
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Advanced Tutorial on
Bounded Model Checking (BMC)

ACSD’06 - ATPN’06

26th of June 2006

Keijo Heljanko and Tommi Junttila

Keijo.Heljanko@tkk.fi, Tommi.Junttila@tkk.fi

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 1/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Organisers

D.Sc. (Tech.), Academy Research Fellow
Keijo Heljanko

Email: Keijo.Heljanko@tkk.fi
Homepage: http://www.tcs.tkk.fi/∼kepa/

D.Sc. (Tech.) Tommi Junttila
Email: Tommi.Junttila@tkk.fi
Homepage: http://www.tcs.tkk.fi/∼tjunttil/

Our affiliation:
Laboratory for Theoretical Computer Science,
Helsinki University of Technology (TKK)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 2/131

http://www.tcs.tkk.fi/~kepa/
http://www.tcs.tkk.fi/~tjunttil/
http://www.tcs.tkk.fi/
http://www.tkk.fi

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Thanks

Thanks to co-authors on papers related to bounded
model checking (in alphabetic order):

Armin Biere, Johannes Kepler University of Linz

Toni Jussila, Johannes Kepler University of Linz

Timo Latvala, University of Illinois at
Urbana-Champaign

Ilkka Niemelä, Helsinki University of Technology
(TKK)

Jussi Rintanen, National ICT Australia Limited
(NICTA)

Viktor Schuppan, ETH Zürich

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 3/131

http://fmv.jku.at/biere/
http://www.tcs.tkk.fi/~tjussila/
http://www.tcs.tkk.fi/~timo/
http://www.tcs.tkk.fi/~ini/
http://csl.rsise.anu.edu.au/~jussi/
http://www.schuppan.de/viktor/index.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Tutorial Homepage

All the material of the Tutorial is available as PDF
files from the tutorial homepage:
http://www.tcs.tkk.fi/∼kepa/bmc-tutorial.html

The PDF files also contain lots of hyperlinks to
referenced papers, tools, etc.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 4/131

http://www.tcs.tkk.fi/~kepa/bmc-tutorial.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Software failures

Software is used widely in many applications where a bug
in the system can cause large damage:

Safety critical systems: airplane control systems,
medical care, train signalling systems, air traffic
control, etc.

Economically critical systems: e-commerce systems,
Internet, microprocessors, etc.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 5/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Price of Software Defects

Two very expensive software bugs:

Intel Pentium FDIV bug (1994, approximately $500
million).

Ariane 5 floating point overflow (1996, approximately
$500 million).

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 6/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Pentium FDIV - Software bug in HW

4195835 - ((4195835 / 3145727) * 3145727) = 256

The floating point division algorithm uses an array of con-

stants with 1066 elements. However, only 1061 elements

of the array were correctly initialised.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 7/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Ariane 5

Exploded 37 seconds after takeoff - the reason was an

overflow in a conversion of a 64 bit floating point number

into a 16 bit integer.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 8/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Finding Bugs in Concurrent Systems

The principal methods for the validation of complex
parallel and distributed systems are:

Testing (using the system itself)

Simulation (using a model of the system)

Deductive verification (mathematical (manual) proof
of correctness, in practice done with computer aided
proof assistants/theorem provers)

Model Checking (≈ exhaustive testing of a model of
the system)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 9/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Why is Testing Hard?

Testing should always be done! However, testing parallel
and distributed systems is not always cost effective:

Testing concurrency related problems is often done
only when rest of the system is in place
⇒ fixing bugs late can be very costly.

It is labour intensive to write good tests.

It is hard if not impossible to reproduce bugs due to
concurrency encountered in testing.
- Did the bug-fix work?

Testing can only prove the existence of bugs, not
their non-existence.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 10/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Simulation

The main method for the validation of hardware designs:

When designing new microprocessors, no physical
silicon implementation exists until very late in the
project.

Example: Intel Pentium 4 simulation capacity
(Roope Kaivola, talk at CAV05):

8000 CPUs
Full chip simulation speed 8 Hz
(final silicon > 2 GHz).
Amount of real time simulated before tape-out:
around 2 minutes.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 11/131

http://dx.doi.org/10.1007/11513988_19

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deductive Verification

Proving things correct by mathematical means
(mostly invariants + induction).

Computer aided proof assistants/theorem provers
used to keep you honest and to prove sub-cases.

Very high cost, requires highly skilled personnel:
Only for truly critical systems.
HW examples: Pentium 4 FPU, Pentium 4
register rename logic (Roope Kaivola: 2 man
years, 2 ’time bomb’ silicon bugs found -
thankfully masked by surrounding logic)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 12/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking

In model checking every execution of the model of the
system is simulated obtaining a Kripke structure M
describing all its behaviours. M is then checked against a
property ψ:

Yes: The system functions according to the specified
property (denoted M |= ψ).
The symbol |= is pronounced “models”,
hence the term model checking.

No: The system is incorrect (denoted M 6|= ψ), a
counterexample is returned: an execution of the
system which does not satisfy the property.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 13/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Models and Properties

Modelling

Kripke

System Property

model
System

structure
Formalized

propertyModel checking

Formalization
of property

the model
Executing

ψM |= ψ ?M

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 14/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Benefits of Model Checking

In principle automated: Given a system model and a
property, the model checking algorithm is fully
automatic.

Counterexamples are valuable for debugging.

Already the process of modelling catches a large
percentage of the bugs: good for rapid prototyping of
concurrency related features.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 15/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Drawbacks of Model Checking

State explosion problem: Capacity limits of model
checkers can be exceeded.

Manual modelling often needed:
Model checker used might not support all
features of the final implementation language.
Abstraction used to overcome capacity problems.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 16/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking in the Industry

Microprocessor design: Several major
microprocessor manufacturers use model checking
methods as a part of their design process.

Design of Data-communications Protocol Software:
Model checkers have been used as rapid prototyping
systems for new data-communications protocols
under standardisation.

Mission Critical Software: NASA space program is
model checking code used by the space program.

Operating Systems: Microsoft is using model
checking to verify the correct use of locking
primitives in Windows device drivers.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 17/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Modelling Languages

As a language describing system models we can for
example use:

Petri nets,

labelled transition systems (LTSs) and process
algebras,

Java programs,

UML (unified modelling language) state machines,

Promela language (input language of the Spin model
checker), and

VHDL,Verilog, or SMV languages (mostly for HW
design).

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 18/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Some Model Checking Approaches

Explicit State Model Checking: Tools include Spin,
Murϕ Java Pathfinder Maria, PROD, CPN Tools,
CADP, etc.

BDD based Symbolic Model Checking: Tools include
NuSMV 2, VIS, Cadence SMV, etc.

Bounded Model Checking: Tools include BMC,
CMBC, NuSMV 2, VIS, Cadence SMV, etc.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 19/131

http://www.spinroot.com/
http://verify.stanford.edu/dill/murphi.html
http://javapathfinder.sourceforge.net/
http://www.tcs.hut.fi/Software/maria/index.en.html
http://www.tcs.hut.fi/Software/prod/
http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://www.inrialpes.fr/vasy/cadp/
http://nusmv.irst.itc.it/
http://vlsi.colorado.edu/~vis/
http://www.kenmcmil.com/smv.html
http://www.cs.cmu.edu/~modelcheck/bmc.html
http://www.cs.cmu.edu/~modelcheck/cbmc/
http://nusmv.irst.itc.it/
http://vlsi.colorado.edu/~vis/
http://www.kenmcmil.com/smv.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bounded Model Checking

Originally presented in the paper: Armin Biere,
Alessandro Cimatti, Edmund M. Clarke, Yunshan
Zhu: Symbolic Model Checking without BDDs.
TACAS 1999: 193-207, LNCS 1579.

A closely related approach had already been used
earlier to solve artificial intelligence planning
problems in: Henry A. Kautz, Bart Selman:
Planning as Satisfiability.Proceedings of the 10th
European conference on Artificial intelligence
(ECAI’92): 359-363, 1992, Kluwer.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 20/131

http://link.springer.de/link/service/series/0558/bibs/1579/15790193.htm
http://citeseer.ist.psu.edu/kautz92planning.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Basics of Bounded Model Checking

The basic idea is the following: Encode all the
executions of the system M of length k into a

propositional formula |[M]|k.

Conjunct this formula with a formula |[¬ψ]|k which is
satisfiable for all executions the system of length k
which violate the property ψ.

If the formula |[M]|k∧|[¬ψ]|k is satisfiable, a
counterexample has been found.

If the formula |[M]|k∧|[¬ψ]|k is unsatisfiable, no
counterexample of length k exists.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 21/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

SAT

The propositional satisfiability problem (SAT) is one
of the main instances of NP-complete problems.

Thus no polynomial algorithms for SAT are known.

However, there are highly efficient SAT solvers
available such as zChaff and MiniSAT which are able
solve many bounded model checking problems
efficiently.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 22/131

http://en.wikipedia.org/wiki/NP-complete
http://www.princeton.edu/~chaff/zchaff.html
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

SAT References

zChaff: Matthew W. Moskewicz, Conor F. Madigan,
Ying Zhao, Lintao Zhang, Sharad Malik: Chaff:
Engineering an Efficient SAT Solver. DAC 2001:
530-535, ACM.

MiniSAT: Niklas Eén, Niklas Sörensson:
An Extensible SAT-solver. SAT 2003: 502-518, LNCS
2919.

SATLive! - Links to SAT related events, tools, position
announcements, etc.

SAT race 2006 - In 2006 a “light weight” variant the
SAT solver competition on industrial benchmarks is
arranged.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 23/131

http://portal.acm.org/citation.cfm?id=379017&dl=ACM&coll=portal
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2919&spage=502
http://www.satlive.org/
http://fmv.jku.at/sat-race-2006/index.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Basic Setup

For simplicity first consider the following setup:
As system models we consider systems whose
state vector s consist of n Boolean state variables
〈s[0],s[1], . . . ,s[n−1]〉.
We take k+1 copies of the system state vector
denoted by s0,s1, . . . ,sk.

Let I(s) be the initial state predicate of the
system, and T(s,s′) be the transition relation
both expressed as propositional formulas.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 24/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

A Simplifying Assumption

For simplicity we assume T(s,s′) to be be total for
now, i.e., every reachable state s should have a
successor s′ such that T(s,s′) holds.

This assumption can and will be dropped later in this
tutorial.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 25/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Unrolling the Transition Relation

Now the executions of the system of length k are
captured by the formula:

|[M]|k = I(s0)∧
k̂

i=1

T(si−1,si)

For k = 3 this becomes:

|[M]|3 = I(s0)∧T(s0,s1)∧T(s1,s2)∧T(s2,s3)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 26/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Circuit BMC Unrolling

OR

AND

OR

OR

AND

OR

OR

AND

OR

s3[0]

s3[1]

s3[2]

s2[0]

s2[1]

s2[2]

s1[0]

s1[1]

s1[2]

s0[1]

s0[2]

s0[0]

I(s0) T(s0,s1) T(s2,s3)T(s1,s2)

0

0

0

i2[1]i2[0]i1[1]i1[0]i0[0] i0[1]

1

1

1

What do the input vectors i0, i1, and i2 need to be to reach

the state s3 = 〈1,1,1〉?

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 27/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Circuit BMC Unrolling Solution

OR

AND

OR

OR

AND

OR

OR

AND

OR

s3[0]

s3[1]

s3[2]

s2[0]

s2[1]

s2[2]

s1[0]

s1[1]

s1[2]

s0[1]

s0[2]

s0[0]

I(s0) T(s0,s1) T(s2,s3)T(s1,s2)

0

0

0

i2[1]i2[0]i1[1]i1[0]i0[0] i0[1]

1

1

1

1 1 11 1 1

0

0

1

0 0

0

1

1

0

The input vectors i0 = 〈1,1〉, i1 = 〈1,1〉, and i2 = 〈1,1〉

will reach the final state s3 = 〈1,1,1〉.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 28/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Expressing Invariants

Suppose the property ψ we want to model check is
that an invariant property P(s) holds for every
reachable state of the system M.

Now we get that:

|[¬ψ]|k =
k

_

i=0

¬P(si)

Thus for k = 3 this becomes:

|[¬ψ]|3 = ¬P(s0)∨¬P(s1)∨¬P(s2)∨¬P(s3)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 29/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Final formula

Thus the final formula |[M]|k∧|[¬ψ]|k for k = 3
becomes:

I(s0)∧T(s0,s1)∧T(s1,s2)∧T(s2,s3)∧

(¬P(s0)∨¬P(s1)∨¬P(s2)∨¬P(s3))

If the formula is satisfiable, then an execution of the
system of length 3 exists which violates the invariant
property P(s) in some state during the execution.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 30/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Diameter

If the formula is unsatisfiable, we have proved that
there is no execution of length at most 3 that violates
the invariant.

Clearly for every finite state system there is some
bound d called the reachability diameter such that
from the initial state every reachable state is
reachable with an execution of at most length d.

By taking d = 2n, where n is the number of state bits,
we could guarantee completeness.

Unfortunately computing better approximations of d
are computationally hard in the general case.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 31/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Unsatisfiable - Increase the bound

Unfortunately the approach of taking d = 2n is not
viable for anything but trivially small systems.

Usually d is only increased by a small amount, say 1,
and the procedure is repeated from the beginning
until some resource limit (running time, memory, etc.)
is hit.

We will show a more refined approach to obtaining
completeness later.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 32/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

BMC: Pros and Cons

Boolean formulas can be more compact than BDDs

Leverages efficient SAT-solver technology

Minimal length counterexamples (often, not always)

Basic method is incomplete (we’ll show some
approaches to obtain completeness later in the
tutorial)

Not always better than BDD-based methods or
explicit state model checking

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 33/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Alternative Transition Relations

When checking for reachability properties such as
the violation of invariants, we can often replace the
transition relation T(s,s′) with an alternative
transition relation definition T ′(s,s′) provided that:

Every state that is reachable from the initial state
s0 using T(s,s′) must be reachable from s0 using
T ′(s,s′).
There should not be any new states reachable
from s0 using T ′(s,s′) which are not reachable
from s0 using T(s,s′).

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 34/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding the Transition Relation

There are now in fact many different ways to pick and
encode an alternative transition relation T ′(s,s′) if we
consider asynchronous systems containing
concurrency.

A wish-list of mutually conflicting requirements for
T ′(s,s′) and its encoding:

Compact, hopefully linear in the size of the
model.
Covers as many reachable states as possible for
each bound k without losing soundness or
completeness.
Efficiently solvable by the SAT solver.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 35/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Transition Relation Encoding

Note that in the list of requirements we don’t explicitly
list that the number of state variables n should be
minimised.

This is often one of the main things to optimise with a
BDD based symbolic model checker.

Having too compact an encoding of the state vector
can lead to losses in the SAT solver efficiency!

More research is needed on how to more efficiently
encode transition relations for different classes of
systems. There are dramatic performance
differences, at least for asynchronous systems.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 36/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Asynchronous Systems Case

We consider in this tutorial two simple classes of
asynchronous systems but most of the results will
carry over to more complicated models of
concurrency.

The two system models considered are:
1-bounded Petri nets
Products of labelled transition systems (LTSs)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 37/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Petri nets

The class Petri nets we use are called place/transition
nets (P/T-nets). A P/T-net is a tuple N = (P,T,F,W,M0),
where

P is a finite set of places,

T is a finite set of transitions,

F ⊆ (P×T)∪ (T ×P) is the flow relation,

W : F 7→ N\{0} is the arc weight mapping, and

M0 : P 7→ N is the initial marking.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 38/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example P/T-net

p1 p2

p3

p4

p5

p6

t1 t2

t3

t4 t5

t6

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 39/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The running Example

Places P = {p1, p2, p3, p4, p5, p6}.

Transitions T = {t1, t2, t3, t4, t5, t6}.

Flow relation F = {(p1, t1),(t1, p3), (p2, t2),(t2, p4),
(p4, t3),(t3, p5), (p3, t4),(p5, t4),(t4, p1),(t4, p2),
(p5, t5),(t5, p2), (p5, t6),(t6, p6)}.

Arc weight mapping W(x,y) = 1 for all (x,y) ∈ F .
We use the convention that only arcs weights
W(x,y) > 1 are drawn next to the arc (x,y), i.e., the
default arc weight is 1.

Initial marking M0 = {p1 7→ 1, p2 7→ 1, p3 7→ 0,

p4 7→ 0, p5 7→ 0, p6 7→ 0}.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 40/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Behaviour of P/T-nets

The state of a P/T-net consist of a marking
M : P 7→ N, which tells for each place how many
tokens (drawn as black dots) it contains.

The notation M(p) denotes the number of tokens in
place p.

In our running example M(p) ≤ 1 for all places
p∈ P, i.e., each place contains at most one token.
However, this is not required in general.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 41/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Behaviour of P/T-nets

The preset of a node x∈ P∪T is denoted by •x and
defined to be: •x = {y∈ P∪T | (y,x) ∈ F}.
The preset of a node consist of those nodes from
which an arc to x exist. In our running example
•t4 = {p3, p5}.

The postset of a node x∈ P∪T is denoted by x•

and defined to be: x• = {y∈ P∪T | (x,y) ∈ F}.
The postset of a node consist of those nodes to
which an arc from x exist. In our running example
t4• = {p1, p2}.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 42/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Enabling of transitions

A transition t ∈ T is enabled in marking M, denoted
t ∈ enabled(M), if and only if (iff from now on) for all
p∈ •t : M(p) ≥W(p, t).
(All places p which are in the preset of t contain at
least the number of tokens specified by W(p, t).)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 43/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Firing of transitions

To simplify definitions, we extend W(x,y) to all pairs
(x,y) ∈ (P∪T)× (T ∪P) as follows: if (x,y) 6∈ F
then W(x,y) = 0.

The marking M′ reached after firing t, denoted
M′ = fire(M, t), is defined for all p∈ P as:
M′(p) = M(p)−W(p, t)+W(t, p).
(First remove as many tokens as given by W(p, t)
from all places in the preset of t, and then add as
many tokens for all places in the postset of t as
denoted by W(t, p).)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 44/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability graph

Reachability graph G = (V,E,M0) is the graph
inductively defined as follows:

M0 ∈V, where M0 is the initial marking of the net N,
and

if M ∈V then for all t ∈ enabled(M) it holds that
M′ = fire(M, t) ∈V and (M, t,M′) ∈ E.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 45/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Graph

p1, p2

p1, p5

p1, p6

p3, p2

p3, p5

p3, p6

p3, p4

p1, p4

t1

t1

t1

t1
t2

t3

t6

t2

t3

t6t5

t5

t4

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 46/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability graph (cnt.)

A place p∈ P is defined to be k-bounded iff for all
reachable markings M ∈V it holds that M(p) ≤ k.

A net is defined to be k-bounded if all its places are
k-bounded

In the following we consider how to encode the
transition relation T(s,s′) for 1-bounded P/T-nets
only.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 47/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Interleaving Executions

When the net is 1-bounded, we will use set notation
for markings.

In our running example the initial marking
M0 = {p1, p2}.

In the initial marking the transition t2 is enabled and
its firing lead to marking M′ = {p1, p4}. We denote
this by: {p1, p2}[t2〉{p1, p4}.

One interleaving execution of length 4 leading to a
deadlock; a marking with no enabled transitions is:

{p1, p2}[t2〉{p1, p4}[t3〉{p1, p5}[t6〉{p1, p6}[t1〉{p3, p6}

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 48/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conjunctive Normal Form (CNF)

The SAT solvers mentioned so far require the
problem to be mapped into the so called conjunctive
normal form (CNF).

A literal is either either a propositional variable x or
its negation ¬x. A formula is in conjunctive normal
form if it is a conjunction of clauses, where each
clause is a disjunction of literals.

Example: (x∨¬y∨¬z)∧ (¬x∨y)∧ (¬x∨z) is in
CNF.

Using CNF formulas makes the implementation
techniques inside SAT solvers simpler which often
leads to more efficient implementation techniques.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 49/131

http://en.wikipedia.org/wiki/Conjunctive_normal_form

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Constrained Boolean Circuit SAT

To raise the abstraction level a bit, in this tutorial we
will use constrained Boolean circuit SAT instead of
CNF.

They are Boolean circuits where some of the output
gates are constrained to true, while other can be
constrained to false.

The solver now has to find a valuation for the input
variables of the circuit to make all the constraints to
match the value computed by the circuit.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 50/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Boolean Circuit Format

The format of the circuits used is described in
http://www.tcs.hut.fi/∼tjunttil/circuits/index.html.
The page also contains constrained Boolean circuit
front-ends to the zChaff and MiniSAT solvers, which
internally convert the Boolean circuits into CNF.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 51/131

http://www.tcs.hut.fi/~tjunttil/circuits/index.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From Circuits to CNF

The page mentioned above also contains a tool
called bc2cnf, with which you can obtain CNF
formulas for other CNF based solvers.

The translation to CNF is based on the Tseitin CNF
encoding (see, e.g. page 562 of Towards an Efficient
Tableau Method for Boolean Circuit Satisfiability
Checking. Computational Logic 2000: 553-567,
LNCS 1861.)

Tseitin encoding introduces one new variable for
each gate of the Boolean circuit, and then encodes
the value of that gate with a small equivalence,
translated into CNF.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 52/131

http://link.springer.de/link/service/series/0558/bibs/1861/18610553.htm

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

From Circuits to CNF (cnt.)

An AND gate x := AND(y,z); would become:
x⇔ (y∧z), and translated into CNF would give:
(x∨¬y∨¬z)∧ (¬x∨y)∧ (¬x∨z)

An OR gate x := OR(y,z); would become:
x⇔ (y∨z), and translated into CNF would give:
(¬x∨y∨z)∧ (x∨¬y)∧ (x∨¬z)

A constraint x := true; will contribute to the CNF: x.

A constraint x := false; will contribute to the CNF: ¬x.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 53/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Cardinality Gates

We also use a special gate type called the cardinality
gate: x := [0,1](a0,a1, . . . ,am−1); which evaluates to
true iff at most one of the m input variables
{a0,a1, . . . ,am−1} is true.

This can be simulated with m new variables bi , as
follows: b0 := false; for all 1≤ i ≤ m−1 we have
bi := bi−1∨ai−1; and the final value is obtained by
x := ¬((a1∧b1)∨·· ·∨ (am−1∧bm−1));.

There are also other linear size translations for
replacing the cardinality gates with ANDs and ORs,
the one above is picked for its simplicity.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 54/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Cardinality Gates (cnt.)

There is another O(m2) translation which does not
introduce any new variables.

It seems to have better performance for small values
of m in CNF based SAT solvers.

The use of cardinality gates is a vital ingredient to
obtain a small encoding of the transition relation
T(s,s′) for asynchronous systems.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 55/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Transition Relation Encoding

The following encoding almost identical to the one in:
Keijo Heljanko: Bounded Reachability Checking with
Process Semantics. CONCUR 2001: 218-232,
LNCS 2154.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 56/131

http://link.springer.de/link/service/series/0558/bibs/2154/21540218.htm

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example (recap)

p1 p2

p3

p4

p5

p6

t1 t2

t3

t4 t5

t6

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 57/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

State Variables and Inputs

We now show how given a 1-bounded P/T-net its
transition relation can be encoded into a constrained
Boolean circuit.

The mapping has the following intuition:

The state vector bit p j(i) (= si[j]) will be true iff
in state si the place p j contains a token. For
example p3(0) is the variable corresponding to
the place p3 at the initial state s0.
The Boolean circuit will have one free input
variable t j(i) for each transition t j ∈ T and each
transition relation instance 0≤ i ≤ k−1. It t j(i) is
true, then the transition t j is fired at time i.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 58/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

P/T-net Transition Relation Unrolling

p3(0)

p1(0)

p2(0)

p3(0)

p4(0)

p5(0)

p6(0)

I(s0) T(s0,s1) T(s2,s3)T(s1,s2)

1

1

0

0

0

0

0

p4(1)

p1(1)

p2(1)

p3(1)

p3(1)

p5(1)

p6(1)

p1(2)

p2(2)

p3(2)

p3(2)

p4(2)

p5(2)

p6(2)

p1(3)

p2(3)

p3(3)

p3(3)

p4(3)

p5(3)

p6(3)

t1(0) t6(0) t1(1) t6(1). t6(2)t1(2) . . .

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 59/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Initial Marking

Handling the initial marking is easy, and goes as
follows:

For each p j ∈ P such that M(p) = 1, set
p j(0) := true;

For each p j ∈ P such that M(p) = 0, set
p j(0) := false;

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 60/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Token Updating

For each place p j ∈ P and time 1≤ i ≤ k create the
following gates:

gpj(i) := OR(t1(i −1), t2(i −1), . . . , tl(i −1));,
where •p j = {t1, t2, . . . , tl}. This gate models the
generation of a token to p j .

rp j(i) := OR(t1(i −1), t2(i −1), . . . , tl(i −1));,
where p j

• = {t1, t2, . . . , tl}. This gate models the
removal of a token from p j .

p j(i) := gpj(i)∨ (p j(i −1)∧¬rp j(i));. A token
exists in p j if either a new one was generated, or
an old one existed and it was not removed.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 61/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Translation for Place p5

∨

∨

∧

¬

∨

t3(i −1) p5(i −1) t4(i −1) t5(i −1) t6(i −1)

gp5(i)

fp5(i)

p5(i)

nrp5(i)

rp5(i)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 62/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Transition Enabling

We should also rule out models where a transition
t j ∈ T is fired at time 0≤ i ≤ k−1 without being
enabled by using the following gates:

Create a gate
pt j(i) := AND(p1(i), p2(i), . . . , pl(i));, where
•t j = {p1, p2, . . . , pl}. This gate is true when the
transition t j is enabled.

Disallow the firing of disabled transitions with a
gate: tt j(i) := ¬t j(i)∨ pt j(i), where tt j(i) is
constrained to true. (This is simply a constrained
Boolean circuit encoding of t j(i) ⇒ pt j(i).)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 63/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Translation for Transition t4

>

∨tt4(i)

¬nt4(i)

t4(i) p3(i) p5(i)

∧pt4(i)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 64/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Removing Conflicting Transitions

The encoding so far allows for several transitions to
be fired concurrently even if they are in conflict.

We will disallow this by adding the following gate at
each time point 0≤ i ≤ k−1:

rc(i) := [0,1](t1(i), t2(i), . . . , tl(i)), where
T = {t1, t2, . . . , tl}. We also constrain the gate
rc(i) to true.

The gate rc(i) intuitively removes the possibility
of two conflicting transitions to fire at the same
time point because at most one transition is
allowed to fire at each time point.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 65/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Removing Conflicts

>

t1(i) t2(i) t3(i) t4(i) t5(i) t6(i)

rc(i) [0,1]

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 66/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Interleaving Semantics

All parts of the encoding taken together give a
constrained Boolean circuit encoding of T(s,s′) for
the interleaving semantics.

The interleaving semantics is the standard textbook
semantics of P/T-nets where at most one transition is
allowed to fire at each time point.

The size of the encoding is linear in both the size of
the input P/T-net and the bound k.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 67/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Optional Idling Removal

The circuit as show above allows no transition to be
fired at any index i of the execution.

It is easy to disallow this by for all 0≤ i ≤ k−1
introducing a gate:
idle(i) := ¬(OR(t1(i), t2(i), . . . , tl(i)));, where
T = {t1, t2, . . . , tl}. We can now optionally constrain
the gate idle(i) to falseto remove idling.

If idling is not removed, the encoding has models
corresponding to all executions of length k or less.

When idling is removed, the encoding has models
corresponding to all executions of exactly length k.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 68/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deadlock Detection

We now assume idling has not been removed, and
also drop the assumption that T(s,s′) is total.

Deadlocking executions of length k or less can now
be captured by adding the following constraint on the
places pi(k):

First add the translation of the transition preset gates
pt j(i) also for the index i = k.

Add a gate
dead(k) := ¬(OR(pt1(k), pt2(k), . . . , ptl(k)));,
where T = {t1, t2, . . . , tl}. Constrain the gate dead(k)
to true to capture executions leading to a state where
no transition is enabled: a deadlock state.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 69/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deadlock Checking Demo (1/3)

$ cat running.net

P = [’p1’,’p2’,’p3’,’p4’,’p5’,’p6’]

T = [’t1’,’t2’,’t3’,’t4’,’t5’,’t6’]

F = [[’p1’,’t1’],[’t1’,’p3’],

[’p2’,’t2’],[’t2’,’p4’],

[’p4’,’t3’],[’t3’,’p5’],

[’p3’,’t4’],[’p5’,’t4’],[’t4’,’p1’],[’t4’,’p2’],

[’p5’,’t5’],[’t5’,’p2’],

[’p5’,’t6’],[’t6’,’p6’]]

M_0 = [’p1’,’p2’]

bound = 4

semantics = "interleaving"

$ 1b-pn-bmc < running.net | bczchaff | cex-print

{p1, p2}[t1>{p2, p3}[t2>{p3, p4}[t3>{p3, p5}[t6>{p3, p6}

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 70/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deadlock Checking Demo (2/3)

$ 1b-pn-bmc < running.net | bczchaff -v
Parsing from stdin
The circuit has 196 gates
The input gates are: t6_3 t3_3 t2_3 t5_3 t1_3 t4_3 t6_2 t3_2 t2_2 t5_2 t1_2 t4_2 t6_1 t3_1 t2_1 t5_1
t1_1 t4_1 t6_0 t3_0 t2_0 t5_0 t1_0 t4_0
The circuit has 138 gates and 153 edges after simplification
The circuit has 83 gates and 134 edges after sharing
The circuit has 75 gates and 92 edges after simplification
The circuit has 59 gates and 89 edges after sharing
The circuit has 54 gates and 66 edges after simplification
The circuit has 48 gates and 65 edges after sharing
The circuit has 48 gates and 65 edges after simplification
The circuit has 48 gates and 65 edges after sharing
The circuit has 56 gates after normalization
The circuit has 56 gates and 71 edges after simplification
The circuit has 52 gates and 71 edges after sharing
The circuit has 52 gates and 71 edges after simplification
The circuit has 52 gates and 71 edges after sharing
The max-min height of the circuit is 2
The max-max height of the circuit is 4
The circuit has 46 relevant gates
The circuit has 10 relevant input gates
The cnf has 37 variables and 96 clauses

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 71/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deadlock Checking Demo (3/3)

Executing zchaff...

Max Decision Level 1
Num. of Decisions 2
Original Num Clauses 96
Original Num Literals 200
Added Conflict Clauses 0
Added Conflict Literals 0
Deleted Unrelevant clause 0
Deleted Unrelevant literals 0
Number of Implication 37
˜live_4 ˜gp4_4 ˜t2_3 ˜gp5_4 ˜t3_3 ˜gp1_4 ˜t4_3 ˜t5_3 ˜gp1_2 ˜t4_1 ˜t5_1 ˜t5_0 ˜gp1_1
˜t4_0 ˜p5_4 ˜p4_4 ˜p2_4 ˜p1_4 ˜p6_2 ˜gp6_2 ˜t6_1 ˜p6_1 ˜gp6_1 ˜t6_0 ˜p5_1 ˜gp5_1
˜t3_0 ˜p6_0 ˜p5_0 ˜p4_0 ˜p3_0 ˜gp1_3 ˜t4_2 ˜t5_2 ˜gp2_1 ˜gp2_2 ˜gp2_4 ˜gp4_3 ˜t2_2
˜p4_3 ˜p2_3 ˜gp2_3 rc1 rc2 gate13 gate15 gate16 gate11 gate10 gate9 rc0 gate5 gate4 gate3
gate2 gate1 gate0 p2_0 p1_0 gate19 gate20 gate21 gate22 rc3 gate23 gate18 p6_4 gp6_4 t6_3
p3_4 ˜gp3_4 ˜t1_3 gate17 gate14 gate12 p5_3 ˜p6_3 ˜gp6_3 ˜t6_2 gp5_3 t3_2 p3_3 ˜p1_3
˜gp3_3 ˜t1_2 gate8 gate7 gate6 p4_2 ˜p5_2 ˜gp5_2 ˜t3_1 p3_2 ˜p2_2 gp4_2 t2_1 ˜p1_2
˜gp3_2 ˜t1_1 p2_1 ˜p4_1 ˜gp4_1 ˜t2_0 ˜p1_1 p3_1 gp3_1 t1_0
Satisfiable

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 72/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Step Semantics

An old well known semantics from the theory of Petri
nets is the so called step semantics.

This is not the same as maximal step semantics.

The idea is the following: Instead of firing a single
enabled transition at each marking M, we can fire a
step: a set of enabled transitions S⊆ enabled(M) at
a time point provided they are all pairwise concurrent:

For all pairs of distinct transitions t, t ′ ∈ S it holds
that •t ∩ •t ′ = /0.
Note: It is straightforward to prove that because
we only consider 1-bounded P/T-nets here that
actually also (•t ∪ t•) ∩ (•t ′ ∪ t ′•) = /0 holds.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 73/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Step Reachability graph

Step reachability graph Gs = (V,E,M0) is the graph
inductively defined as follows:

M0 ∈V, where M0 is the initial marking of the net N,
and

if M ∈V then for all S⊆ enabled(M) such that S is a
step it holds that M′ = fire(M,S) ∈V and
(M,S,M′) ∈ E.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 74/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Some Properties of Steps

If a set of transitions S= {t1, t2, . . . , tl} is step
enabled in M, then all the l ! interleaving executions
obtained by sequentialising S in all orders are
enabled interleaving executions in M, and they all
lead to the same final state.

An intuition why this is the case: Because
(•t ∪ t•) ∩ (•t ′ ∪ t ′•) = /0, the transitions t and t ′

happen “in different parts of the system”, and thus
cannot influence each other in any way.

Thus fire(M,S) from the previous slide can be
defined as: fire(. . .(fire(fire(M, t1), t2), . . . , tl).

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 75/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Step Reachability Graph

p1, p2

p1, p5

p1, p6

p3, p2

p3, p5

p3, p6

p3, p4

p1, p4

t1

t1

t1

t1
t2

t3

t6

t2

t3

t6t5

t5

t4

{t1, t5}

{t1, t6}

{t1, t2}

{t1, t3}

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 76/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Properties Steps Graphs

Because all singleton sets are also steps, the
(interleaving) reachability graph is always a subgraph
of the step reachability graph.

Because the final state reached after firing a step is
the final state of every interleaving of the step, no
new reachable states have been introduced.

The reachability diameter of the system is in the
worst case as big as in the interleaving case.

In the best case the interleaving diameter has
become smaller, because a step with o transitions
has to be simulated with o time steps in the
interleaving reachability graph.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 77/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example: Steps

We extend the notation M[t〉M′ to also denote the
firing of steps M[S〉M′.

In the running example one step executions of length
3 leading to the deadlock marking {p3, p6} is:

{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6}

Recall that the shortest execution to {p3, p6} was of
length 4 in the interleaving reachability graph.

⇒ Using step semantics allows one to sometimes
detect errors with smaller bounds.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 78/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding the Step Semantics

It is easy to modify the interleaving transition relation
encoding to encode step semantics instead.

The only thing we have to remove is the encoding of
gate rc(i), which restricts the number of fired
transitions to at most one as required by the
interleaving case.

A set of constraints has to be added to remove the
possibility of two conflicting transitions to fire in the
same step.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 79/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Steps: Removing Conflicts

For each place p j ∈ P and each step 0≤ i ≤ k−1
we will add the following gate which disallows
concurrent firing of transitions which are not
concurrent due to both having the place p j in their
preset:

ncpj(i) := [0,1](t1(i), t2(i), . . . , tl(i)), where
p j

• = {t1, t2, . . . , tl}. We also constrain the gate
ncpj(i) to true.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 80/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Steps: Removing Conflicts wrt. p5

t4(i) t5(i) t6(i)

>

[0,1]ncp5(i)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 81/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Demo with Step Semantics (1/3)

$ cat step-running.net

P = [’p1’,’p2’,’p3’,’p4’,’p5’,’p6’]

T = [’t1’,’t2’,’t3’,’t4’,’t5’,’t6’]

F = [[’p1’,’t1’],[’t1’,’p3’],

[’p2’,’t2’],[’t2’,’p4’],

[’p4’,’t3’],[’t3’,’p5’],

[’p3’,’t4’],[’p5’,’t4’],[’t4’,’p1’],[’t4’,’p2’],

[’p5’,’t5’],[’t5’,’p2’],

[’p5’,’t6’],[’t6’,’p6’]]

M_0 = [’p1’,’p2’]

bound = 3

semantics = "step"

$ 1b-pn-bmc < step-running.net | bczchaff | cex-print

{p1, p2}[t2>{p1, p4}[t1, t3>{p3, p5}[t6>{p3, p6}

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 82/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Demo with Step Semantics (2/3)

$ 1b-pn-bmc < step-running.net | bczchaff -v
Parsing from stdin
The circuit has 149 gates
The input gates are: t6_2 t3_2 t2_2 t5_2 t1_2 t4_2 t6_1 t3_1 t2_1 t5_1 t1_1 t4_1 t6_0 t3_0 t2_0 t5_0 t1_0 t4_0
The circuit has 99 gates and 92 edges after simplification
The circuit has 48 gates and 74 edges after sharing
The circuit has 39 gates and 33 edges after simplification
The circuit has 27 gates and 32 edges after sharing
The circuit has 24 gates and 16 edges after simplification
The circuit has 14 gates and 16 edges after sharing
The circuit has 14 gates and 16 edges after simplification
The circuit has 14 gates and 16 edges after sharing
The circuit has 14 gates after normalization
The circuit has 14 gates and 16 edges after simplification
The circuit has 14 gates and 16 edges after sharing
The max-min height of the circuit is 2
The max-max height of the circuit is 3
The circuit has 10 relevant gates
The circuit has 3 relevant input gates
The cnf has 8 variables and 15 clauses

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 83/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Demo with Step Semantics (3/3)

Executing zchaff...

Max Decision Level 2
Num. of Decisions 3
Original Num Clauses 15
Original Num Literals 31
Added Conflict Clauses 0
Added Conflict Literals 0
Deleted Unrelevant clause 0
Deleted Unrelevant literals 0
Number of Implication 8
˜p2_1 ˜p2_2 ˜p4_2 ˜t2_1 ˜gp4_2 ˜gp2_3 ˜gp2_2 ˜gp2_1 ˜p3_0 ˜p4_0 ˜p5_0 ˜p6_0 ˜t3_0 ˜gp5_1 ˜p5_1 ˜t6_0
˜gp6_1 ˜p6_1 ˜t6_1 ˜gp6_2 ˜p6_2 ˜p1_3 ˜p2_3 ˜p4_3 ˜p5_3 ˜t4_0 ˜gp1_1 ˜t5_0 ˜t5_1 ˜t2_2 ˜gp4_3 ˜t3_2
˜gp5_3˜t4_1 ˜gp1_2 ˜t4_2 ˜gp1_3 ˜t5_2 ˜live_3 t2_0 gp4_1 p4_1 t3_1 gp5_2 p5_2 gate7 gate8 t6_2
gp6_3 p6_3 gate16 gate15 gate14 gate13 ncp5_2 p1_0 p2_0 gate0 gate1 gate2 gate3 gate4 gate5
gate9 gate10 gate11 ncp5_0ncp5_1 gate17 gate12 p3_3 ˜gp3_3 ˜t1_2 gate6 p3_2 ˜p1_2 gp3_2 t1_1
p1_1 ˜p3_1 ˜gp3_1 ˜t1_0
Satisfiable

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 84/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Interleaving vs. Steps

We have not yet found a domain where the
interleaving encoding would be superior in
performance to the step encoding.

Quite often even small reductions in the required
bound translate to large performance differences.

The step encoding also is more “local” than the
interleaving encoding:

Parts of the system which do not share resources
are never linked together as done by the rc(i)
gate in the interleaving case.
This might have SAT performance implications.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 85/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example (recap2)

p1 p2

p3

p4

p5

p6

t1 t2

t3

t4 t5

t6

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 86/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Process Semantics

In our running example there are three step
executions of length 3 leading to the deadlock
marking {p3, p6}:

{p1, p2}[t2〉{p1, p4}[t3〉{p1, p5}[t1, t6〉{p3, p6}

{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6}

{p1, p2}[t1, t2〉{p3, p4}[t3〉{p3, p5}[t6〉{p3, p6}

Intuitively they all correspond a concurrent execution
where “the component on the left” executes t1, and
“the component on the right” executes the sequence
t2, t3, t6.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 87/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Process Semantics (cnt.)

Can we somehow pick a unique canonical
representative of such “concurrent” behaviour, and
thus reduce the number of different executions the
SAT solver has to consider?

The answer turns out to be positive. The resulting
semantics will be called process semantics.

There is even a compact SAT encoding to capture
the process semantics!

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 88/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Process Normal Form

A step execution M0[S0〉M1[S1〉 · · ·Mk−1[Sk−1〉Mk is
in process normal form iff for every index i ≥ 1 and
every transition t j ∈ Si it holds that:

There is some transition t ′ ∈ Si−1 such that
t ′•∩ •t j 6= /0.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 89/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Process Normal Form Intuition

Intuitively the above means: In a step execution in
process normal form each transition is executed at
the earliest time moment all its tokens are available.

In the SAT encoding setting this means that a
transition should be enabled only if one of its tokens
has been generated in the previous step.

Thus the process execution for the example is:

{p1, p2}[t1, t2〉{p3, p4}[t3〉{p3, p5}[t6〉{p3, p6}

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 90/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Normalising a Step Execution

By repeatedly running the following simple algorithm
each step execution M0[S0〉M1[S1〉 · · ·Mk−1[Sk−1〉Mk
can be converted into a process executions of at
most the same length and leading to the same final
state:

Take a transition t j ∈ Si which violates the
process condition.
Remove t j from Si and add it to Si−1.

Proof is simple, one has to show that: (i) t j is
enabled already in Si−1, and (ii) Si−1 contains no
transitions in conflict with t j .

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 91/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Process

As a graphical presentation of the process we can again
use a P/T-net:

b1(p2)

b2(p1)

b3(p4)

b4(p3)

b5(p5) b6(p6)e1(t2)

e2(t1)

e3(t3) e4(t6)

The step executions in process normal form correspond to

slicing the net one level at a time starting from the left.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 92/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Properties of Processes

Each state of the system is reachable by a process
execution that is among the shortest step executions
to reach that state.

Thus the set of reachable states is preserved.

Furthermore, the process reachability diameter is
always as small as the step reachability diameter.

There are at most as many process executions of
length k as there are interleaving executions of
length k.

There can be exponentially more step and
interleaving executions of length k than there are
process executions.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 93/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Encoding Process Semantics

Take the encoding for the step semantics but change
the transition enabling gate definition for all i > 0:

For each transition t j ∈ T and time 1≤ i ≤ k−1 use
the following gates (for i = 0 use the step version):

Create a gate
pt j(i) := AND(p1(i), p2(i), . . . , pl(i),
OR(gp1(i),gp2(i), . . . ,gpl(i)));, where
•t j = {p1, p2, . . . , pl}. This gate is true when the
transition t j is enabled, and at least one of the
tokens has been freshly generated.

Add gate: tt j(i) := ¬t j(i)∨ pt j(i), and constrain
it to true.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 94/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Process Translation for t4

>

t4(i) p5(i)p3(i) gp3(i) gp5(i)

dpt4(i)

∨

∧pt4(i)

∨tt4(i)

¬nt4(i)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 95/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Demo with Process Semantics (1/3)

$ cat process-running.net

P = [’p1’,’p2’,’p3’,’p4’,’p5’,’p6’]

T = [’t1’,’t2’,’t3’,’t4’,’t5’,’t6’]

F = [[’p1’,’t1’],[’t1’,’p3’],

[’p2’,’t2’],[’t2’,’p4’],

[’p4’,’t3’],[’t3’,’p5’],

[’p3’,’t4’],[’p5’,’t4’],[’t4’,’p1’],[’t4’,’p2’],

[’p5’,’t5’],[’t5’,’p2’],

[’p5’,’t6’],[’t6’,’p6’]]

M_0 = [’p1’,’p2’]

bound = 3

semantics = "process"

$ 1b-pn-bmc < process-running.net | bczchaff | ./cex-print

{p1, p2}[t1, t2>{p3, p4}[t3>{p3, p5}[t6>{p3, p6}

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 96/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Demo with Process Semantics (2/3)

$ 1b-pn-bmc < process-running.net | bczchaff -v
Parsing from stdin
The circuit has 161 gates
The input gates are: t6_2 t3_2 t2_2 t5_2 t1_2 t4_2 t6_1 t3_1 t2_1 t5_1 t1_1 t4_1 t6_0 t3_0 t2_0 t5_0 t1_0 t4_0
The circuit has 101 gates and 88 edges after simplification
The circuit has 44 gates and 70 edges after sharing
The circuit has 30 gates and 11 edges after simplification
The circuit has 10 gates and 10 edges after sharing
The circuit has 8 gates and 0 edges after simplification
The circuit has 2 gates and 0 edges after sharing
The circuit has 2 gates and 0 edges after simplification
The circuit has 2 gates and 0 edges after sharing
The circuit has 2 gates after normalization
The circuit has 2 gates and 0 edges after simplification
The circuit has 2 gates and 0 edges after sharing
The max-min height of the circuit is 0
The max-max height of the circuit is 0
The circuit has 0 relevant gates

Note that with the more constrained process encoding, the

preprocessing already solves the circuit.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 97/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Demo with Process Semantics (3/3)

˜p1_1 ˜p2_1 ˜p2_2 ˜p1_2 ˜gp2_2 ˜gp2_1 ˜gp2_3 ˜t2_1 ˜gp4_2 ˜p4_2 ˜p3_0 ˜p4_0 ˜p5_0 ˜p6_0 ˜t3_0
˜gp5_1 ˜p5_1 ˜t6_0 ˜gp6_1 ˜p6_1 ˜t6_1 ˜gp6_2 ˜p6_2 ˜t1_2 ˜gp3_3 ˜p1_3 ˜p2_3 ˜p4_3 ˜p5_3 ˜t5_0
˜t4_0 ˜gp1_1 ˜t5_1 ˜t2_2 ˜gp4_3 ˜t3_2 ˜gp5_3 ˜t4_1 ˜gp1_2 ˜t1_1 ˜gp3_2 ˜t4_2 ˜gp1_3 ˜t5_2 ˜live_3
t3_1 gp5_2 p5_2 gate8 t6_2 gp6_3 p6_3 gate16 p3_3 p3_2 gate15 gate14 gate13 p1_0 p2_0 gate0
gate1 gate2 gate3 gate4 gate5 gate6 gate9 gate10 gate11 gate12 ncp5_2 p4_1 gp4_1 t2_0 gate7
ncp5_0 ncp5_1 p3_1 gp3_1 t1_0 gate17
Satisfiable

No need to invoke zChaff, just output the solution.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 98/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Steps vs. Processes

Unfortunately there is some bad news: processes
are not always faster than steps with the latest SAT
solvers such as zChaff and Siege. (Cause unknown.)

Often a polynomial time preprocessing algorithm is
used to compute the earliest time each transition can
fire or a place can become marked.

This allows for simplification of the BMC encoding by
introducing constant values for variables.

Process semantics can be used as a better
polynomial time preprocessing step as it can prove
for more transitions that they can never be enabled at
certain time points in process executions.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 99/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Steps vs. Processes (cnt.)

The transition relation for steps can be represented
as: T(si, i i,si+1), where i i is the current input vector
(in the running example, the set of transitions to be
fired in step Si : i i = 〈t1(i), t2(i), . . . , t6(i)〉).

The transition relation for processes can be
represented as: T(si, i i−1, i i,si+1), where i i is the
current input vector (step Si) and i i−1 is the previous
input vector (step Si−1).

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 100/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

History Dependence

Thus the process semantics semantics has a history
dependent transition relation.

Another way to present this is to use “three valued
tokens”, a place can either contain: no tokens,
contain a freshly generated token, or contain an old
token.

This makes the use of process semantics
unattractive in a BDD model checking setting, as the
number of state bits needed to represent the state
vector grows.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 101/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Processes and Temporal Induction

It follows from Theorem 17 in
Toni Jussila’s Doctoral dissertation that the
SimplePathconstraint used in the temporal induction
(k-induction) method (to be presented later in this
tutorial) can treat old tokens and fresh tokens alike.

Thus for reachability from the initial state the so
called recurrence diameter (to be defined later) for
processes is never worse for processes than for
steps, but can sometimes even be better.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 102/131

http://lib.tkk.fi/Diss/2005/isbn9512279045/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking LTL-X

One can also do model checking of the temporal
logic LTL-X with step semantics. (Extension to allow
also processes to be used is work in progress.)

LTL-X is the subset of LTL where the next-time
operator X has been removed. This restriction of the
logic is often done also with other partial order
methods.

First one has to identify all visible transitions of the
net, which can modify the truth value of some atomic
proposition in the formula.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 103/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking LTL-X (cnt.)

All of the visible transitions are made to conflict with
each other by adding a new marked place v to the
net, and adding a bidirectional arc from each visible
transition to v.

If the is deadlock free, one can additionally require
that the last step Sk is non-empty to disallow illegal
counterexamples by infinite sequences of idling.

If the net can deadlock, the solution is more subtle,
and we refer to our paper on the subject:
Keijo Heljanko, Ilkka Niemelä:
Bounded LTL model checking with stable models.
TPLP 3(4-5): 519-550 (2003), Cambridge University
Press.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 104/131

http://arxiv.org/abs/cs.LO/0305040

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Steps and AI Planning

In AI planning papers a step like optimisation to
decrease the needed bounds was already used.
Henry A. Kautz, Bart Selman: Pushing the Envelope:
Planning, Propositional Logic and Stochastic Search.
AAAI/IAAI, Vol. 2 1996: 1194-1201.

Rintanen et al. discuss SAT encodings of the step
semantics and its generalisations for AI planning in:
Jussi Rintanen, Keijo Heljanko, Ilkka Niemelä:
Parallel Encodings of Classical Planning as
Satisfiability. JELIA 2004: 307-319, LNCS 3229.

The sizes of the encodings mentioned above are
quadratic in the number of planning operator
instances.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 105/131

http://citeseer.ist.psu.edu/kautz96pushing.html
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3229&spage=307

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Steps and AI Planning

There is a SAT encoding that is linear in the number
of planning operator instances described in:
Rintanen, J., Heljanko, K., and Niemelä, I.:
Planning as Satisfiability: Parallel Plans and
Algorithms for Plan Search. Technical report 216,
Institute of Computer Science at Freiburg University,
2005.

The paper mentioned above contains state-of-the-art
CNF translations for AI planning by Jussi Rintanen.
The STRIPS planning formalism used is a
generalisation of 1-bounded P/T-nets. (A journal
submission of an extended version of the paper
above been accepted.)

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 106/131

http://www.tcs.tkk.fi/~kepa/publications/RintanenHN05report216.pdf

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Other Semantics for BMC

The paper by Rintanen et al. also contains a
generalisation of step executions, which allows a set
of transitions S to be fired as a step if at least one
interleaving of S is executable.

Other new and efficient non-standard execution
semantics for BMC of asynchronous systems have
been presented in: Toni Jussila.
On bounded model checking of asynchronous
systems. Research Report A97, Helsinki University
of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, October 2005. Doctoral
dissertation.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 107/131

http://lib.tkk.fi/Diss/2005/isbn9512279045/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Other Semantics for BMC

One more approach is presented in: Shougo Ogata,
Tatsuhiro Tsuchiya, Tohru Kikuno:
SAT-Based Verification of Safe Petri Nets. ATVA
2004: 79-92, LNCS 3299.

All of the above semantics preserve the set of
reachable states.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 108/131

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3299&spage=79

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Process References

The process normal form we use is basically the
Foata normal form from the theory of Mazurkiewicz
traces. See for example: Diekert, V. and Métivier, Y.:
Partial Commutation and Traces, Handbook of formal
languages, Vol. 3, pp. 457–534, Springer, 1997.

For more on process semantics see for example:
Best, E. and Fernández, C.: Nonsequential
Processes: A Petri Net View, EATCS monographs on
Theoretical Computer Science, Vol. 13, Springer,
1988.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 109/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Steps and Processes for LTSs

Next we describe how to transfer the step and
process semantics to systems composed of a
synchronisation of labelled transition systems (LTSs).

The encoding to be presented has been published in:
Toni Jussila, Keijo Heljanko, Ilkka Niemelä:
BMC via on-the-fly determinization. STTT 7(2):
89-101 (2005).

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 110/131

http://dx.doi.org/10.1007/s10009-004-0178-1

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Intuition: LTS Semantics

We use the standard synchronisation construction for
LTSs (see the paper mentioned in the previous slide
for details): The system consists of n LTSs
L1,L2, . . . ,Ln composed as L = L1

f
L2

f
· · ·

f
Ln.

Each LTS has its own alphabet. The system L can
make a move with a letter a iff every LTS with a in its
alphabet is able to perform it.

When a is performed, every LTS with a in its alphabet
moves, while the others do not change their state.

In addition, each LTS can make local τ-labelled
moves at will, during which the other components of
the system do not change their state.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 111/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Alternative Semantics

Next we show by using a running example what the
state spaces induced by the presented alternative
semantics for LTSs are.

Thanks to Toni Jussila for allowing the use of Figures
from his Thesis in the following slides.
Toni Jussila.
On bounded model checking of asynchronous
systems. Research Report A97, Helsinki University
of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, October 2005. Doctoral
dissertation.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 112/131

http://lib.tkk.fi/Diss/2005/isbn9512279045/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs: Running Example

a

τ a c c

d d

a

s10

s0

s4 s5

s9

s1

s6 s7

s2 s3

s8

s11

The complete system is L = L1
f
L2

f
L3

f
L4.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 113/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs: Interleaving Semantics

The interleaving semantics is as expected:

τ a

a τ a

a τ a

c

d

c

d

c

d

c

d

〈s0,s1,s2,s3〉〈s4,s1,s2,s3〉〈s9,s6,s2,s3〉 〈s5,s6,s2,s3〉

〈s5,s6,s7,s8〉

〈s5,s6,s10,s11〉

a

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 114/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs: Step Semantics

In step semantics two synchronisations are independent
if they occur in disjoint sets of LTSs:

〈s0,s1,s2,s3〉〈s4,s1,s2,s3〉〈s9,s6,s2,s3〉 〈s5,s6,s2,s3〉

〈s5,s6,s7,s8〉

〈s5,s6,s10,s11〉
〈s9,s6,s10,s11〉

〈a,a,ε,ε〉 〈τ,ε,ε,ε〉 〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈τ,ε,ε,ε〉

〈τ,ε,ε,ε〉

〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈a,a,c,c〉

〈a,a,d,d〉

〈a,a,c,c〉

〈a,a,d,d〉

〈ε,ε,d,d〉

〈ε,ε,c,c〉 〈ε,ε,c,c〉

〈ε,ε,d,d〉

〈ε,ε,c,c〉〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈τ,ε,c,c〉

〈τ,ε,d,d〉

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 115/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs: Process Semantics

In the process case a synchronisation can happen at step
Si iff at least one participant of it was active at step Si−1:

〈s0,s1,s2,s3〉〈s4,s1,s2,s3〉〈s9,s6,s2,s3〉 〈s5,s6,s2,s3〉

〈s5,s6,s7,s8〉

〈s5,s6,s10,s11〉
〈s9,s6,s10,s11〉

〈a,a,ε,ε〉 〈τ,ε,ε,ε〉 〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈ε,ε,d,d〉

〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈τ,ε,c,c〉 〈a,a,c,c〉

〈a,a,d,d〉

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 116/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Symbolic Subset Construction

The FSA subset construction can be used to
determinise nondeterministic state machines
symbolically inside BMC.

The tricky part is the correct handling of the τ-moves.

By doing this, the number of executions through the
statespace of the system is further reduced.

It has also other applications: One can, for example,
create a BMC encoding that accepts all words not in
the language of L. This has uses, for example, in
refinement checking of two products of LTSs.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 117/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs: Determinised Interleaving

Interleaving combined with determinising each
component symbolically during BMC:

〈{s0,s4},{s1},{s2},{s4}〉

c c

d d

a

a

a

〈{s0,s4},{s1},{s7},{s8}〉

〈{s5,s9},{s6},{s2},{s4}〉

〈{s5,s9},{s6},{s7},{s8}〉

〈{s5,s9},{s6},{s10},{s11}〉〈{s0,s4},{s1},{s10},{s11}〉

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 118/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs: Determinised Step

Steps combined with determinising each component
symbolically during BMC:

〈{s0,s4},{s1},{s2},{s4}〉

〈{s0,s4},{s1},{s7},{s8}〉

〈{s5,s9},{s6},{s2},{s4}〉

〈{s5,s9},{s6},{s7},{s8}〉

〈{s5,s9},{s6},{s10},{s11}〉〈{s0,s4},{s1},{s10},{s11}〉 〈a,a,ε,ε〉

〈a,a,ε,ε〉

〈ε,ε,c,c〉 〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈a,a,ε,ε〉

〈a,a,c,c〉

〈a,a,d,d〉

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 119/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTSs: Determinised Process

Processes combined with determinising each component
symbolically during BMC:

〈{s0,s4},{s1},{s2},{s4}〉

〈{s0,s4},{s1},{s7},{s8}〉

〈{s5,s9},{s6},{s2},{s4}〉

〈{s5,s9},{s6},{s7},{s8}〉

〈{s5,s9},{s6},{s10},{s11}〉〈{s0,s4},{s1},{s10},{s11}〉

〈a,a,ε,ε〉

〈ε,ε,c,c〉

〈ε,ε,d,d〉 〈ε,ε,d,d〉

〈a,a,c,c〉

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 120/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Determinisation Discussion

The determinised versions preserve the language
over the alphabet of L.

The τ-moves do not contribute to the bound needed.

The input variables needed for the determinised
versions are: one input variable for each symbol in
the alphabet of L per time step.

Thus the determinised version of the encoding can
be very attactive for small alphabets.

The reachability of local states is preserved.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 121/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Determinisation Discussion (cnt.)

Global state predicates such as deadlock freedom
need to be evaluated by guessing a representative
final state from the set of final states reached, see
the paper for details.

Explicit state determinisation of components can be
a viable alternative in many cases, however, there is
the potential for an exponential size blowup.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 122/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

LTS Encoding

In the following we present by using a running
example few of the main ideas of the encoding of the
determinised process executions.

See the STTT paper or Toni Jussila’s Thesis for more
details.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 123/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Technical Restriction

For technical reasons, we add the following
constraint on component LTSs:

If a component LTS contains a loop consisting of
τ-transitions only, the loop must be a self-loop.
(Easy to assure by pre-processing LTSs to ones
fulfilling the condition using a linear-time
algorithm based on Tarjan’s MSCC algorithm.)

Without the above restriction the encoding becomes
unsound! (It would become a cyclic circuit.)

Also the sets of initial states are extended to contain
all states reachable from the initial state of each
component by using only τ-moves.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 124/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Running Example for LTS Encoding

L1: s0 ď L2: s4 ď
¶

¶
¶

¶/

l1,a
S

S
S
Sw

l2,a

N

l3,a ?

l5,a

ds1 ds2 ds5
S

S
S
Sw

τ
¶

¶
¶

¶/

τ
¼

l4,b
?

l6,b

ds3 ds6

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 125/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Translation Predicates

Gate Description

ex(a, t) Action a is executed at time t, input gate.

in(s, t) Execution is in state s at time t.

sc(L, t) Component L is scheduled at time t.

ex(l , t) Transition l is executed at time t.

uv(L, t) Unique visible transition from L at time t.

enok(a, t) Execution of action a implies that it is enabled at time t.

en(a, t) Action a is enabled at time t.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 126/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Progress of Control Flow

µ´
¶³
∨in(s3, t +1)

©©©©©©©©©*

HHHHHHHHHY
6

µ´
¶³
∧ µ´

¶³
∨ µ´

¶³
∨

SSo

6£
£
£
££± ¶¶7 SSo ¶¶7 SSo

µ´
¶³

in(s1, t +1)
µ´
¶³

in(s2, t +1)
µ´
¶³

ex(l3, t)
µ´
¶³

ex(l4, t)

µ´
¶³

in(s3, t)

µ´
¶³
¬

µ´
¶³

sc(L1, t)

We stay in a state if the component is not scheduled.
A state can be entered either by τ-edges or by firing
of incoming transitions.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 127/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Scheduling (left), Execution (right)

µ´
¶³
∨sc(L1, t)

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

ex(a, t)
µ´
¶³

ex(b, t)

µ´
¶³

ex(l6, t) ∧

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

ex(b, t)
µ´
¶³

in(s5, t)

A component is scheduled iff one of the actions in its
alphabet fires.

A transition is always executed if we are in its source
state and the action it is labeled with is fired.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 128/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Unique visible (left), Noidle (right)

µ´
¶³
[0,1]uv(L1, t) >

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

ex(a, t)
µ´
¶³

ex(b, t)

µ´
¶³
∨ni(t) >

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

ex(a, t)
µ´
¶³

ex(b, t)

The uv(L1, t) gate disallows more than one action
from the alphabet of L1 at each step.

The use of non-idling constraint ni(t) is a slight
variation to the P/T-net encoding. Here we disallow
idling time steps.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 129/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Enabledness, Synchronisation

µ´
¶³
→enok(a, t) >

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

ex(a, t)
µ´
¶³
∧

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

en(a,L1, t)
µ´
¶³

en(a,L2, t)

µ´
¶³
∨en(a,L1, t)

6

µ´
¶³

in(s0, t)

µ´
¶³

>→pr(b,2)

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

ex(b,2)
µ´
¶³
∨

¢
¢
¢
¢¢̧

A
A

A
AAK

µ´
¶³

sc(L0,1)
µ´
¶³

sc(L1,1)

The two circuits on the left ensure that all
components are able to perform the synchronisation
on action a. The circuit on the right enforces the
process constraint when synchronising on action b.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 130/131

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Conclusions of Tutorial part 1

Bounded model checking (BMC) is an efficient way
of implementing symbolic model checking.

It alleviates the state explosion by representing the
state space implicitly as a propositional formula.

It leverages efficient SAT-solver technology.

The choice between different transition relation
encodings has been often overlooked in BMC
literature.

The performance differences between different
transition relation encodings are very significant, at
least for asynchronous systems BMC.

Advanced Tutorial on Bounded Model Checking at ACSD’06 - ATPN’06, Keijo Heljankoand Tommi Junttila – 131/131

	Organisers
	Thanks
	Tutorial Homepage
	Software failures
	Price of Software Defects
	Pentium FDIV - Software bug in HW
	Ariane 5
	Finding Bugs in Concurrent Systems
	Why is Testing Hard?
	Simulation
	Deductive Verification
	Model Checking
	Models and Properties
	Benefits of Model Checking
	Drawbacks of Model Checking
	Model Checking in the Industry
	Modelling Languages
	Some Model Checking Approaches
	Bounded Model Checking
	Basics of Bounded Model Checking
	SAT
	SAT References
	Basic Setup
	A Simplifying Assumption
	Unrolling the Transition Relation
	Circuit BMC Unrolling
	Circuit BMC Unrolling Solution
	Expressing Invariants
	Final formula
	Reachability Diameter
	Unsatisfiable - Increase the bound
	BMC: Pros and Cons
	Alternative Transition Relations
	Encoding the Transition Relation
	Transition Relation Encoding
	Asynchronous Systems Case
	Petri nets
	Running Example P/T-net
	The running Example
	Behaviour of P/T-nets
	Behaviour of P/T-nets
	Enabling of transitions
	Firing of transitions
	Reachability graph
	Reachability Graph
	Reachability graph (cnt.)
	Interleaving Executions
	Conjunctive Normal Form (CNF)
	Constrained Boolean Circuit SAT
	Boolean Circuit Format
	From Circuits to CNF
	From Circuits to CNF (cnt.)
	Cardinality Gates
	Cardinality Gates (cnt.)
	The Transition Relation Encoding
	Running Example (recap)
	State Variables and Inputs
	P/T-net Transition Relation Unrolling
	Initial Marking
	Token Updating
	Translation for Place p_5
	Transition Enabling
	Translation for Transition t_4
	Removing Conflicting Transitions
	Removing Conflicts
	Interleaving Semantics
	Optional Idling Removal
	Deadlock Detection
	Deadlock Checking Demo (1/3)
	Deadlock Checking Demo (2/3)
	Deadlock Checking Demo (3/3)
	Step Semantics
	Step Reachability graph
	Some Properties of Steps
	Step Reachability Graph
	Properties Steps Graphs
	Running Example: Steps
	Encoding the Step Semantics
	Steps: Removing Conflicts
	Steps: Removing Conflicts wrt.{ }p_5
	Demo with Step Semantics (1/3)
	Demo with Step Semantics (2/3)
	Demo with Step Semantics (3/3)
	Interleaving vs.{ }Steps
	Running Example (recap2)
	Process Semantics
	Process Semantics (cnt.)
	The Process Normal Form
	Process Normal Form Intuition
	Normalising a Step Execution
	Process
	Properties of Processes
	Encoding Process Semantics
	Process Translation for t_4
	Demo with Process Semantics (1/3)
	Demo with Process Semantics (2/3)
	Demo with Process Semantics (3/3)
	Steps vs.{ }Processes
	Steps vs.{ }Processes (cnt.)
	History Dependence
	Processes and Temporal Induction
	Model Checking LTL-X
	Model Checking LTL-X (cnt.)
	Steps and AI Planning
	Steps and AI Planning
	Other Semantics for BMC
	Other Semantics for BMC
	Process References
	Steps and Processes for LTSs
	Intuition: LTS Semantics
	Alternative Semantics
	LTSs: Running Example
	LTSs: Interleaving Semantics
	LTSs: Step Semantics
	LTSs: Process Semantics
	Symbolic Subset Construction
	LTSs: Determinised Interleaving
	LTSs: Determinised Step
	LTSs: Determinised Process
	Determinisation Discussion
	Determinisation Discussion (cnt.)
	LTS Encoding
	Technical Restriction
	Running Example for LTS Encoding
	Translation Predicates
	Progress of Control Flow
	Scheduling (left),
Execution (right)
	Unique visible (left),
Noidle (right)
	Enabledness, Synchronisation
	Conclusions of Tutorial part 1

