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Abstract. Various authors have previously presentefiiedent approaches how
to exploit multiple linear approximations to enhance lineyptanalysis. In this
paper we present a new truly multidimensional approach teigdise Matsui’'s
Algorithm 1. We derive the statistical framework for it ankdos/ how to cal-
culate multidimensional probability distributions basad correlations of one-
dimensional linear approximations. The main advantaglds the assumption
about statistical independence of linear approximaticars lee removed. Then
we apply these new techniques to four rounds of the blockeci@erpent and
show that the multidimensional approach is mdfedtive in recovering key bits
correctly than the previous methods that use a multiple efdimensional linear
approximations.

1 Introduction

Linear cryptanalysis introduced by Matsui in [1] has became of the most important
cryptanalysis methods for symmetric ciphers. Matsui asedythe DES block cipher
using a linear approximation of the known data bits, whicldbavith a large correlation
independently of the key, and presented two ways of exptpthiis property: Algorithm
1 which determines one bit from the secret key and Algorithwhh recovers a part
of the last (or first) round key bits. Originally, only one apgimative linear relation
was used. In [2], two approximations were used to reducerieuat of data needed
for the attack. This idea was developed further by Kaliski &obshaw in [3], and
later by Biryukov, et al., in [4], where the goal was to useesaVlinear approximations
simultaneously in order to recover more key bits with equabant of data. In both
[3] and [4] the fundamental assumption was that the apprations are statistically
independent. This assumption is hard to verify in pracfide main contribution of
this paper is to remove this assumption.

In [5], Baigneres, et al., analysed the statistical propgepf multidimensional linear
approximations without the assumption of statistical petedence. They proved that by
using multiple approximations, less data is needed to lreveame level of test as with
only one approximation. However, their target system wakeakicipher, which was
assumed to have a Markovian property [6]. Consequentlyractigal way of building
the probability distributions for the purposes of Matsuilgorithm 1 can be found.

In [7] Englund and Maximov calculated directly the multidinmsional probability
distribution needed for the distinguisher. However, tealculations become infeasible



for systems with word-size of 64 or more. In this paper, itl\wié shown how one-
dimensional linear approximations can be combined to deterthe multidimensional
linear approximation and the corresponding probabilistrihution. The method can
be applied to both stream and block ciphers of any word size.

The goal of this paper is to present a key recovery attack Imemgdising Algo-
rithm 1 to the multidimensional case. This algorithm willdmmpared with the method
suggested by Biryukov, et al., in [4] and the experimentsiilts presented in [8].

The structure of this paper is as follows: In Sect. 2 the mmtaand the theoret-
ical basics needed in this paper are given. Section 3 stattissiwowing how linear
one-dimensional approximations can be used to make mukidsional linear approxi-
mations. Using the results of [5] it is then shown that it isattageous to use multiple
approximations instead of just one. The rest of the Secto®slow to generalise Mat-
sui’s Algorithm 1. Section 4 shows how the method can be agyb the block cipher
Serpent. The results will also be compared to those pred@n{8], where Biryukov's
method was applied to Serpent. Finally, Sect. 5 draws cerazis.

2 Probability Distribution of a Boolean Function

We will denote the space ofdimensional binary vectors bY,. The inner product is
defined fora = (a%,...,a"),b = (b%...,b") € V,asa-b = alb + --- + a"b", where+
is sum modulo 2.

A function f : V,, —» V1 is called a Boolean function. A functioh: V,, —» Vy, with
f = (f1,..., fm), where f; are Boolean functions is called a vector Boolean function
of dimensionm. A linear Boolean function fronv,, — Vy, is represented by am x n
binary matrixU. Themrows ofU are denoted by, . .., uy, where eachy is a binary
vector of lengtm.

A random variable (r.v.) is denoted by boldface, capitaelst e.g.X,Y,Z,....
The abbreviation i.i.d. will mean independent and idetiifadistributed.

LetY be ar.v. inVy,, and denote by, = Pr(Y = n). Then the probability distribu-
tion (p.d.) ofY is the vectomp = (po, ..., pm_1). Let f : V,; = Vi, be a vector Boolean
function, and lefX be a r.v. inV, with the 2'-dimensional uniform distribution vector
6h = 27(4,...,1). Then we associate witha r.v.Y = f(X) in Vy, with a probabil-
ity distribution p(f) = (po(f),..., pon_1(f)), where Pr§(X) = 1) = p,(f), n € V.
This p.d. is called the probability distribution dfand is denoted by(f). We may
also abbreviatg,(f) by p, if the function is clear from the context. Two Boolean func-
tions f andg are called statistically independent if the associated ave statistically
independent.

The correlation between a binary and zero is defined as K= 0)-Pr(X = 1).
The correlation of a Boolean functian: V, — V; to zero shall be referred to as the
correlation (ofg) and is defined as

2" (#£19(6) =0} -#£19(6) = 1) = 2Pr(g(X) = 0) - 1,

whereX is uniformly distributed.

Capacity was defined by Biryukov in [4] where they showed thafas inversely
proportional to the data complexity of their distinguishiattack. We will now gener-
alise the definition.



Definition 1. Let p= (po,...,pPwm) and gq= (do,...,qm) be two p.d’s. Their (mutual)
capacity is then

M _ 2
cpa) = Y, Pt W
1=0 "

If M = 2™~ 1and q= 6 is uniform then €p, 6) = 2™||p — Omll3 will be called the
capacity of p and we will denote it by(f). It can also be called the Squared Euclidean
Imbalance [5].

In the next section, we will see that the generalised capadit be inversely propor-
tional to the data complexity of a multidimensional linegtishguisher.

3 Multidimensional Approximation of Boolean Functions

3.1 From One-Dimensional Probability Distributions to Multiple Dimensions

Let f : V, —» V, be a vector Boolean function and binary vectarse V, andu; €
Ve, i = 1,2,...,,mbe linear masks such that the paired masksi{) are linearly
independent. Let us define functiogdy

Gi(§) =w - f()+u-&, (2)

and assumg;’s have correlationg;, i = 1,2,..., m. We will call these correlations the
base-correlations, and the corresponding linear appratiams off the base-approxima-
tions. We want to find the p.d. of thre-dimensional linear expression

9(6) = WH(4) + Us,

whereW = (W1,...,Wn),U = (U, ...,Un) andg = (0s, ..., 9m). Let the p.d. ofg be p.
Assume that we have the correlatigi{a) of all the linear mappinga- g of g, a € V.

If § = (0...010...0) with 1 at theith position, themp(e) = pi,i = 1,...,m. We will
call the correlationg(a), a # & the combined correlations dfand the corresponding
approximations the combined approximations. Recall theviagng lemma from [9].

Lemma 1. Letg= (d1,...,dm) : Vn — Vi be a vector-valued Boolean function and p

it's p.d. Then
2" P, = 2-m Z Z(_l)a-(G(f)m)‘

aeVn, eV,
The correlationg(a) can be written as
pla)=27" ) (~1799.
&€V

Using this and Lemma 1 we get the following corollary that mectsp and the one-
dimensional correlations(a):



Corollary 1. Letg: V, — Vpy be a Boolean function with p.d. p and one-dimensional
correlationsp(a) of a- g. Then

Py =2"" ) (~1/"p(a).

acVn

The following corollary is obtained using Parseval’s thear An equivalent form of it
can be found in [5], where the proof was based on the inverdsh#¥dadamard trans-
form of the deviationsg, from the uniform distributiong, = p, — 2™.

Corollary 2. Let g be the Boolean function defined as previously with p.@hpn

Cp)=2") e = ) p(@)
n

az0

We will need this equality in the next section where we studly linear distinguishing
is done in multiple dimensions.

3.2 One vs. Multidimensional Linear Distinguishers

In this section we will present the general statistical fearark of multidimensional
approximation.

The theory of hypothesis testing can be found for exampld ®.[Here we will
restrict to the most essential parts of the theory. Assuméave two p.d’sp andq,
g # p and consider two hypotheséd; states that the experimental dataof N words
is derived fromp andH; states thatN is derived fromg.

In the one-dimensional case, we have a linear approximatich as (2). Lep be
the correlation of the approximation. The number of iNisneeded to distinguisi
from a random sequence i$p?, whered depends on the level and the power of the
test. It was already noted in [1] that the data compleKityis proportional to 1p°. For
proof, see [11]. Note that the bias used in [1] is the cori@tedivided by two.

The data complexity of the attack in [4] using multiple lin@@proximations, was
shown to be proportional thig ; , where

1

Nei = —— =
Sl pyiyes
andc? is the capacity as defined in [4]. This means a significant awgment in data
complexity, but relies on the assumption that the base appedions are statistically
independent.

Let us next study the case of multiple approximations witltbe assumption of
statistical independence. The log-likelihood ratio (LL&yefined as follows:

: 3)

U

$ p
I(2) = > N(y)log @ @)
1=0 g

wherep andq are defined as in Definition 1 ard{r) is the experimental frequency of
the valuey in zN. The LLR was used as the distinguisher in [5] to proof theofwlhg
theorem.



Theorem 1. Let us have a hypothesis testing problem withskating that the data
is drawn i.i.d. from p.d. p and Hstating that the data is drawn from g p. Assume
that the p.d’s are close to each other:

la, — pyl < qy, forall n. (5)
Then the amount of data needed for distinguishing the hgsethis proportional to

A
N= —r.
C(p,0)

whered depends on the level and the power of the test.

(6)

If we want to distinguish a distribution of some data relatie@ cipher from that of
a truly random source we will use the previous hypothesiswiés q as the ciphers
p.d. andp as the uniform distribution. Using (2) we will see thdg ; given by (3) is
actually greater than the true amount of data needethfgrn linear approximations,
since by using Corollary 2, the latter is proportional to

a2
S C@)  Taxop(@)?

In an “optimal case” we can make andimensional approximation where all the corre-
lationsp(a) are (in absolute) value equal to the maximal one-dimemicorrelations.

If N is the data requirement for one approximation, thin= N;/(2™ — 1). On the
other hand, if only a single one-dimensional approximalias a large correlation, then
Nm =~ Ni and it is not useful to use multiple approximations.

In [5] Markovian block ciphers were analysed using multidimsional distinguish-
ers on the probability distributions related to the Marlkavtransition probabilities av-
eraged over the keys. Hence, their main goal was to impr@vefilkiency of Algorithm
2. Next, we will generalise Matsui's Algorithm 1 to the mditnensional case. In the
practical experiments we use Corollary 1 to determine theted multidimensional
probability distributions from the correlations of the edienensional linear approxi-
mations.

Nm

3.3 Key Recovery Attack

We will show how to findm key bits of the keyK using a multidimensional version
of Algorithm 1. LetX be a uniformly distributed r.v. and = f(X), where K,Y) is a
plaintext-ciphertext pair. We consider the r.v.

UX & WY @ VK, )

with a fixed unknown ke¥, and usgto denote ther.v.’s p.d. Hekd = (ug, ..., uy), W =
(W1,...,Wm) andV = (vg,...,Vy) are some maskmatrices. This approximation can be
generated from linearly independent one-dimensionalagprations with correlations
p1,-..,pm using Corollary 1 (assuming that we are also given the coetbtorrela-
tions). The linear mappinyg divides the key space to equivalence classesVK € Z.



The bitsk; = v; - K are called the parity bits. For eaéhthe expected p.dp* of
ZX = UX @ WY for the distribution originating from the empirical datalMie some
permutation ofp determined by the key (clask) For the purposes of this study, we
assume that all the keys give distinct permutations sudhptha p!, if k # j.

Biryukov's attack introduced in [4] use® > mlinear approximations to select the
correct key class fronZ. It has three phases: distillation, analysis and searchgsha
They can be described as follows:

1. Distillation phase ObtainN plaintext-ciphertext pairs, y;) and calculate the em-
pirical correlation vecto€ = (01, . .., om).

2. Analysis phaseFor each key clads give the key a rankl and make a sorted list
of the keys with smallesly at the top of the list.

3. Search phaseRun through the list and try all keys contained in the eqeinaé
classes until the correct key is found.

The statistic used ig = ||& — cll,, wherece = ((-1)<p1, ..., (-1)p), a vector
consisting of the theoretical correlations and the paritty &f k. In addition a measure
“gain” was defined to analyze the success of the method takiogaccount the time
complexity of the search phase.

The purpose of our multidimensional approach is to imprineedistillation phase
in theory and in practice. In order to compare the distblatphase of Biryukov’s and
our multidimensional method, we discuss a plain multipledir cryptanalysis method
(the plain method), which is similar to the Biryukov's methiout without the grading
of the key candidates. We measure the success of the plaochanhd our method
using the probabilityPok, which is the probability that the right key is at the top of th
list. We assume that the plain method uselinearly and statistical independent linear
approximations and recovemsbits of the key based on the deviatias Let g be the
experimental p.d. constructed from the data. Our method tsam base approxima-
tions, 2"— m- 1 combined approximations and the Kullback-Leibler diseabetween
g and p*. The Kullback-Leibler distance is used in measuring théedénce between
p.d.s. It can be seen to be related to the LLR:

Definition 2. The relative entropy or the Kullback-Leibler distance betw two distri-
butions p= (po, ..., pm) and d= (o - - -, Qm) is defined as

M

q

D(dllp) = )" aylog . (8)
=0 By

Then, in the analysis phase, instead of a grading probleragesthe following multiple

hypothesis testing problem.

Theorem 2. Let us have afZ|-ary hypothesis problem, witlZ| hypotheses kistating
that the data originates frompwhere ke Z corresponds to the key. The hypothesis
for which the Kullback-Leibler distance (B|p*) is smallest is selected. Given some
success probability &, the lower bound Ny for the amount of data needed to give the
smallest value of the statistic when the correct key is usaglyen by

4log, |Z|

N — 9
i 20 C(P0, P ®)

key



Proof. For each keyk we must distinguistpX from pl, for all j # k. Using Proposition
3in [5], the probability that we choogewhenk is true is

PrHlHe) = (- NG C(P, p)/2),

where® is the distribution function of the normed normal distriout Let the prob-
ability of successfully distinguishingix from all the other hypotheses If&x. Then
Pok = [1.(1 = Pr(H;|Hy)). AssumeNij(pk, p!) > 1forall j # k. Then

1 .
Pok ~ eXp{—\/—Z > e‘NkJC(Pk'P‘)/“). (10)
j#k

Let N« = max; Ni;. Since we have to collect the amountNf for at least one test
with k we can use the same amount for all the tests. On the other leng; define
o = min; C(pX, p'). Replacing the capacities with, Nx must be increased to get the
required success probability. We get a lower boundNipby solvingNg from (10)

_ 4log, |Z| - 4In(V2r In Pok)

Ni
Ck

Since we do not know which is the right key, we have to choode= max Ny to be
able to find the right key. Singg'’s are each others’ permutations, we h&(g*, p!) =
C(p°, p*l). But thence = mins.oC(p° p%) = ¢o which is independent dk and (9)
follows. O

Note that we need the assumption tipht# p! to ensure that mirC(p°, p)) # 0.

In [5] a similar formula was derived for the purposes of Aligfam 2 to distinguish
the distribution related to the correct key from the, preahly uniform, distribution
related to a wrong key. Formula (9) gives an estimate how ndath is needed to
reliably determine which of thgZ| distributions gives the best fit with the empirical
data. Exactly the same calculations can be done to the Bigysiktatistic with the help
of proof of Theorem 1 in [4]. Then the data complexity of thaiplattack is proportional
to Nplain Which is given by the formula

8l0g1ZI  _ 2l0g|Z|
minj,k#kHck—chZ I’Y]il’]j,ol2 ’

Nplain =

Since the denominator iNkey is usually much larger than iNpjain, we haveNpjain >
Nwey- Especially, if the combined correlations are large, theaathge is significant.

The data, time and memory complexities of distillation andlgsis phases have
been given in Table 1. The mainfiirence in the complexities between our method
and the plain method is due to the fact that our method usetither-dimensional
distributions and needs to comput® @mpirical values from the data, while the plain
method determines only thm entries of the empirical correlation vector *

The main improvements introduced by Biryukov, et al., inif#the implementation
of the key ranking procedure and its statistical treatmsintgithe concepts of capacity



Table 1. Complexities of Algorithm 1 for plain, Biryukov’s and our ntidimensional method

Distillation Analysis
Plain |Biryukov|Our method Plain (Biryukov|Our metho
Data O(Nplain) O(N5|) O(Nkey) - - -
Time  ||O(MNyain) [O(MNs )| O(2"Niey) ||OMIZN)|O(MIZ1)| O(2MZ1)
Memory]] O(m) | O() o@2") | o<n | ou<n | o(<)

and gain which helps to reduce the lower bound of the data ity to Ng; . For
additional improvement of the practical performance ofrtheethod, Biryukov, et al.,
extend the base set of time linearly (and presumably also statistically) independent
approximations with combined approximations. This extemsvas justified in [4] by
informal arguments and assuming that the linear approxmsialso in the extended
set are statistically independent. Statistical indeppodef linear approximations is
difficult to verify in practice. One method would be to evaluateezimentally the cor-
relations of all linear combinations of the approximati@msl use Piling-Up Lemma
[1] to check for statistical independence. In practical lmapions of the method of
Biryukov, et al., in [4] and [8], statistical independencasanot verified. Let us denote
by 7 the number of approximations used, wheate<s m’ < 2™. The resulting com-
plexities are given in Table 1. Selectionmofis always a trade{®between complexity
and maximising the capacity. Typical values foandm’ are, for examplen = 10 and
m = 86 in [4] andm = 10 andn’ = 64 in [8]. Also often|Z| = 2™.

In the next section we will compare Biryukov's method and mathod in practice
using small experiments on the four-round Serpent. The Seasiebed” was previously
used by Collard, et al., in [8] to carry out experiments ofyBkov’s method. When
comparing our results with their results we can see thatlairadvantage in practi-
cal performance can be achieved using our method and thek®ws withn?' > m,
compared to the plain method with justapproximations. In addition, our method has
a few important advantages over the Biryukov’s. We providensl theoretical justi-
fication for using combined approximations. More imporgmnio assumption about
statistical independence of the approximations is needed.

4 Multidimensional Linear Attack on 4-Round Serpent

Serpent [12] is one of the block ciphers proposed to the AdedrEncryption Stan-
dard (AES) competition. It was selected to be among the fivaiits [13]. The best
known linear approximation of 9-round Serpent was repote@iham et al. in FSE
2001 [14]. Recently, experimental results on multiple éineryptanalysis of 4-round
Serpent were presented by Collard, et al., in [8]. In thisisecwe will apply the mul-
tidimensional linear attack to the reduced round Serpesthtampare our results to the
previous attacks presented in [8].



4.1 Multidimensional linear attack on 4-round Serpent

In [8], authors used maximum' = 64 linear approximations to perform Matsui’'s Al-
gorithm 1 type -attack on 4-round Serpent. The detailedrgegm of approximations
can be found in [15]. Those 64 linear approximations useterattack are not linearly
independent. Hence, strictly speaking, the attack in [8jpisconsistent with the tech-
nigue in [4] which assumes that multiple approximationssagistically independent.
On the other hand, our attack does not require such a statisssumption. One can
exploit as many approximations with non-negligible caatieins as possible for recov-
ering the targeted key bits without such restriction.

In experiments, we chose a 4-round linear trail (fr&mto S7) that was used in
[8]. We picked upm = 10 linearly independent approximatiohsg, ..., Lg which can
be used to recover 10 bits of the first round k&¥he input and output masks of the
approximations used in our attack are listed in Table 2. satenotd ; as follows:

Table 2.Input and output masks used for the multidimensional limgck

index| mask= (MSB, ..., LSB)
Up | (0x70000000, 0x00000000, 0x00000000, 0x07000900)
u; [(0x70000000, 0x00000000, 0x00000000, 0x07000B00)
U, |(0x70000000, 0x00000000, 0x00000000, 0xOBOO0OHO0)
Uz |(0xB0O0O0O000O, 0x00000000, 0x00000000, 0x07000900)
us; | (0x70000000, 0x00000000, 0x00000000, 0x07000%00)
us | (0x70000000, 0x00000000, 0x00000000, 0x07000600)
Us |(0x70000000, 0x00000000, 0x00000000, 0x07000C00)
u; | (0x70000000, 0x00000000, 0x00000000, 0x01000900)
ug |(0x70000000, 0x00000000, 0x00000000, 0XOA000900)
Us [(0xBO0O00O000, 0x00000000, 0x00000000, 0x03000B00)
output mask w | (0x00007000, 0x03000000, 0x00000000, 0x00000)00)

input mask

ui.P+W-C:Vi-K i=O,...,9 (11)

whereu;, w andyv; stand for the input mask, output mask and the key mask, régplgc
andP,C andK represent the plaintext, ciphertext and the key, respdgtiiote that
the output maskv is identical for all the approximations since this expemtiargets
the first round key, not the last one.

Let Q = spaniLy, ..., Lg} such thaQ is a set of approximations generated by the 10
base approximations.. Then,|Q| = 2%° — 1. Note that the 64 linear approximations
used in [8] form a subset of Q.

3 We can find maximum 12 linear appr. to recover 12 bits of the finsnd key from this linear
trail. However, we targeted only 10 bits of the key for direomparison of the performance
between the Biryukov's attack and multidimensional attack



Our experiments were performed in two ways: In the first eixpent, we used all
the linear approximations of the set Q. Amon 2 1 linear approximations of the Q,
we found that 200 of them held with non-negligible correlas, as listed in Table 3.
The correlations of the approximations were calculatedyRiling-up lemma [1]. We

Table 3. Correlations of approximations

correlatior # of approximations
64 appr|10 base appr., 200 non-negligible
21 8 8
2712 56 64
2713 0 128

note that their real correlations can béelient from calculated ones due to tleeet of
correlations of other linear trails using the same input amighut masks. However, we
assume that the theoretical correlations of the approximgtire close to the calculated
correlations.

In the second experiment, we generated fitgm.., Lg the 64 linear approximations
which were the same as those used in [8] and used them in obodhetile approxi-
mating the rest of the combined correlations to be zero.ismttanner we get a rougher
approximation of the full 10-dimensional p.d. than withngsP00 approximations. The
purpose of this experiment was to compare the performantediryukov’s attack to
that of our attack when the same approximations are explaitboth attacks.

For comparison, we applied both the Biryukov's and our méttmthe 4-Round
Serpent and measured their gains by experiment so that vie compare our method
with the results in [8]. It was already noted in [8] that thaiplmethod (usinghapprox-
imations) gives poorer results than the Biryukov’'s methaglgn? > m approxima-
tions). No explanation was given to this heuristics in [4]&r Following the theory of
the previous sections this heuristic can be justified: lasirggm’ makes the Biryukov'’s
method approximate the real multidimensional method. Hewesince the LLR is the
optimal statistic, the Biryukov's method cannot perfornitbethan our method even
whennt' =2M -1,

According to Lemma 1 in [4], the key clagsis determined by searching for the
minimum Euclidean distandf€ — c||» , wheret = (01, ..., p10) is the estimated corre-
lation of ten approximations. On the other hand, in our &ftae measure the empir-
ical probability distributiong) of multiple approximations and determine the key class
k by searching for the minimum Kullback-Leibler distaridég| p¥), wherepX is some
permutation of the theoretical probability distributign The p.d.p is computed by
Corollary 1 using theoretical correlations of one-dimensi approximations. The p.d.
g could be calculated in the same way by using the experimeateglations but in this
work it was constructed directly using'Zounters.

We performed the experiments repeatedly 100 times andreutdihe average gain
of each method. We used dfdirent 128-bit key that was randomly selected each time.



The results are displayed in Fig. 1. For comparison, the gaifithe attack was mea-
sured using the formula which was introduced in [4] as foow

2-M-1

7=_IOQZT

In Fig. 1, the multidimensional attack using 10 linearly épgndent approximations
with full span (200 non-negligible approximations) reastiee full gain at around??
texts. Compared to this result, Biryukov’s attack shows tha gain of the attack is
saturated with around?2texts. Hence, this experiment shows that our method regjuire
less data to get the same accuracy as Biryukov's method.[@hmerpethod withm = 10
approximations would give even weaker results not reactiisgnaximum gain until
with about 2° texts, see Fig. 5 of [8].

I I
10 Multidimensional(200 appr.)

Multidimensional(64 appr.)
9H Biryukov(64 appr.)[8]

gain of the attack

0 1 1 1 1 1 1
2712 2714 2716 2718 2720 2122 2/24
number of texts

Fig. 1. Comparison of the gain of theffierent attacks using multiple linear approximations

5 Conclusions

In this paper we investigated a fewfidgirent approaches presented in recent years on
linear cryptanalysis using multiple approximations. Wedithe statistical theory pre-
sented in [5] and developed a new multidimensional crypyaisattack. For this pur-
pose, we also showed how to construct multidimensionaati@@proximations from



one-dimensional approximations. The main advantage oh#ve method is that the
assumption on statistical independence of the linear ajpagions can be removed.

We also applied our method to the 4-round version of blockeipSerpent that

was studied in [8] using Biryukov's method [4]. We studie@ ttases of 10 linear ap-
proximations, showed how to make multidimensional apprations from them and
measured the success of recovering 10 key parity bits.

We also saw in Table 3 examples where the combined apprarinsatad corre-

lations of the same magnitude as the base approximatioisdémonstrates that the
assumption about statistical independence between tieegpgsoximations needed in
Biryukov’s method used in [8] does not hold. The theoretfcanework presented in
this paper removes the need of this assumption.
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A Brief Description of Serpent Algorithm

We use the notation of [12]. Each intermediate value of rouisddenoted byB; (a
128-bit value). Eaclg; is treated as four 32-bit word&, X1, X2, X3 where bitj of X; is
bit 4« i + j of the B. Serpent has a set of eight 4-bit to 4-bit S Bo$gs..., Sy and a
128-bit to 128-bit linear transformatidtil. Each round functioR uses a single S-box
32 times in parallel.

Serpent ciphering algorithm is formally described as fo#io

Bo=P Bi1=R(B) C-=Bg,
where

R(X) = LT(Si(Xa®K;), i=0,...,30
R(X)=Si(XoK)oKs, i=3L

The linear transformatiohT is described as follows.

Xo, X1, X2, X3 = Si(Bi ® Kj)

Xo=Xo < 12
X=X <« 3
X1=X1® Xo® X2
X3 =Xz Xo @ (Xp <« 3)
X1=X1«1
Xz=Xgx 7
Xo = Xo® X1 6 X3
Xo=Xod Xz (X1 << 7)
Xo=Xg« 5
X = X « 22

Bii1 = Xo, X1, X2, X3

The detailed description of Serpent can be found in [12].



