Our encoding is a significant generalization of the approach of Rintanen [6]
on AI planning, where the notion of ∃-step semantics for planning problems was
first systematically employed. There are the following substantial differences to
this earlier work. First of all, our setup employs a UML state machine based
model of concurrency enriched with asynchronous message passing and full ob-
ject based data handling features such as dynamic object references. We show
how the ∃-step semantics can still be efficiently encoded with a full Java-like ac-
tion language. The main challenge is indeed the handling of the complex action
language parts of the encoding, something that is non-existent in the AI plan-
ning domain. Secondly, our approach also introduces the novel use of a dynamic
dependency relation to optimize the encoding even further. This allows for ex-
ample concurrent attribute access of different instances of the same object at
the same time step. The approach of Rintanen is based on a static dependency
relation.

Other Related Work. In the area of SAT based BMC, Heljanko was the first
to consider exploiting the concurrency in encoding the transition relation [7].
That paper considers BMC for 1-bounded Petri nets using the ∀-step semantics
(the classical Petri net step semantics, see e.g., [8]). The intuitive idea is that a set



of actions can be executed at the same time step in ∀-step semantics if they can
be executed in all possible orders. In the area of SAT based AI planning already
the early papers of Kautz and Selman used ∀-step semantics [9] (see also [6]).
The work of Dimopoulos et al. was the first one to use an ∃-step semantics like
approach in hand optimized planning encodings of [10], the idea of which was
later formalized and automated in the SAT based planning system of Rintanen
et al. [6, 11]. On the BMC side, Ogata et al. [12] and Jussila et al. [13, 14] both
show other approaches to obtaining an optimized transition relation encoding
for 1-bounded Petri nets and labeled transition systems (LTSs), respectively. A
nice overview of many optimized transition relation encodings for LTSs is the
doctoral thesis of Jussila [15].

2 Systems and Semantics

In this paper we consider a class of systems which are composed of a finite
set of asynchronously executing objects communicating with each other through
message passing and data attribute access. The behavior of each object is defined
by a state machine. For instance, Figs. 1(a)–(c) show a part of a simple heart beat
monitor system described in UML state machines with Java-like action language
annotations. The dynamic behavior of a system is captured by its interleaving
state space

M = 〈C, cinit, ∆〉,

where C is the set of all global configurations, cinit ∈ C is an initial global configu-
ration, and the transition relation ∆ ⊆ C × A × C describes how configurations
may evolve to others: 〈c, a, c′〉 ∈ ∆ iff the configuration c can change to c′ by
executing an action a ∈ A. As an example, Fig. 1(d) shows a part of the state
space (ignore the dashed arrow for a while) of the system in Figs. 1(a)–(c); if the
action 〈o1, t22〉 (corresponding to object o1 firing its transition t22) is executed
in configuration c1, it changes to c2. We say that a configuration c′′ is reachable
from a configuration c if there exist a1, . . . , ak and c0, c1, . . . , ck for some k ∈ N

such that (i) c = c0, (ii) ∀1 ≤ i ≤ k : 〈ci−1, ai, ci〉 ∈ ∆, and (iii) ck = c′′.
The basic idea in ∃-step semantics exploited in this paper is to augment

the state space with “shortcut edges” so that, under certain conditions, several
actions can be executed “at the same time step”. This is formalized in the
definition below.

Definition 1. The ∃-step state space corresponding to the interleaving state
space M = 〈C, cinit, ∆〉 is the tuple

M∃ = 〈C, cinit, ∆∃〉

where the transition relation ∆∃ ⊆ C × 2A × C contains a step 〈c, S, c′〉 iff

1. the set of actions S = {a1, . . . , ak} is finite and non-empty, and
2. there is a total ordering a1 ≺ · · · ≺ ak of S and configurations c0, c1, . . . , ck ∈

C such that (i) c = c0, (ii) ∀1 ≤ i ≤ k : 〈ci−1, ai, ci〉 ∈ ∆, and (iii) ck = c′.
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Fig. 1. A part of a simple heart beat monitor system

Continuing the running example, the dashed arrow in Fig. 1(d) denotes the
step 〈c1, S, c4〉 with S = {〈o1, t22〉, 〈o4, t7〉}. The actions in the step can be exe-
cuted in the order 〈o4, t7〉 ≺ 〈o1, t22〉 but not in 〈o1, t22〉 ≺ 〈o4, t7〉 as executing
〈o1, t22〉 disables 〈o4, t7〉.

By definition it holds that the ∃-step state space includes the interleaving
state space in the sense that 〈c, a, c′〉 ∈ ∆ implies that the unit step 〈c, {a}, c′〉
is in ∆∃. Conversely, if 〈c, S, c′〉 belongs to ∆∃, then there is a finite sequence of
configurations leading from c to c′ in the interleaving state space. Therefore, the
set of configurations reachable from a given configuration is equal for the inter-
leaving and the ∃-step state space. Note that the definition of ∃-step semantics
is a purely semantic one; in the symbolic encoding given later, not all possible
non-unit steps will be considered but only those that follow conveniently without
complicating and growing the size of the encoding too much w.r.t. the one for
the interleaving semantics. For example, similarly to [6], we require all actions
of a step to be enabled already in the current configuration c = c0. However,
all unit steps will be included in order to preserve the soundness and complete-
ness of the resulting encoding for the purpose of checking the reachability of
desired/unwanted configurations. For complexity results on the semantic defini-



tion of ∃-step semantics in the AI planning domain, see [6], which also similarly
soundly underapproximates the ∃-step semantics in its implementation.

2.1 Object Based State Machine Models

We next give a brief description of the class of systems analyzed in this paper.
Refer to the technical report version of this paper [16] for the formal definitions.

We consider systems composed of a fixed and finite set O of objects. Each
object is an instance of a class, and each class is composed of a finite set of typed
attributes and a state machine. A state machine consists of a finite set of states,
one of which is the initial state, and a finite set of transitions. Each transition has
a source state and a target state, a trigger, a guard, which is an action language
expression of Boolean type, and an effect, which is a list of action language
statements. A trigger is of the form sig(x1, . . . , xk), where sig is a signal from a
finite set Sigs , and the xi are attributes of the class owning the state machine.
The number and types of the xi must match the predefined parameter types of
the signal. A special signal δ ∈ Sigs with no parameters models spontaneously
triggered transitions. For example, state measuring is both the source and the
target of transition t22 in Fig. 1(b). The trigger of t22 is tick(bps), and the guard
of t22 is implicitly true.

Objects can send and receive messages of the form sig [v1, . . . , vk], where
sig 6= δ is a signal and the values vi are message arguments. The number and
types of arguments correspond to the parameter types of sig . We denote the
set of all messages by Msgs . During execution, messages sent to an object are
placed in a queue, and an object can consume a message from its queue either by
firing a transition triggered by the corresponding signal or by implicit consump-
tion, which means discarding a message that is not triggering any transitions.
Spontaneously triggered transitions are fired without consuming messages.

A global configuration c of the system consists of, for each object o, (i) the
currently active state of o, which is one of the states in the state machine of the
class of o, (ii) the value of the instance o.x of each attribute x of the class of o,
and (iii) the contents of the input queue of o, which is a sequence of messages.
We will call the frontmost (oldest) message in the queue the current message
of o. The initial configuration cinit is such that all objects are in their initial
states and all input queues are empty.

The actions of the system are the transition instances 〈o, t〉 and the implicit
consumption actions 〈o, impcons〉, where o is an object and t is a transition
in the state machine of o. A transition instance 〈o, t〉 is enabled in a global
configuration c if (i) the source state of t is active in o, (ii) the guard of t

evaluates to true in the context of o, and (iii) either the trigger of t is δ() or o

has a current message whose signal matches the trigger signal of t. Of the global
configurations in Fig. 1(d), the transition instance 〈o4, t6〉 is only enabled in c2,
in which the current message of o4 is refresh() and o2.inval ≤ 2.

An enabled action can be executed in a global configuration. Firing transition
t in object o, or more formally, executing an enabled transition instance 〈o, t〉 in
a global configuration c, leads to a new global configuration c′ that is obtained



from c by (i) assigning the argument values of the current message of o to the
attributes mentioned in the trigger of t, (ii) removing the current message from
the input queue of o, (iii) executing the effect of t in the context of o, and
(iv) making the target of t the new active state of o. If t is a spontaneously
triggered transition, i.e. the trigger of t is δ(), then points (i) and (ii) above are
not performed.

An implicit consumption action 〈o, impcons〉 is enabled if (i) the input queue
of o is not empty, and (ii) there is no enabled transition instance 〈o, t〉 such that
the trigger of t is not δ(). Executing an enabled implicit consumption action
〈o, impcons〉 in a global configuration c leads to a global configuration c′ that
is equal to c except that the current message of o is removed.

The interleaving state space is now defined as the tuple M = 〈C, cinit, ∆〉,
where C is the set of all global configurations, cinit ∈ C is the initial configuration,
and the transition relation ∆ ⊆ C × A × C consists of the triples 〈c, a, c′〉 such
that the transition instance or implicit consumption action a is enabled in c and
executing a in c leads to c′ by the above rules.

Action Language. In the sequel, we fix a simple Java-based action language [17]
for expressing the guards and effects of transitions. The type system consists of
the Boolean type B, the 32-bit signed integer type, and for each class C the ref-
erence type TC with domain {o ∈ O | class of o is C}∪{null}. As in Java, static
typing rules apply. The supported expressions are: (i) literals true, false, null,
and 32-bit signed integer literals, (ii) the this reference, (iii) attribute access
expressions of the form refexpr.x, where the type of refexpr is TC and x is an
attribute of class C, and (iv) infix expressions leftexpr op rightexpr , where op
is one of +, -, *, /, %, &, ^, |, >, <, >=, <=, ==, or !=, with Java semantics [18].
The only data accessible to expressions is attribute values reachable by following
references. In particular, an expression cannot read the active state or the input
queue of any object. An unqualified attribute name x is shorthand for this.x.

The kinds of statements of the language are: (i) assignments of the form
refexpr.x = rhsexpr;, (ii) send statements of the form send sig(arg

1
, . . . , argk)

to targetexpr;. When a send statement is executed, the input queue of the
object referred by targetexpr is appended with the message sig [v1, . . . , vk], where
each vi is the value of arg i, and (iii) assertions of the form assert condexpr;.
We want to check that condexpr is never false when an assertion is executed.

The effect of a transition is an arbitrary list of statements. However, we
require that for each transition t and class C, there is at most one send statement
in the effect of t whose targetexpr has type TC . The reason for this is that the
symbolic encoding relies on the fact that in one step, at most one message is
sent to each object.

Method calls are not directly supported, but a non-recursive call can emu-
lated by either inlining it at the call site or by modeling it as a pair of asyn-
chronous message transmissions, one for the invocation and one for the return.



3 Symbolic Encoding

The encoding of a transition relation is based on constraints involving state
variables, whose valuation represents a global configuration, next-state variables,
whose valuation represents the global configuration after a step, input variables
whose values are only limited by the constraints, and derived functions that are
defined over the variables. The basic idea is that all constraints are satisfied if
and only if there is a step (in a subset of ∆∃) from the configuration represented
by the values of state variables to the configuration represented by the next-
state variables. The desired properties of the system are encoded as a set of
invariants that are to be verified using model checking. Many of the variables
and functions have values in the Boolean domain. Non-Boolean variables and
functions have a finite domain and thus can be booleanized to enable the use of
SAT- and BDD-based techniques.

To keep the state space finite, we restrict the analysis to bounded global
configurations, setting an upper limit qsize to the number of messages in any
queue. Let M = 〈C, cinit, ∆〉 be an interleaving state space, and let CB be the
set of configurations c ∈ C such that the length of the input queue of o in c is
at most qsize for all objects o. The bounded interleaving state space is MB =
〈CB , cinit, ∆

B〉, where ∆B =
{

〈c, a, c′〉 ∈ ∆ | c, c′ ∈ CB
}

. As the semantics of
Sect. 2.1 allows queues to grow indefinitely, by this restriction we effectively
disregard all executions of the system where any queue at any point contains
more than qsize messages. Consequently, some reachable configurations of the
system may be omitted in the analysis. Whether or not such omission occurs
could be detected by adding a suitable invariant to check, and if needed, qsize

could be incremented to cover a larger set of the reachable configurations.

Fixed Ordering of Actions in Steps. We fix an arbitrary total order ≺ of
the set of actions A. The intuitive idea is that instead of considering all possible
orderings of actions as the ∃-step semantic definition allows, ≺ gives us one
static order in which the executability of actions in a step will be guaranteed.
To do this, the encoding must capture the state changes done by each action,
and disallow all steps where a value modified by some action is (explicitly or
implicitly) read by an action that is greater wrt. the order ≺. By doing this,
we ensure that all of the ∃-steps allowed by the encoding are executable in the
order given by ≺.

We will thus get a different encoding for each choice of ≺. The only require-
ment is that if o1, o2 ∈ O and t2 is a transition in the state machine of o2, then
〈o1, impcons〉 ≺ 〈o2, t2〉 must hold. In words, all implicit consumption actions
must precede all transition instances in the total order. The reason for this will
be discussed in Sect. 3.4.

The choice of a good total order is an interesting question that we have left
for further study. A set of actions is independent if no action reads any part
of the system state modified by another action. Notice that an independent set
of enabled actions can always be executed in all orders, and thus the ∃-step



semantics always allows a set of independent actions to form an ∃-step for any
selection of the total order ≺.

Step Encoding Overview. At a very coarse level, the encoding of ∃-steps
contains three sets of constraints as follows.

1. For all actions a and all attributes x̂: if a is executed and it writes to x̂, then
the value of x̂ in the next global configuration is equal to the written value
as if a was executed alone.

2. For all attributes x̂: if no executed action writes to x̂, then its value remains
unchanged in the next global configuration.

3. For all actions a− and a, and all attributes x̂: if both a− and a are executed
and a− ≺ a and a− writes to x̂, then a does not read from x̂.

Constraint sets 1 and 2 together correspond to an encoding of parallel execu-
tion of actions. Any non-conflicting set of enabled actions can be executed at the
same time, and the written values are computed independently for each action.
Several actions are allowed to write to the same attribute at the same step, but
only if the value written by each action is the same. For example, if action a1

has the effect o.x = o.y; and action a2 has the effect o.x = o.y + 1;, they
cannot both be executed because there is no next-state value of o.x that satisfies
the constraints. However, the parallel encoding allows the concurrent execution
of a1 together with another action a3 whose effect is o.y = o.x;. Such a step
swaps the values of o.x and o.y. This does not correspond to the sequential
execution of a1 and a3 in either order, and thus we want to rule out non-∃-steps
like this.

For this reason, we add the further constraint set 3 of step constraints. These
ensure that for any two concurrently executed actions a− ≺ a, the action that
is greater w.r.t. the total order does not depend on any values written by the
other action, and thus parallel execution leads to the same global configuration
as executing first a− and then a.

Three Alternative Encodings. We present three different symbolic encod-
ings, namely an interleaving encoding, a static ∃-step encoding and a dynamic
∃-step encoding. All three encodings contain all unit steps in the sense that if
〈c, a, c′〉 ∈ ∆B and the valuations of state and next-state variables represent c

and c′ respectively, then there is a valuation of input variables such that the
constraints are satisfied. Conversely, nothing but ∃-steps that respect the order
≺ are allowed by the encodings. Let MB

∃
= 〈CB , cinit, ∆

B
∃
〉 be the state space

obtained from MB by the definition of ∃-step semantics with the further restric-
tion that the total ordering of the set of actions S in each step (the ordering
in item 2 of Definition 1) respects the fixed order ≺. If the valuation of state
variables represents a bounded configuration c ∈ CB and the constraints are
satisfied, then the valuation of next-state variables represents a bounded config-
uration c′ ∈ CB and there is a set of actions S ⊆ A such that the step 〈c, S, c′〉
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belongs to ∆B
∃

. Furthermore, in the interleaving encoding, S only contains one
action, and thus every step is a unit step.

The definitions of the three encodings overlap for the most part, and the dif-
ferences are stated explicitly. The difference between static and dynamic steps is
that in static steps, whether actions a1 and a2 can be executed concurrently de-
pends only on a1 and a2. In dynamic steps, it also depends on the current global
configuration, in particular, on the values of attributes. Consider the global con-
figuration in Fig. 2(a) consisting of three objects of class Node. Transition t3 is
enabled both in object o11 and in o12. Because the action 〈o11, t3〉 increments
attribute data in o12 and 〈o12, t3〉 increments data in o13, neither action reads
a value written by the other. The dynamic step encoding allows 〈o11, t3〉 and
〈o12, t3〉 to be executed concurrently in this global configuration. However, in
some other global configuration the succ attribute in o11 and o12 might refer to
the same object, so the two actions might read and modify the same attribute. As
a safe statically computed approximation, the static step encoding never allows
executing 〈o11, t3〉 and 〈o12, t3〉 concurrently.

3.1 State Variables

The set of state variables contains three kinds of elements for each object o.

1. Active(o, s), where s is a state in the state machine of o, is true iff s is the
current active state in o.

2. AttrVal(o, x), where x is an attribute of the class of o, determines the current
value of o.x and has the same domain as the type of x.

3. InputQ(o) with domain Msgs0∪· · ·∪Msgsqsize determines the contents of the
input queue of o.

Given a bounded global configuration, the values of state variables can be de-
rived in the obvious way. The corresponding next-state variables are denoted by
next (Active(o, s)), next (AttrVal(o, x)), and next (InputQ(o)), respectively.

3.2 State Machines and Queues

This section gives a rough overview of the encoding of state machine control
logic. A more detailed definition can be found in [16].



The control logic constraints are responsible for ensuring that in the context
of a single object o ∈ O, (i) at most one transition instance or implicit con-
sumption action is executed in one step, (ii) an action is executed only if it is
enabled in the global configuration represented by the state variables, and (iii)
the variables next (Active(o, s)) correctly reflect the active state after the step.

Let o ∈ O be an object. The input variable Dispatch(o) with domain Sigs ∪
{none} determines which message sig [. . .], if any, is being consumed by o. For
each transition t in the state machine of o, the input variable Fire(o, t) determines
whether t is being fired in o. We define the actions S ⊆ A of the current step as
the set consisting of all transition instances 〈o, t〉 such that Fire(o, t) is true, and
all implicit consumption actions 〈o, impcons〉 such that Fire(o, t) is false for all
t but Dispatch(o) 6= none.

For example in the state machine of Fig. 1(c), the next-state variable related
to state showAvgBps is fixed by the constraint next (Active(o, showAvgBps)) ⇔
Fire(o, t8) ∨

(

¬Fire(o, t9) ∧ Active(o, showAvgBps)
)

, and the enabledness check for

the action 〈o, t8〉 is encoded in the constraint Fire(o, t8) ⇔
(

(Dispatch(o) =

fbutton) ∧ Active(o, showBps)
)

.

Object o is scheduled if it is consuming a signal or firing a spontaneously
triggered transition, formalized in the function definition

Scheduled(o) :=
(

Dispatch(o) 6= none
)

. (1)

To rule out an empty step with no actions, we require that at least one object
is scheduled in each step by the constraint

∨

{

Scheduled(o) | o ∈ O
}

. (2)

Furthermore, there are queue constraints ensuring that consumed messages
are removed from the front of the input queue and received messages are added to
the back of the queue. The input variable NewMsg(o) with domain Msgs∪{none}
denotes the message possibly being sent to o. Queue overflows are prevented by
specialized constraints, disallowing transitions into global configurations that are
not in CB .

3.3 Effects and Data

Expressions. All data manipulation in the effects of transitions is based on
evaluating expressions. We define a function Eval(expr ) that gives the value of
expression expr . For clarity, we leave out the context in which the expression
is evaluated; a more rigorous treatment can be found in [16]. Evaluation of
constant and infix expressions is straightforward, given the encodings for all infix
operators. In the context of an object o, the value of Eval(this) is o. Attribute
access expressions of the form refexpr.x̂ are encoded as case switches over all
objects of the type of refexpr . For example, the expression succ.data in Fig. 2(b)



translates in the context of o11 to the formula

Eval(succ.data) := if



















AttrVal(o11, succ) = o11 : AttrVal(o11, data)

AttrVal(o11, succ) = o12 : AttrVal(o12, data)

AttrVal(o11, succ) = o13 : AttrVal(o13, data)

else : 0.

Effects. The effects of transitions can modify the global configuration by assign-
ing values to attributes and by sending messages to objects. For each transition
instance 〈o, t〉, each object ô, and each attribute x̂ of the class of ô, we de-
fine functions Sendo,t(ô) and Writeo,t(ô, x̂) that evaluate to true if the transition
instance is executed and sends a message to ô or assigns to ô.x̂, respectively.
Assignment can occur explicitly by an assignment statement or implicitly by
message argument reception.

These functions are used for determining the next global configuration in the
following way. If the effect of a transition t in the state machine of a class C

contains a send statement send sig(arg1, . . . , argm) to targetexpr;, we add for
each object o of class C and each object ô of the type of targetexpr the constraint

Sendo,t(ô) ⇒
(

NewMsg(ô) = sig [Eval(arg1), . . . , Eval(argm)]
)

, (3)

which fixes the message received by ô in case 〈o, t〉 is executed. Similarly, the
value assigned to ô.x̂ by a transition instance 〈o, t〉 is fixed by the constraint

Writeo,t(ô, x̂) ⇒
(

next (AttrVal(ô, x̂)) = Tempo,t(ô, x̂)
)

, (4)

where Tempo,t(ô, x̂) evaluates to the value of ô.x̂ after executing the effect of t in
object o. This is defined using the Eval function. For example in Fig. 2(b),

Tempo11,t3
(o12, data) := if

{

AttrVal(o11, succ) = o12 : Eval(succ.data + 1)

else : AttrVal(o12, data).

For each transition instance 〈o, t〉 and each assertion assert condexpr; in
the effect of t, we check that the invariant Fire(o, t) ⇒ Eval(condexpr ) holds.

Frame Conditions. Let Θ ⊆ A be the set of all transition instances. The only
situation when NewMsg(ô) is not fixed by (3) is when Sendo,t(ô) is false for all
transition instances 〈o, t〉 ∈ Θ. Similarly, next (AttrVal(ô, x̂)) is not fixed when all
functions Writeo,t(ô, x̂) are false. To fix these, we add the constraints

¬
∨

{

Sendo,t(ô) | 〈o, t〉 ∈ Θ
}

⇒
(

NewMsg(ô) = none
)

, (5)

¬
∨

{

Writeo,t(ô, x̂) | 〈o, t〉 ∈ Θ
}

⇒
(

next (AttrVal(ô, x̂)) = AttrVal(ô, x̂)
)

. (6)



3.4 Step Constraints

In the interleaving encoding, at most one object is scheduled at a time, as re-
quired by the constraint

AtMostOne ({Scheduled(o) | o ∈ O}) . (7)

Consequently, at most one action is executed in each step. A predicate of the
form AtMostOne (P ) evaluates to true if and only if zero or one of the predicates
in set P evaluates to true. This can be expressed with O(|P |) binary Boolean
connectives.

In the ∃-step encodings, (7) is replaced by more liberal constraints as follows.
We require that an action must not send a message to an object if a preceding
action has already done so, and it must not read an attribute that a preceding
action has written. This is formalized in the constraints

∨

{

Sendo−,t−(ô) | 〈o−, t−〉 ≺ 〈o, t〉
}

⇒ ¬Sendo,t(ô), (8)
∨

{

Writeo−,t−(ô, x̂) | 〈o−, t−〉 ≺ 〈o, t〉
}

⇒ ¬Reado,t(ô, x̂). (9)

In the implementation, we employ maximal sharing of subformulas in the left-
hand sides of (5), (6), (8), and (9), resulting in an encoding that is linear instead
of quadratic in the number of transition instances. Furthermore, the left-hand
sides of (8) and (9) are “free” in the sense that they are already present as
subformulas of (5) and (6), and can therefore be shared.

The function Reado,t(ô, x̂), which appears in constraint (9), is defined so that
it evaluates to true if the transition instance 〈o, t〉 is executed and reads the
attribute ô.x̂. The constraint says that a transition instance 〈o, t〉 that reads
an attribute ô.x̂ can only be executed if that attribute is not modified by any
concurrently executed transition instance that precedes 〈o, t〉 in the total order.
This means that in the global configuration that would result from executing
the preceding transition instances, the value of ô.x̂ is still the same as in the
starting configuration represented by the state variables. This justifies the use
of AttrVal(ô, x̂) in evaluating the expressions in the effect of 〈o, t〉. Also notice
that (4) forbids executing two transition instances that would assign a differ-
ent value to the same attribute, and (8) prevents two transition instances from
sending to the same object.

Implicit consumption actions cannot send messages or modify attributes.
However, an implicit consumption action 〈o, impcons〉 can implicitly read an
attribute because the enabledness of 〈o, impcons〉 might depend on the enabled-
ness of a transition instance 〈o, t〉, which in turn might depend on an attribute
that is mentioned in the guard of t. By setting the requirement that implicit
consumption actions precede all transition instances in the total order, we rule
out the possibility of 〈o, impcons〉 implicitly reading an attribute that has been
written by a preceding action. No extra constraints are thus needed.

In order to strictly confine the analysis to the bounded transition relation
∆B

∃
, additional step constraints are placed that prevent a queue from growing

past its bound and shrinking back within a single step. The details are in [16].



Static and Dynamic Steps. The difference between the two ∃-step encodings
is in the definitions of Send, Write, and Read. In dynamic steps, these functions are
evaluated accurately using the input and state variables. For example, Sendo,t(ô)
is defined as Fire(o, t)∧

(

Eval(targetexpr) = ô
)

, and Reado,t(ô, x̂) is true iff Fire(o, t)
is true and Eval(refexpr ) = ô is true for any subexpression of the form refexpr .x̂

in the guard or effect of t. The same definitions are used in the interleaving
encoding.

In static steps, overapproximations are used. If the guard or effect of transi-
tion t does not contain x̂ in any subexpression, then Reado,t(ô, x̂) is trivially false

for all o and ô. Otherwise, Reado,t(ô, x̂) is defined as Fire(o, t). Conceptually this
means that when 〈o, t〉 is executed, it reads the attribute x̂ of all objects that
contain it. Equivalently, Sendo,t(ô) is defined as Fire(o, t) if the effect of t con-
tains any send statement to an object of the same class as ô and false otherwise,
and similarly for Write. This approximation strengthens the step constraints (8)
and (9) and also makes the constraints static in the sense that they no longer
refer to the state variables. As an optimization, if transition t only accesses x̂

using the expression this.x̂, then it is known that the action 〈o, t〉 does not read
ô.x̂ if ô 6= o, and therefore Reado,t(ô, x̂) is defined as false in these cases. The
same optimization is applied to Send and Write.

Because the function Sendo,t(ô) is an approximation in the static step encod-
ing, it may evaluate to true even though no message is being sent to ô. For this
reason, in static steps we replace (3) with two constraints

Sendo,t(ô) ∧
(

Eval(targetexpr ) = ô
)

⇒
(

NewMsg(ô) = sig [. . .]
)

, (10)

Sendo,t(ô) ∧ ¬
(

Eval(targetexpr ) = ô
)

⇒
(

NewMsg(ô) = none
)

. (11)

A similar correction does not need to be made to (4) because Tempo,t(ô, x̂) is
evaluated accurately even in the static step encoding.

Consider again the setting of Fig. 2. Assuming that 〈o11, t3〉 ≺ 〈o12, t3〉 are
the two first transition instances in the total order, we get from (9) the step
constraint

Writeo11,t3(ô, data) ⇒ ¬Reado12,t3(ô, data) (12)

instantiated for each ô ∈ {o11, o12, o13}. In dynamic steps, these expand to

Fire(o11, t3)∧
(

AttrVal(o11, succ) = ô
)

⇒ ¬
(

Fire(o12, t3)∧ (AttrVal(o12, succ) = ô)
)

,

allowing, for example, executing 〈o11, t3〉 and 〈o12, t3〉 concurrently in the global
configuration of Fig. 2(a). In static steps, all three instantiations of (12) reduce
to the same constraint Fire(o11, t3) ⇒ ¬Fire(o12, t3), which disallows concurrent
execution of the two actions in any global configuration. In this example, static ∃-
step semantics yields a smaller encoding, but dynamic ∃-step semantics permits
more concurrency in a single step.

3.5 Size of the Encodings

Let |M | be the size of the model, containing the definition of every class, at-
tribute, signal, and state machine, and the textual definitions of guards and



effects. Assuming that common subformulas are shared between constraints, the
size of all three encodings is O(|M |(qsize · |O| + |O|

2
) log |O|). The term log |O|

is the required number of bits to represent the values of attributes and expres-
sions of reference type. The term |O|

2
appears because objects can refer to each

other arbitrarily, and it seems unavoidable in the presence of dynamic references.
The total size of queue and state machine encodings without data or transition
effects is O(|M | · qsize · |O| log |O|).

The worst-case size for the data and step encoding can be seen in (4). For

each assignment statement (quantity bounded by |M |), there are O(|O|
2
) in-

stantiations of (4), each of size O(log |O|) because of the comparison of object

references. Thus the total size sums up to O(|M | · |O|
2
log |O|) even in the inter-

leaving encoding. In the ∃-step encodings, there are O(|M | · |O|
2
) additional step

constraints, but they do not dominate the total encoding size in the experiments.

4 Experimental Results

We have implemented the symbolic encoding described above.1 The tool assumes
the system models to be described with a subset of UML, the main additions
to the above encoding being that state machines also support (i) hierarchy, (ii)
completion events via the busy-quiescent construction given in [5], (iii) defer-
ring of events, and (iv) initial and choice pseudostates (see [19] for a symbolic
interleaving semantics encoding of such extended state machines). It outputs
the encoding as a NuSMV [1] program and currently supports model checking
queries for deadlocks, implicit consumption of messages, assertion violations, and
action language run-time errors. The tool chooses the fixed ordering of actions
arbitrarily but deterministically based on the identifiers in the input file. The
following experiments were run on a PC machine with a 2 GHz AMD Athlon 64
processor, 2 GB of memory, and Debian Linux operating system. We used ver-
sion 2.4.3 of NuSMV and limited the available memory to 1.5 GB and time to
ten minutes. The width of integer attributes in the encoding was 32 bits and the
input queue size was two.

We used the following models. (i) SCP is a simple communication protocol
with three active objects (environment, sender, and receiver) and three cycling
phases (connection establishment, data transfer, connection release). (ii) travel

is an essentially sequential resource allocation process modeling a travel agent
accessing a database, involving 4 active objects. (iii) mtravel is a variant of travel

with 3 competing travel agents and databases organized in a ring. (iv) giop1 2

has been adapted from the General Inter-ORB Protocol model [20], with an
uninitialized variable introduced in the adaptation.

Table 1 shows the results. The column “sem.” gives the semantics (interleav-
ing, static ∃-steps, or dynamic ∃-steps) and the smallest bound for a counterex-
ample under it, “SBMC zchaff” gives the minimum and maximum running time

1 The source code and the models used in the experiments are available at
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml



Table 1. Results

model + sem. k SBMC zchaff SBMC minisat BDD invar Spin DFS Spin DFS -i
property time time time time |cex| time |cex|

travel interl. 15 0.59–0.64 0.46–0.55 1.19–1.20 0.01–0.01 17–24 0.03–0.05 15–15
deadlock s.step 11 0.32–0.36 0.30–0.34 1.91–1.93

d.step 11 0.31–0.35 0.31–0.34 1.69–1.71

mtravel interl. 36 T.O.(21–22) T.O.(23–24) M.O. 0.01–43.58 71–103576 T.O.
deadlock s.step 14 5.87–10.73 3.26–5.03 M.O.

d.step 11 2.01–2.26 1.56–1.67 M.O.

SCP interl. 13 2.17–2.70 1.21–1.51 174.05–174.89 0.02–0.03 13–104 0.04–0.74 13–13
deadlock s.step 7 0.37–0.41 0.37–0.40 107.04–107.42

d.step 6 0.38–0.40 0.37–0.40 T.O.

SCP interl. 7 0.46–0.49 0.42–0.45 n.a. 0.01–0.01 12–24 0.02–0.04 7–7
implicit s.step 6 0.38–0.41 0.37–0.41 n.a.
cons. d.step 5 0.37–0.39 0.36–0.40 n.a.

giop1 2

runtime
interl. 14

293.09–338.47
[79.06–124.39]

250.15–261.90
[36.30–48.49]

n.a. 0.29–580.96 30–64 T.O.

errors
s.step 9

162.59–174.98
[6.71–9.73]

156.94–165.81
[2.16–3.34]

n.a.

d.step 8
156.57–162.53

[4.04–5.13]
154.23–158.20

[1.19–2.30]
n.a.

(in seconds) of 10 runs of the incremental BMC algorithm [21, 22] when ZChaff
is used as the SAT solver, “SBMC minisat” is the same with MiniSat as the
SAT solver, and “BDD invar” gives the running times of a BDD-based invariant
checking. The numbers in square brackets are the times used by the SAT solvers
instead of the total running times of NuSMV (especially on the model giop1 2,
the total running time is dominated by preprocessing overhead). M.O. means
that all runs exceeded the memory limit, and T.O.(x–y) means that all runs
timed out; x and y give the minimum and maximum, respectively, of the bounds
that were reached before timeout. We check (i) deadlocks of the models SCP,
mtravel, and travel, (ii) whether implicit consumption of messages is possible in
the model SCP, and (iii) if the model giop1 2 has run-time errors. The latter
two properties are only checked with BMC but not with BDDs as the invari-
ant involves input variables; this is not accepted by the NuSMV BDD invariant
checking command.

Analyzing the sizes of SAT instances generated by NuSMV shows that the
proportion of ∃-step constraints in an instance is 4–8 % when static steps are
used, and 5–15 % when dynamic steps are used, depending on the model. This
verifies the presumption that using step semantics does not substantially increase
the size of the encoding.

From the results we see that using ∃-step semantics instead of interleaving
can (i) drop the bound required to find a counterexample, and (ii) more im-
portantly, quite radically reduce the running times of BMC algorithms. This is
especially true with models that contain lots of concurrency. E.g. on the model
mtravel using interleaving semantics, BMC could not reach the required bound
36 even if we gave 1 hour of time, while using step semantics a corresponding
counterexample is found within seconds. With BDDs, it seems in fact that the
interleaving semantics is quite competitive with the step semantics. This is an
interesting finding requiring further study. We also experimented with the BDD-



based breadth-first enumeration of reachable states in NuSMV and the findings
were that the step semantics indeed covered more states than the interleaving
semantics with the same number of iterations but it took more time to do so.

We also ran tests with the state-of-the-art explicit state model checker Spin [2]
that is designed especially for the analysis of this kind of models. The UML
models were automatically translated to the input language of Spin by a trans-
lation based on that in [5]. The last two columns in Table 1 give the running
times and lengths of produced counterexamples of Spin with (i) the default
depth-first search mode (“Spin DFS”), and (ii) the same with counterexample
minimization option “-i” enabled. Partial order reductions and state compres-
sion (“COLLAPSE”) were enabled in both modes. Different runs on the same
model produced diverse results as the order of variable and process declarations
in the Spin model varied between runs of the translator program due to some
non-determinism in the libraries used. As expected, Spin is superior on models
with relatively small state spaces (SCP and travel). On the models mtravel and
giop1 2 containing more concurrency, Spin sometimes consumes more time. More
importantly, in cases it manages to find a counterexample, the produced coun-
terexamples are often much longer than the minimal ones produced by BMC
based methods. These very long counterexamples are not as useful in debugging
the system as it becomes much harder for the user to locate the real source of
the bug.

5 Conclusions and Future Work

We have shown how to exploit the concurrency in the transition relation en-
coding for object based communicating state machines. Especially in bounded
model checking, the proposed ∃-step semantics significantly outperform the tra-
ditional interleaving semantics approach, without any considerable blowup in
the encoding as a SAT formula.

Our experimental results show that when searching for short counterexam-
ples, symbolic model checking, especially with ∃-step semantics, can provide a
competitive approach to model checking of asynchronous message passing proto-
cols. This has traditionally believed to be a field where only explicit state model
checkers can be efficient. We show that by using bounded model checking with
our step encodings, we can find much shorter counterexamples than Spin does,
and achieve this with competitive running times.

One avenue for further study is the use of SAT modulo theories (SMT) solvers
to improve the performance of bounded model checking of systems containing
data. Our encoding can be fairly easily adjusted to do that. Also requiring further
study are the details of the way the ∃-step semantics needs to be restricted in
order to soundly accommodate the model checking of liveness properties along
the lines of [23, 22]. And as the choice of the total ordering between actions in the
encoding affects which steps are considered, a statically chosen good ordering
might improve performance, but this needs further investigation.
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