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Abstract. Various authors have previously presented different approaches how
to exploit multiple linear approximations to enhance linear cryptanalysis. In this
paper we present a new truly multidimensional approach to generalise Matsui’s
Algorithm 1. We derive the statistical framework for it and show how to cal-
culate multidimensional probability distributions basedon correlations of one-
dimensional linear approximations. The main advantage is that the assumption
about statistical independence of linear approximations can be removed. Then
we apply these new techniques to four rounds of the block cipher Serpent and
show that the multidimensional approach is more effective in recovering key bits
correctly than the previous methods that use a multiple of one-dimensional linear
approximations.

1 Introduction

Linear cryptanalysis introduced by Matsui in [1] has becomeone of the most important
cryptanalysis methods for symmetric ciphers. Matsui analysed the DES block cipher
using a linear approximation of the known data bits, which holds with a large correlation
independently of the key, and presented two ways of exploiting this property: Algorithm
1 which determines one bit from the secret key and Algorithm 2which recovers a part
of the last (or first) round key bits. Originally, only one approximative linear relation
was used. In [2], two approximations were used to reduce the amount of data needed
for the attack. This idea was developed further by Kaliski and Robshaw in [3], and
later by Biryukov, et al., in [4], where the goal was to use several linear approximations
simultaneously in order to recover more key bits with equal amount of data. In both
[3] and [4] the fundamental assumption was that the approximations are statistically
independent. This assumption is hard to verify in practice.The main contribution of
this paper is to remove this assumption.

In [5], Baignères, et al., analysed the statistical properties of multidimensional linear
approximations without the assumption of statistical independence. They proved that by
using multiple approximations, less data is needed to have the same level of test as with
only one approximation. However, their target system was a block cipher, which was
assumed to have a Markovian property [6]. Consequently, no practical way of building
the probability distributions for the purposes of Matsui’sAlgorithm 1 can be found.

In [7] Englund and Maximov calculated directly the multidimensional probability
distribution needed for the distinguisher. However, theircalculations become infeasible



for systems with word-size of 64 or more. In this paper, it will be shown how one-
dimensional linear approximations can be combined to determine the multidimensional
linear approximation and the corresponding probability distribution. The method can
be applied to both stream and block ciphers of any word size.

The goal of this paper is to present a key recovery attack by generalising Algo-
rithm 1 to the multidimensional case. This algorithm will becompared with the method
suggested by Biryukov, et al., in [4] and the experimental results presented in [8].

The structure of this paper is as follows: In Sect. 2 the notation and the theoret-
ical basics needed in this paper are given. Section 3 starts with showing how linear
one-dimensional approximations can be used to make multidimensional linear approxi-
mations. Using the results of [5] it is then shown that it is advantageous to use multiple
approximations instead of just one. The rest of the Sect. 3 shows how to generalise Mat-
sui’s Algorithm 1. Section 4 shows how the method can be applied to the block cipher
Serpent. The results will also be compared to those presented in [8], where Biryukov’s
method was applied to Serpent. Finally, Sect. 5 draws conclusions.

2 Probability Distribution of a Boolean Function

We will denote the space ofn-dimensional binary vectors byVn. The inner product is
defined fora = (a1, . . . , an), b = (b1, . . . , bn) ∈ Vn asa · b = a1b1 + · · · + anbn, where+
is sum modulo 2.

A function f : Vn→ V1 is called a Boolean function. A functionf : Vn → Vm with
f = ( f1, . . . , fm), where fi are Boolean functions is called a vector Boolean function
of dimensionm. A linear Boolean function fromVn → Vm is represented by anm× n
binary matrixU. Them rows ofU are denoted byu1, . . . , um, where eachui is a binary
vector of lengthn.

A random variable (r.v.) is denoted by boldface, capital letters, e.g.,X,Y,Z, . . . .
The abbreviation i.i.d. will mean independent and identically distributed.

Let Y be a r.v. inVm, and denote bypη = Pr(Y = η). Then the probability distribu-
tion (p.d.) ofY is the vectorp = (p0, . . . , p2m−1). Let f : Vn → Vm be a vector Boolean
function, and letX be a r.v. inVn with the 2n-dimensional uniform distribution vector
θn = 2−n(1, . . . , 1). Then we associate withf a r.v. Y = f (X) in Vm with a probabil-
ity distribution p( f ) = (p0( f ), . . . , p2m−1( f )), where Pr(f (X) = η) = pη( f ), η ∈ Vm.

This p.d. is called the probability distribution off and is denoted byp( f ). We may
also abbreviatepη( f ) by pη if the function is clear from the context. Two Boolean func-
tions f andg are called statistically independent if the associated r.v.’s are statistically
independent.

The correlation between a binary r.v.X and zero is defined as Pr(X = 0)−Pr(X = 1).
The correlation of a Boolean functiong : Vn → V1 to zero shall be referred to as the
correlation (ofg) and is defined as

2−n (#{ ξ | g(ξ) = 0 } − #{ ξ | g(ξ) = 1 }) = 2 Pr(g(X) = 0) − 1,

whereX is uniformly distributed.
Capacity was defined by Biryukov in [4] where they showed thatit was inversely

proportional to the data complexity of their distinguishing attack. We will now gener-
alise the definition.



Definition 1. Let p= (p0, . . . , pM) and q= (q0, . . . , qM) be two p.d.’s. Their (mutual)
capacity is then

C(p, q) =
M
∑

η=0

(pη − qη)2

qη
. (1)

If M = 2m − 1 and q= θm is uniform then C(p, θm) = 2m ||p− θm||22 will be called the
capacity of p and we will denote it by C(p). It can also be called the Squared Euclidean
Imbalance [5].

In the next section, we will see that the generalised capacity will be inversely propor-
tional to the data complexity of a multidimensional linear distinguisher.

3 Multidimensional Approximation of Boolean Functions

3.1 From One-Dimensional Probability Distributions to Multiple Dimensions

Let f : V` → Vn be a vector Boolean function and binary vectorswi ∈ Vn andui ∈
V`, i = 1, 2, . . . , ,m be linear masks such that the paired masks (ui,wi) are linearly
independent. Let us define functionsgi by

gi(ξ) B wi · f (ξ) + ui · ξ, (2)

and assumegi ’s have correlationsρi , i = 1, 2, . . . ,m.We will call these correlations the
base-correlations, and the corresponding linear approximations off the base-approxima-
tions. We want to find the p.d. of them-dimensional linear expression

g(ξ) BW f(ξ) + Uξ,

whereW = (w1, . . . ,wm),U = (u1, . . . , um) andg = (g1, . . . , gm). Let the p.d. ofg be p.
Assume that we have the correlationsρ(a) of all the linear mappingsa · g of g, a ∈ Vm.
If ei = (0 . . .010. . .0) with 1 at theith position, thenρ(ei) = ρi , i = 1, . . . ,m.We will
call the correlationsρ(a), a , ei the combined correlations off and the corresponding
approximations the combined approximations. Recall the following lemma from [9].

Lemma 1. Let g= (g1, . . . , gm) : Vn → Vm be a vector-valued Boolean function and p
it’s p.d. Then

2npη = 2−m
∑

a∈Vm

∑

ξ∈Vn

(−1)a·(g(ξ)+η).

The correlationsρ(a) can be written as

ρ(a) = 2−n
∑

ξ∈Vn

(−1)a·g(ξ).

Using this and Lemma 1 we get the following corollary that connectsp and the one-
dimensional correlationsρ(a):



Corollary 1. Let g : Vn → Vm be a Boolean function with p.d. p and one-dimensional
correlationsρ(a) of a · g. Then

pη = 2−m
∑

a∈Vm

(−1)a·ηρ(a).

The following corollary is obtained using Parseval’s theorem. An equivalent form of it
can be found in [5], where the proof was based on the inverse Walsh-Hadamard trans-
form of the deviationsεη from the uniform distribution,εη = pη − 2m.

Corollary 2. Let g be the Boolean function defined as previously with p.d. p. Then

C(p) = 2m
∑

η

ε2η =
∑

a,0

ρ(a)2.

We will need this equality in the next section where we study how linear distinguishing
is done in multiple dimensions.

3.2 One vs. Multidimensional Linear Distinguishers

In this section we will present the general statistical framework of multidimensional
approximation.

The theory of hypothesis testing can be found for example in [10]. Here we will
restrict to the most essential parts of the theory. Assume wehave two p.d’sp andq,
q , p and consider two hypotheses:H0 states that the experimental datazN of N words
is derived fromp andH1 states thatzN is derived fromq.

In the one-dimensional case, we have a linear approximationsuch as (2). Letρ be
the correlation of the approximation. The number of bitsN1 needed to distinguishzN

from a random sequence isλ/ρ2, whereλ depends on the level and the power of the
test. It was already noted in [1] that the data complexityN1 is proportional to 1/ρ2. For
proof, see [11]. Note that the bias used in [1] is the correlation divided by two.

The data complexity of the attack in [4] using multiple linear approximations, was
shown to be proportional toNs.i., where

Ns.i. =
1

∑m
i=1 ρ

2
i

=
1
c̄2
, (3)

andc̄2 is the capacity as defined in [4]. This means a significant improvement in data
complexity, but relies on the assumption that the base approximations are statistically
independent.

Let us next study the case of multiple approximations without the assumption of
statistical independence. The log-likelihood ratio (LLR)is defined as follows:

l(zN) =
M
∑

η=0

N(η) log
pη
qη
, (4)

wherep andq are defined as in Definition 1 andN(η) is the experimental frequency of
the valueη in zN. The LLR was used as the distinguisher in [5] to proof the following
theorem.



Theorem 1. Let us have a hypothesis testing problem with H0 stating that the datazN

is drawn i.i.d. from p.d. p and H1 stating that the data is drawn from q, p. Assume
that the p.d’s are close to each other:

|qη − pη| � qη, for all η. (5)

Then the amount of data needed for distinguishing the hypotheses is proportional to

N =
λ

C(p, q)
, (6)

whereλ depends on the level and the power of the test.

If we want to distinguish a distribution of some data relatedto a cipher from that of
a truly random source we will use the previous hypothesis test with q as the ciphers
p.d. andp as the uniform distribution. Using (2) we will see thatNs.i. given by (3) is
actually greater than the true amount of data needed form ≤ n linear approximations,
since by using Corollary 2, the latter is proportional to

Nm =
λ

C(q)
=

λ
∑

a,0 ρ(a)2
.

In an “optimal case” we can make anm-dimensional approximation where all the corre-
lationsρ(a) are (in absolute) value equal to the maximal one-dimensional correlations.
If N1 is the data requirement for one approximation, thenNm = N1/(2m − 1). On the
other hand, if only a single one-dimensional approximationhas a large correlation, then
Nm ≈ N1 and it is not useful to use multiple approximations.

In [5] Markovian block ciphers were analysed using multidimensional distinguish-
ers on the probability distributions related to the Markovian transition probabilities av-
eraged over the keys. Hence, their main goal was to improve the efficiency of Algorithm
2. Next, we will generalise Matsui’s Algorithm 1 to the multidimensional case. In the
practical experiments we use Corollary 1 to determine the related multidimensional
probability distributions from the correlations of the one-dimensional linear approxi-
mations.

3.3 Key Recovery Attack

We will show how to findm key bits of the keyK using a multidimensional version
of Algorithm 1. LetX be a uniformly distributed r.v. andY = f (X), where (X,Y) is a
plaintext-ciphertext pair. We consider the r.v.

UX ⊕WY ⊕ VK, (7)

with a fixed unknown keyK, and usep to denote the r.v.’s p.d. HereU = (u1, . . . , um),W =
(w1, . . . ,wm) andV = (v1, . . . , vm) are some maskmatrices. This approximation can be
generated from linearly independent one-dimensional approximations with correlations
ρ1, . . . , ρm using Corollary 1 (assuming that we are also given the combined correla-
tions). The linear mappingV divides the key space to equivalence classesk = VK ∈ Z.



The bitski = vi · K are called the parity bits. For eachk the expected p.d.pk of
Zk = UX ⊕WY for the distribution originating from the empirical data will be some
permutation ofp determined by the key (class)k. For the purposes of this study, we
assume that all the keys give distinct permutations such that pk

, p j , if k , j.
Biryukov’s attack introduced in [4] usesm′ ≥ m linear approximations to select the

correct key class fromZ. It has three phases: distillation, analysis and search phases.
They can be described as follows:

1. Distillation phaseObtainN plaintext-ciphertext pairs (xt, yt) and calculate the em-
pirical correlation vector̂c = (ρ̂1, . . . , ˆρm′).

2. Analysis phaseFor each key classk, give the key a rankdk and make a sorted list
of the keys with smallestdk at the top of the list.

3. Search phaseRun through the list and try all keys contained in the equivalence
classes until the correct key is found.

The statistic used isdk = ||ĉ− ck||2 , whereck = ((−1)k1ρ1, . . . , (−1)km′ρm′ ), a vector
consisting of the theoretical correlations and the parity bits of k. In addition a measure
“gain” was defined to analyze the success of the method takinginto account the time
complexity of the search phase.

The purpose of our multidimensional approach is to improve the distillation phase
in theory and in practice. In order to compare the distillation phase of Biryukov’s and
our multidimensional method, we discuss a plain multiple linear cryptanalysis method
(the plain method), which is similar to the Biryukov’s method but without the grading
of the key candidates. We measure the success of the plain method and our method
using the probabilityPOK, which is the probability that the right key is at the top of the
list. We assume that the plain method usesm linearly and statistical independent linear
approximations and recoversm bits of the key based on the deviationsdk. Let q be the
experimental p.d. constructed from the data. Our method uses them base approxima-
tions, 2m−m− 1 combined approximations and the Kullback-Leibler distance between
q and pk. The Kullback-Leibler distance is used in measuring the difference between
p.d.’s. It can be seen to be related to the LLR:

Definition 2. The relative entropy or the Kullback-Leibler distance between two distri-
butions p= (p0, . . . , pM) and q= (q0, . . . , qM) is defined as

D(q||p) =
M
∑

η=0

qη log
qη
pη
. (8)

Then, in the analysis phase, instead of a grading problem we face the following multiple
hypothesis testing problem.

Theorem 2. Let us have an|Z|-ary hypothesis problem, with|Z| hypotheses Hk stating
that the data originates from pk, where k∈ Z corresponds to the key. The hypothesis
for which the Kullback-Leibler distance D(q||pk) is smallest is selected. Given some
success probability POK, the lower bound Nkey for the amount of data needed to give the
smallest value of the statistic when the correct key is used,is given by

Nkey≈
4 log2 |Z|

min j,0 C(p0, p j)
. (9)



Proof. For each keyk we must distinguishpk from p j , for all j , k. Using Proposition
3 in [5], the probability that we choosej whenk is true is

Pr(H j |Hk) = Φ
(

−
√

Nk jC(pk, p j)/2
)

,

whereΦ is the distribution function of the normed normal distribution. Let the prob-
ability of successfully distinguishingHk from all the other hypotheses bePOK. Then
POK =

∏

j,i(1− Pr(H j |Hk)). AssumeNk jC(pk, p j)� 1 for all j , k. Then

POK ≈ exp

















− 1
√

2π

∑

j,k

e−Nk jC(pk,pj )/4

















. (10)

Let Nk = maxj Nk j. Since we have to collect the amount ofNk for at least one test
with k we can use the same amount for all the tests. On the other hand,let us define
ck = min j C(pk, p j). Replacing the capacities withck, Nk must be increased to get the
required success probability. We get a lower bound forNk by solvingNk from (10)

Nk ≈
4 log2 |Z| − 4 ln(

√
2π ln POK)

ck
.

Since we do not know whichk is the right key, we have to chooseN = maxk Nk to be
able to find the right key. Sincep j ’s are each others’ permutations, we haveC(pk, p j) =
C(p0, pk+ j). But thenck = mins,0 C(p0, ps) = c0 which is independent ofk and (9)
follows. ut

Note that we need the assumption thatpi
, p j to ensure that minj C(p0, p j) , 0.

In [5] a similar formula was derived for the purposes of Algorithm 2 to distinguish
the distribution related to the correct key from the, presumably uniform, distribution
related to a wrong key. Formula (9) gives an estimate how muchdata is needed to
reliably determine which of the|Z| distributions gives the best fit with the empirical
data. Exactly the same calculations can be done to the Biryukov’s statistic with the help
of proof of Theorem 1 in [4]. Then the data complexity of the plain attack is proportional
to Nplain which is given by the formula

Nplain =
8 log2 |Z|

min j,k j,k

∣

∣

∣

∣

∣

∣ck − c j

∣

∣

∣

∣

∣

∣

2

=
2 log2 |Z|
min j ρ

2
j

.

Since the denominator inNkey is usually much larger than inNplain, we haveNplain >

Nkey. Especially, if the combined correlations are large, the advantage is significant.
The data, time and memory complexities of distillation and analysis phases have

been given in Table 1. The main difference in the complexities between our method
and the plain method is due to the fact that our method uses thefull m-dimensional
distributions and needs to compute 2m empirical values from the data, while the plain
method determines only them entries of the empirical correlation vector ˆc.

The main improvements introduced by Biryukov, et al., in [4]is the implementation
of the key ranking procedure and its statistical treatment using the concepts of capacity



Table 1.Complexities of Algorithm 1 for plain, Biryukov’s and our multidimensional method

Distillation Analysis
Plain Biryukov Our method Plain Biryukov Our method

Data O(Nplain) O(Ns.i.) O(Nkey) - - -
Time O(mNplain) O(m′Ns.i.) O(2mNkey) O(m|Z|) O(m′|Z|) O(2m|Z|)

Memory O(m) O(m′) O(2m) O(|Z|) O(|Z|) O(|Z|)

and gain which helps to reduce the lower bound of the data complexity to Ns.i.. For
additional improvement of the practical performance of their method, Biryukov, et al.,
extend the base set of them linearly (and presumably also statistically) independent
approximations with combined approximations. This extension was justified in [4] by
informal arguments and assuming that the linear approximations also in the extended
set are statistically independent. Statistical independence of linear approximations is
difficult to verify in practice. One method would be to evaluate experimentally the cor-
relations of all linear combinations of the approximationsand use Piling-Up Lemma
[1] to check for statistical independence. In practical applications of the method of
Biryukov, et al., in [4] and [8], statistical independence was not verified. Let us denote
by m′ the number of approximations used, wherem ≤ m′ < 2m. The resulting com-
plexities are given in Table 1. Selection ofm is always a trade-off between complexity
and maximising the capacity. Typical values formandm′ are, for example,m= 10 and
m′ = 86 in [4] andm= 10 andm′ = 64 in [8]. Also often|Z| = 2m.

In the next section we will compare Biryukov’s method and ourmethod in practice
using small experiments on the four-round Serpent. The same“test-bed” was previously
used by Collard, et al., in [8] to carry out experiments of Biryukov’s method. When
comparing our results with their results we can see that similar advantage in practi-
cal performance can be achieved using our method and the Biryukov’s with m′ > m,
compared to the plain method with justm approximations. In addition, our method has
a few important advantages over the Biryukov’s. We provide sound theoretical justi-
fication for using combined approximations. More importantly, no assumption about
statistical independence of the approximations is needed.

4 Multidimensional Linear Attack on 4-Round Serpent

Serpent [12] is one of the block ciphers proposed to the Advanced Encryption Stan-
dard (AES) competition. It was selected to be among the five finalists [13]. The best
known linear approximation of 9-round Serpent was reportedby Biham et al. in FSE
2001 [14]. Recently, experimental results on multiple linear cryptanalysis of 4-round
Serpent were presented by Collard, et al., in [8]. In this section, we will apply the mul-
tidimensional linear attack to the reduced round Serpent and compare our results to the
previous attacks presented in [8].



4.1 Multidimensional linear attack on 4-round Serpent

In [8], authors used maximumm′ = 64 linear approximations to perform Matsui’s Al-
gorithm 1 type -attack on 4-round Serpent. The detailed description of approximations
can be found in [15]. Those 64 linear approximations used in the attack are not linearly
independent. Hence, strictly speaking, the attack in [8] isnot consistent with the tech-
nique in [4] which assumes that multiple approximations arestatistically independent.
On the other hand, our attack does not require such a statistical assumption. One can
exploit as many approximations with non-negligible correlations as possible for recov-
ering the targeted key bits without such restriction.

In experiments, we chose a 4-round linear trail (fromS4 to S7) that was used in
[8]. We picked upm = 10 linearly independent approximationsL0, ..., L9 which can
be used to recover 10 bits of the first round key.3 The input and output masks of the
approximations used in our attack are listed in Table 2. Let us denoteLi as follows:

Table 2. Input and output masks used for the multidimensional linearattack

index mask= (MSB, . . . , LSB)

input mask

u0 (0x70000000, 0x00000000, 0x00000000, 0x07000900)
u1 (0x70000000, 0x00000000, 0x00000000, 0x07000B00)
u2 (0x70000000, 0x00000000, 0x00000000, 0x0B000900)
u3 (0xB0000000, 0x00000000, 0x00000000, 0x07000900)
u4 (0x70000000, 0x00000000, 0x00000000, 0x07000500)
u5 (0x70000000, 0x00000000, 0x00000000, 0x07000600)
u6 (0x70000000, 0x00000000, 0x00000000, 0x07000C00)
u7 (0x70000000, 0x00000000, 0x00000000, 0x01000900)
u8 (0x70000000, 0x00000000, 0x00000000, 0x0A000900)
u9 (0xB0000000, 0x00000000, 0x00000000, 0x03000B00)

output mask w (0x00007000, 0x03000000, 0x00000000, 0x00000000)

ui · P+ w ·C = vi · K i = 0, . . . , 9 (11)

whereui ,w andvi stand for the input mask, output mask and the key mask, respectively
andP,C andK represent the plaintext, ciphertext and the key, respectively. Note that
the output maskw is identical for all the approximations since this experiment targets
the first round key, not the last one.

Let Q = span{L0, ..., L9} such thatQ is a set of approximations generated by the 10
base approximationsLi . Then,|Q| = 210 − 1. Note that the 64 linear approximations
used in [8] form a subset of Q.

3 We can find maximum 12 linear appr. to recover 12 bits of the first round key from this linear
trail. However, we targeted only 10 bits of the key for directcomparison of the performance
between the Biryukov’s attack and multidimensional attack.



Our experiments were performed in two ways: In the first experiment, we used all
the linear approximations of the set Q. Among 210 − 1 linear approximations of the Q,
we found that 200 of them held with non-negligible correlations, as listed in Table 3.
The correlations of the approximations were calculated by the Piling-up lemma [1]. We

Table 3.Correlations of approximations

correlation # of approximations
64 appr.10 base appr., 200 non-negligible

2−11 8 8
2−12 56 64
2−13 0 128

note that their real correlations can be different from calculated ones due to the effect of
correlations of other linear trails using the same input andoutput masks. However, we
assume that the theoretical correlations of the approximations are close to the calculated
correlations.

In the second experiment, we generated fromL0, ..., L9 the 64 linear approximations
which were the same as those used in [8] and used them in our method while approxi-
mating the rest of the combined correlations to be zero. In this manner we get a rougher
approximation of the full 10-dimensional p.d. than with using 200 approximations. The
purpose of this experiment was to compare the performance ofthe Biryukov’s attack to
that of our attack when the same approximations are exploited in both attacks.

For comparison, we applied both the Biryukov’s and our method to the 4-Round
Serpent and measured their gains by experiment so that we could compare our method
with the results in [8]. It was already noted in [8] that the plain method (usingmapprox-
imations) gives poorer results than the Biryukov’s method (usingm′ > m approxima-
tions). No explanation was given to this heuristics in [4] or[8]. Following the theory of
the previous sections this heuristic can be justified: Increasingm′ makes the Biryukov’s
method approximate the real multidimensional method. However, since the LLR is the
optimal statistic, the Biryukov’s method cannot perform better than our method even
whenm′ = 2m− 1.

According to Lemma 1 in [4], the key classk is determined by searching for the
minimum Euclidean distance||ĉ− ck||2 , whereĉ = (ρ̂1, . . . , ˆρ10) is the estimated corre-
lation of ten approximations. On the other hand, in our attack, we measure the empir-
ical probability distributionsq of multiple approximations and determine the key class
k by searching for the minimum Kullback-Leibler distanceD(q||pk), wherepk is some
permutation of the theoretical probability distributionp. The p.d.p is computed by
Corollary 1 using theoretical correlations of one-dimensional approximations. The p.d.
q could be calculated in the same way by using the experimentalcorrelations but in this
work it was constructed directly using 2m counters.

We performed the experiments repeatedly 100 times and obtained the average gain
of each method. We used a different 128-bit key that was randomly selected each time.



The results are displayed in Fig. 1. For comparison, the gainγ of the attack was mea-
sured using the formula which was introduced in [4] as follows

γ = − log2
2 · M − 1

210

In Fig. 1, the multidimensional attack using 10 linearly independent approximations
with full span (200 non-negligible approximations) reaches the full gain at around 222

texts. Compared to this result, Biryukov’s attack shows that the gain of the attack is
saturated with around 223 texts. Hence, this experiment shows that our method requires
less data to get the same accuracy as Biryukov’s method. The plain method withm= 10
approximations would give even weaker results not reachingthe maximum gain until
with about 226 texts, see Fig. 5 of [8].
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Fig. 1. Comparison of the gain of the different attacks using multiple linear approximations

5 Conclusions

In this paper we investigated a few different approaches presented in recent years on
linear cryptanalysis using multiple approximations. We used the statistical theory pre-
sented in [5] and developed a new multidimensional cryptanalysis attack. For this pur-
pose, we also showed how to construct multidimensional linear approximations from



one-dimensional approximations. The main advantage of thenew method is that the
assumption on statistical independence of the linear approximations can be removed.

We also applied our method to the 4-round version of block cipher Serpent that
was studied in [8] using Biryukov’s method [4]. We studied the cases of 10 linear ap-
proximations, showed how to make multidimensional approximations from them and
measured the success of recovering 10 key parity bits.

We also saw in Table 3 examples where the combined approximations had corre-
lations of the same magnitude as the base approximations. This demonstrates that the
assumption about statistical independence between the base approximations needed in
Biryukov’s method used in [8] does not hold. The theoreticalframework presented in
this paper removes the need of this assumption.
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A Brief Description of Serpent Algorithm

We use the notation of [12]. Each intermediate value of roundi is denoted byB̂i (a
128-bit value). EacĥBi is treated as four 32-bit wordsX0,X1,X2,X3 where bit j of Xi is
bit 4 ∗ i + j of the B̂i. Serpent has a set of eight 4-bit to 4-bit S BoxesS0, . . . ,S7 and a
128-bit to 128-bit linear transformationLT. Each round functionRi uses a single S-box
32 times in parallel.

Serpent ciphering algorithm is formally described as follows.

B̂0 = P ˆBi+1 = Ri(B̂i) C = B32,

where

Ri(X) = LT(Ŝi(X ⊕ K̂i)), i = 0, . . . , 30

Ri(X) = Ŝi(X ⊕ K̂i) ⊕ K̂32, i = 31.

The linear transformationLT is described as follows.

X0,X1,X2,X3 = Si(Bi ⊕ Ki)

X0 = X0≪ 12

X2 = X2≪ 3

X1 = X1 ⊕ X0 ⊕ X2

X3 = X3 ⊕ X2 ⊕ (X0≪ 3)

X1 = X1≪ 1

X3 = X3≪ 7

X0 = X0 ⊕ X1 ⊕ X3

X2 = X2 ⊕ X3 ⊕ (X1≪ 7)

X0 = X0≪ 5

X2 = X2≪ 22

Bi+1 = X0,X1,X2,X3

The detailed description of Serpent can be found in [12].


