
February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

1

An Improved Distinguisher for Dragon

Joo Yeon Cho and Josef Pieprzyk

Centre for Advanced Computing – Algorithms and Cryptography,

Department of Computing, Macquarie University,

NSW, Australia, 2109

Email: {jcho,josef}@ics.mq.edu.au

The Dragon stream cipher is one of the focus ciphers which have reached Phase 2 of the eSTREAM
project. In this paper, we present a new method of building a linear distinguisher for Dragon. The

distinguisher is constructed by exploiting the biases of two S-boxes and the modular addition which
are basic components of the nonlinear function F . The bias of the distinguisher is estimated to
be around 2−75.32 which is better than the bias of the distinguisher presented by Englund and
Maximov. We have shown that Dragon is distinguishable from a random cipher by using around
2150.6 keystream words and 264 memory. In addition, we present a very efficient algorithm for
computing the bias of linear approximation of modular addition.

Keywords: Stream Ciphers, eSTREAM, Dragon, Distinguishing Attacks, Modular Addition.

1. Introduction

Dragon [1,2] is a word-oriented stream cipher submitted to the eSTREAM project [3].

Dragon is one of the focus ciphers (software category) which are included in Phase 3 of

the eSTREAM. During Phase 1, Englund and Maximov presented a distinguishing attack

against Dragon [4]. Their distinguisher is constructed using around 2155 keystream words

and 296 memory.

Unlike Englund and Maximov’s work, we use a different approach to find a more efficient dis-

tinguisher. In a nut shell, we first derive linear approximations for the basic nonlinear blocks

used in the cipher, namely, for the S-boxes and for modular additions. Next we combine

those approximations and build a linear approximation for the whole state update function

F . While combining these elementary approximations, we use two basic operations that we

call cutting and bypassing. The bypassing operation replaces the original component by its

approximation. On the other hand, the cutting operation replaces the original component by

zero. Then, we design the distinguisher by linking the approximation of the update function

F with the observable output keystream for a specific sequence of clocks.

Building the best distinguisher is done in two steps. First, all linear masks for the internal

approximations are assumed to be identical. Hence, the mask for distinguisher holding the

biggest bias can be found efficiently. Next, the bias of the distinguisher is estimated more

precisely by considering the dependencies among internal approximations. This is achieved

by allowing the different internal approximation masks that are used in the distinguisher.

In result, the bias of our distinguisher is around 2−75.32 when 264 bits of internal memory

are guessed. Hence, we claim that Dragon is distinguishable from the random cipher after

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

2

observing around 2150.6 words with 264 memory for internal state guesses. So our distin-

guisher is better than the one presented in the paper [4]. Our distinguisher is also described

explicitly by showing the best approximations of the nonlinear components of the cipher. In

contrast, the previous best distinguishing attack by Englund and Maximov used a statistical

argument to evaluate a bias of the function F .

This paper is organized as follows. Section 2 presents a brief description of Dragon. In

Section 3, a collection of linear approximations of nonlinear components for Dragon is pre-

sented. Next, a distinguisher is built by combining the approximations. In Section 4, the

distinguisher is improved by considering the dependencies of intermediate approximations.

Section 5 concludes the work.

2. A brief description of Dragon

Dragon consists of a 1024-bit nonlinear feedback register, a nonlinear state update function,

and a 64-bit internal memory M . Dragon uses two sizes of key and initialization vector that

is either 128 or 256 bits and produces a 64-bit (two words) output per clock. The nonlinear

state update function (the function F) takes six words (192 bits) as the input and produces

six words (192 bits) as the output. Among the output words of the function F , two words are

used as new state words and two words are produced as a keystream. The detail structure

of the function F is displayed in Figure 1. Suppose that the 32-bit input x is split into four

a b c d e f

a′ b′ c′ d′ e′ f ′

g

g

g

gg g

g g g

g g
g

G1

G2

G3

H2H1 H3

? ? ? ? ? ?

- - -

- -

�

-

-

�

� � �

-

-

�

- -

�

Fig. 1. F function

bytes, i.e. x = x0||x1||x2||x3, where xi stands for a single byte and || denotes a concatenation.

The byte x0 denotes the most significant byte and x3 denotes the least significant byte. The

functions G and H are components of the function F and are constructed from the two basic

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

3

8 × 32 S-boxes S1 and S2 in the following way.

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3)

G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3)

G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3)

H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3)

H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3)

H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3)

The keystream is generated as follows.

(1) Input : {B0, B1, . . . , B31} and M = (ML||MR), where ML is a upper word and MR is a

lower word of M .

(2) Assume that a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ ML, f = B31 ⊕ MR, where

M = MR||ML.

(3) Compute (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f).

(4) Update the state B0 = b′, B1 = c′ and Bi = Bi−2, 2 ≤ i ≤ 31,M = M + 1.

(5) Output the keystream : k = (a′||e′).

For a detailed description of Dragon, we refer the reader to the paper [1].

3. A linear distinguisher for Dragon

Let n be a non-negative integer. Given two vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1),

where x, y ∈ GF (2n). Let x · y denote a standard inner product defined as x · y = x0y0 ⊕

. . .⊕xn−1yn−1. A linear mask is a constant vector that is used to compute an inner product

of a n-bit string.

Assume that we have a function f : {0, 1}m → {0, 1}n for some positive integers m and n.

Given a linear input mask Λ ∈ GF (2m) and a linear output mask Γ ∈ GF (2n), the bias of

an approximation Λ · x = Γ · f(x) is measured as follows:

εf (Λ,Γ) = 2−n(#(Λ · x ⊕ Γ · f(x) = 0) − #(Λ · x ⊕ Γ · f(x) = 1)),

where x ∈ GF (2m) and runs through all possible values. Then, Pr[Λ · x = Γ · f(x)] =
1
2 (1 + εf (Λ,Γ)). Note that given q independent approximations each having the bias ε, the

combination of q approximations has the bias of εq according to the well-known Piling-up

Lemma [5].

3.1. Approximations of functions G and H

According to the structure of the functions G and H, the essential components of the func-

tions G and H are the two S-boxes: S1 and S2. Hence, the linear approximations of the

functions G and H can be constructed by combining approximations of S1 and S2 appropri-

ately. In particular, for our distinguisher which will be described in the next subsection, we

need special forms of approximations as displayed in Table 1. Note that the approximations

of the function G use identical masks for both the input and output, while the function H

uses an output mask only. The reason for this will be given in Subsection 3.3. The approxi-

mations of the form Γ ·G(x) = Γ ·x are called bypassing ones, whereas the approximations

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

4

of the form Γ · H(x) = 0 are named cutting ones. Table 1 shows the examples of such

approximations with high biases.

Table 1. Cutting and bypassing approximations of the function G and H

approximation bias example

Γ · H(x) = 0 εH(0, Γ) εH(0, 0x4810812B) = −2−7.16

Γ · x = Γ · G1(x) εG1
(Γ, Γ) εG1

(0x09094102, 0x09094102) = −2−9.33

Γ · x = Γ · G2(x) εG2
(Γ, Γ) εG2

(0x90904013, 0x90904013) = −2−9.81

3.1.1. Approximations of the function H

Assume that a 32-bit word x is a uniformly distributed random variable. If the word x is

divided into four bytes so x = x0||x1||x2||x3, where xi denotes the i-th byte of x, then the

approximation Γ · H1(x) = 0 can be represented as

Γ · H1(x) = Γ · S2(x0) ⊕ Γ · S2(x1) ⊕ Γ · S2(x2) ⊕ Γ · S1(x3) = 0.

Hence, the bias εH1
(0,Γ) can be computed as

εH1
(0,Γ) = εS2

(0,Γ)3 × εS1
(0,Γ),

where εSi
(0,Γ) denotes the bias of the approximation Γ · Si(xj) = 0. Due to the structure

of the function H, the approximations Γ · H1(x) = 0,Γ · H2(x) = 0 and Γ · H3(x) = 0 have

identical biases when the input x is an independent random variable. Hence, εH1
(0,Γ) =

εH2
(0,Γ) = εH3

(0,Γ).

3.1.2. Approximations of the function G

A 32-bit word x is assumed to be a uniformly distributed random variable. If the word x is

divided into four bytes such as x = x0||x1||x2||x3, and a mask Γ is divided into four submasks

such that Γ = Γ0||Γ1||Γ2||Γ3, where Γi ∈ {0, 1}8, then the approximation Γ · x = Γ · G(x)

can be split into

Γ · (x ⊕ G1(x)) = (Γ0 · x0 ⊕ Γ · S1(x0)) ⊕ (Γ1 · x1 ⊕ Γ · S1(x1))

⊕(Γ2 · x2 ⊕ Γ · S1(x2)) ⊕ (Γ3 · x3 ⊕ Γ · S2(x3)) = 0

Hence, the bias εG(Γ,Γ) can be computed as follows

εG(Γ,Γ) = εS1(x0)(Γ0,Γ) × εS1(x1)(Γ1,Γ) × εS1(x2)(Γ2,Γ) × εS2(x3)(Γ3,Γ),

where εSi(xj)(Γj ,Γ) denotes the bias of the approximation Γj · xj ⊕ Γ · Si(xj) = 0.

3.2. Linear approximations of modular addition

Let x and y be uniformly distributed random vectors, where x, y ∈ GF (2n) for a positive n.

Given a mask Γ ∈ GF (2n) that is used for both the input and output, a linear approximation

of modular addition where an input and an output masks are Γ is defined as follows:

Pr[Γ · (x + y) = Γ · (x ⊕ y)] =
1

2
(1 + ε+(Γ,Γ)), (1)

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

5

where the bias of the approximation is denoted by ε+(Γ,Γ). Also, given a vector x, the

Hamming weight of x is defined as the number of nonzero coordinates of x.

Theorem 3.1. Let n and m be positive integers. Given a linear mask Γ = (γn−1, · · · , γ0),

where γi ∈ {0, 1}, we assume that the Hamming weight of Γ is m. If a vector WΓ =

(wm−1, wm−2 · · · , w0) denotes the bit positions of Γ, where γi = 1 and wm−1 > · · · > w0,

then a bias ε+(Γ,Γ) is determined as follows.

If m is even, then,

ε+(Γ,Γ) = 2−d1 , where d1 =

m/2−1
∑

i=0

(w2i+1 − w2i), (2)

If m is odd, then

ε+(Γ,Γ) = 2−d2 , where d2 =

(m−1)/2
∑

i=1

(w2i − w2i−1) + w0. (3)

Proof. See Appendix A.

For example, if Γ = 0x0600018D, the Hamming weight of the mask Γ is 7 and WΓ =

(26, 25, 8, 7, 3, 2, 0). Hence, the bias ε+(Γ,Γ) = 2−[(26−25)+(8−7)+(3−2)] = 2−3.

Corollary 3.1. Let m be a positive integer. Given a mask Γ whose Hamming weight is m,

the approximation Γ · (x + y) = Γ · (x ⊕ y) has at most a bias of 2−(m−1)/2.

Proof. See Appendix B.

3.3. Linear approximation of the function F

According to the state update rule of Dragon, the following relation between two state words

at the clocks t and t + 15 holds a

B0[t] = B30[t + 15], t = 0, 1, (4)

We know that a = B0 and e = B30 ⊕ ML, where a and e are two words of the function F .

Then, we try to find the linear approximations Γ · a′ = Γ · a and Γ · e′ = Γ · e, where a′ and

e′ are two output words of the function F that are produced as keystream.

We regard the outputs of the functions G and H as independent and uniformly distributed

random variables. This assumption is reasonable since each G and H functions have unique

input parameters so that the output of the functions G and H are mutually independent.

Hence, the functions G and H can be described without input parameters as shown below.

3.3.1. The approximation of a′

As illustrated in Figure 1, an output word a′ is expressed by the following relation

a′ = [(a + (e ⊕ f)) ⊕ H1] ⊕ [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))]. (5)

aThis relation was also observed in [4].

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

6

Due to the linear property of Γ, we know that

Γ · a′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))].

By applying Approximation (1), we get

Γ · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))] = Γ · (e ⊕ f ⊕ G2) ⊕ Γ · [(H2 ⊕ ((a ⊕ b) + c))],

which holds with the bias of ε+(Γ,Γ). Hence, we have

Γ · a′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · (e ⊕ f ⊕ G2) ⊕ Γ · [H2 ⊕ ((a ⊕ b) + c)].

Next, the two types of approximations are used in our analysis. First, cutting approximations

are used for the functions H1 and H2. That is, we use Γ ·H1 = 0 and Γ ·H2 = 0, which hold

with the biases of εH1
(0,Γ) and εH2

(0,Γ), respectively. Intuitively, these approximations

allow to simplify the form of the final approximation of the function F by replacing the

output variables of a nonlinear component by zeros.

Second, bypassing approximations are used for the function G2. That is, we use Γ · G2 =

Γ · [(a ⊕ b) + c] that has a bias εG2
(Γ,Γ). In this category of approximations we are able to

replace a combination of output variables by a combination of input variables. Then, we can

write that

Γ · a′ = Γ · [(a + (e ⊕ f))] ⊕ Γ · (e ⊕ f ⊕ [(a ⊕ b) + c]) ⊕ Γ · [(a ⊕ b) + c]

= Γ · [(a + (e ⊕ f))] ⊕ Γ · (e ⊕ f).

Finally, by applying Approximation (1) for the modular addition, we obtain

Γ · a′ = Γ · a. (6)

We know that Γ · [(a + (e ⊕ f))] = Γ · a ⊕ Γ · (e ⊕ f) holds with the bias of ε+(Γ,Γ).

Therefore, the bias of Approximation (6) can be computed from the biases of the component

approximations as follows:

εa′(Γ,Γ) = ε+(Γ,Γ)2 × εH1
(0,Γ) × εH2

(0,Γ) × εG2
(Γ,Γ).

Since the 32-bit word a′ is an upper part of a 64-bit keystream output at each clock, Ap-

proximation (6) is equivalent to the following expression

Γ · k0[t] = Γ · B0[t], (7)

where k0[t] denotes the upper part of a 64-bit k at clock t.

3.3.2. The approximation of e′

As depicted in Figure 1, an output word e′ can be described as

e′ = [((a + (e ⊕ f)) ⊕ H1) + (c ⊕ d ⊕ G1)] ⊕ [H3 ⊕ ((c ⊕ d) + e)]. (8)

Similarly to the case of a′, we would like to obtain an approximation Γ · e′ = Γ · e. To do

this, we first apply Approximation (1) for modular addition and as the result we get

Γ · e′ = Γ · [(a + (e ⊕ f)) ⊕ H1] ⊕ Γ · (c ⊕ d ⊕ G1) ⊕ Γ · [H3 ⊕ ((c ⊕ d) + e)].

Next, we apply the cutting approximations for functions H1,H3 and the bypassing approx-

imation for the function G1. That is, we use the following approximations

Γ · H1 = 0, Γ · H3 = 0, Γ · G1 = Γ · [a + (e ⊕ f)]

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

7

that hold with the biases εH1
(0,Γ), εH3

(0,Γ) and εG1
(Γ,Γ), respectively. These approxima-

tions are plugged into the above relation and we obtain the following result

Γ · e′ = Γ · [(a + (e ⊕ f))] ⊕ Γ · (c ⊕ d ⊕ [a + (e ⊕ f)]) ⊕ Γ · [(c ⊕ d) + e]

= Γ · (c ⊕ d) ⊕ Γ · [(c ⊕ d) + e].

Finally, by applying Approximation (1) for modular addition, we can conclude that output

e′ and input e satisfy the following approximation

Γ · e′ = Γ · e (9)

with the bias εe′(Γ,Γ) = ε+(Γ,Γ)2×εH1
(0,Γ)×εH3

(0,Γ)×εG1
(Γ,Γ). Since the 32-bit word e′

is a lower part of a 64-bit keystream output k at each clock, Approximation (9) is equivalent

to the following expression

Γ · k1[t] = Γ · (B30[t] ⊕ ML[t]), (10)

where k1[t] and ML[t] denote the lower part of a 64-bit k and the upper part of a 64-bit

memory word M at clock t, respectively.

3.4. Building the distinguisher

According to Equation (4), Approximations (7) and (10) can be combined in such a way

that

Γ · k0[t] = Γ · B0[t] = Γ · B30[t + 15] = Γ · (k1[t + 15] ⊕ ML[t + 15]).

By guessing (partially) the initial value of M , we can build the following distinguisher

Γ · (k0[t] ⊕ k1[t + 15]) = Γ · ML[t + 15]. (11)

For the correctly guessed initial value of M , the distinguisher (11) shows the bias

εD(Γ,Γ) = εa′(Γ,Γ) × εe′(Γ,Γ)

= ε+(Γ,Γ)4 × εH1
(0,Γ)2 × εH2

(0,Γ) × εH3
(0,Γ) × εG1

(Γ,Γ) × εG2
(Γ,Γ) (12)

We implemented a mask search for the function F to achieve the distinguisher with the

biggest bias. The space of a linear mask Γ contains 232 − 1 elements. For each mask Γ, the

following procedure is performed to compute the bias given by Expression (12).

Step 1. For an input x that varies from 0 to 255, measure the biases of Γ · S1(x) = 0 and

Γ · S2(x) = 0, respectively. Then, compute εH1
(0,Γ), εH2

(0,Γ) and εH3
(0,Γ).

Step 2. The mask Γ is divided into four submasks Γ = Γ0||Γ1||Γ2||Γ3. For an input x that

varies from 0 to 255, measure the bias of Γ ·S1(x) = Γi ·x and Γ ·S2(x) = Γi ·x for some

0 ≤ i ≤ 3. Then, compute the biases εG1
(Γ,Γ) and εG2

(Γ,Γ).

Step 3. Determine the bias ε+(Γ,Γ) using Theorem 1.

Step 4. Finally, compute εD(Γ,Γ).

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

8

3.5. Our results

We searched for a linear mask that maximizes the bias (12). Due to Corollary 3.1, the bias

ε+(Γ,Γ) decreases exponentially as long as the Hamming weight of a linear mask increases.

Hence, there is a better chance to achieve higher bias when the Hamming weight is smaller.

We found that the best linear approximation of the function F is using Equation (11) with

the mask Γ = 0x0600018D. The bias of the distinguisher in this case is 2−75.8 as listed in

Table 2. In order to remove the impact of the unknown state of the internal memory on the

bias, we need to guess the first 27 bits of initial value of ML and 32 bits of MR. Hence, we

need to store all possible values of the internal state which takes 227+32 = 259 bits.

Table 2. The bias of distinguisher

Γ ε+(0, Γ) εH(Γ, Γ) εG1
(Γ, Γ) εG2

(Γ, Γ) εa′ (Γ, Γ) εe′ (Γ, Γ) εD(Γ, Γ)

0x0600018D 2−3 −2−8.58 2−13.59 2−15.91 −2−39.1 −2−36.7 2−75.8

4. Improving the distinguisher

In this section, we generalize a method presented in Section 3. b First, we apply different

linear masks for each component of the function F and combine them to build the distin-

guisher. Figure 2 illustrates how different linear masks can be applied for each component

of the function F . Second, we consider the internal dependencies for the approximations of

?

?m

?m

?

¾

m

?
¾ m

?

¾

6

H2

a

e ⊕ f¾

H1 -

(a ⊕ b) + c

¾ G2
¾Λ3

Λ3

Φ Λ1

Λ2

Λ2

Λ1 Λ1

Λ3Λ2

a′

clock t

?

?m

?m

?

¾

m

?

?

e

c ⊕ d¾

H3 -

¾ a + (e ⊕ f)

¾ G1
¾

m

?

¾

6

H1

Λ6

Λ6

Φ Λ4

Λ5

Λ5

Λ4 Λ4

Λ6Λ5

e′

clock t + 15

Fig. 2. Generalized linear masks for approximations of the function F

the function F . Since the approximations of the components of the F cancel each other, the

bias of the distinguisher can be accurately computed by trying all possible internal approx-

bThis section was inspired by the distinguishing attack on SNOW 2.0 presented by Nyberg and Wallen [6].

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

9

imations induced by different linear masks. Based on these two observations, we searched

extensively for a new distinguisher that could improve the efficiency of our attack.

A new distinguisher can be built from the relation of (a, a′) and (e, e′) presented in Equations

(5) and (8). A basic requirement for establishing a distinguisher is to apply the identical

mask Φ to the state a at clock t and to the state e at clock t + 15, as stated in Section

3. However, this time, the other internal masks can be different, as shown in Figure 2. We

set up the six masks, {Λ1, · · · ,Λ6}, for the components of the F and build the following

approximations:

Λ2 · a
′ = Λ2 · [(a + (e ⊕ f)) ⊕ H1] ⊕ Λ2 · [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))]

= Φ · a ⊕ Λ1 · (e ⊕ f) ⊕ Λ2 · H1 ⊕ Λ1 · (e ⊕ f ⊕ G2) ⊕ Λ3 · [H2 ⊕ ((a ⊕ b) + c)]

= Φ · a (13)

Λ5 · e
′ = Λ5 · [((c ⊕ d) + e) ⊕ H3] ⊕ Λ5 · [((a + (e ⊕ f)) ⊕ H1) + (c ⊕ d ⊕ G1)]

= Λ4 · (c ⊕ d) ⊕ Φ · e ⊕ Λ5 · H3 ⊕ Λ6 · (a + (e ⊕ f)) ⊕ Λ6 · H1 ⊕ Λ4 · (c ⊕ d ⊕ G1)

= Φ · e (14)

The component-wise approximations required for Approximations (13) and (14) are listed in

Tables 3 and 4. According to the well-known theorem [7] the correlation of approximations

Table 3. Component approximations for Equation (13)

approximation bias

Φ · x ⊕ Λ1 · y ⊕ Λ2 · (x + y) = 0 ε+(Φ, Λ1, Λ2)

Λ2 · H1 = 0 εH1
(0, Λ2)

Λ3 · H2 = 0 εH2
(0, Λ3)

Λ3 · x ⊕ Λ1 · G1(x) = 0 εG1
(Λ3, Λ1)

Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) = 0 ε+(Λ1, Λ3, Λ2)

Table 4. Component approximations for Equation (14)

approximation bias

Φ · x ⊕ Λ4 · y ⊕ Λ5 · (x + y) = 0 ε+(Φ, Λ4, Λ5)

Λ5 · H3 = 0 εH3
(0, Λ5)

Λ6 · H1 = 0 εH1
(0, Λ6)

Λ6 · x ⊕ Λ4 · G2(x) = 0 εG2
(Λ6, Λ4)

Λ4 · x ⊕ Λ6 · y ⊕ Λ5 · (x + y) = 0 ε+(Λ4, Λ6, Λ5)

can be computed as a sum of partial correlations over all intermediate linear masks. For

theoretical analysis of the theorem, we refer the reader to the paper of [7]. Hence, the bias of

Approximation (13) is computed as a sum of partial biases induced by the masks of Λ1,Λ2

and Λ3 as follows:

εa′(Φ,Λ2) = εH1
(0,Λ2)

∑

Λ1

ε+(Φ,Λ1,Λ2)
∑

Λ3

ε+(Λ3,Λ1,Λ2)εG2
(Λ3,Λ1)εH2

(0,Λ3). (15)

Similarly, the bias of Approximation (14) using the masks of Λ4,Λ5 and Λ6 can be computed

as follows:

εe′(Φ,Λ5) = εH3
(0,Λ5)

∑

Λ4

ε+(Φ,Λ4,Λ5)
∑

Λ6

ε+(Λ4,Λ6,Λ5)εG1
(Λ6,Λ4)εH1

(0,Λ6). (16)

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

10

Hence, according to Subsection 3.4, a new distinguisher can be derived from Approximations

(13) and (14) as follows:

Λ2 · k0[t] ⊕ Λ5 · k1[t + 15] = Φ · ML[t + 15] (17)

with the bias of

εD(Λ2,Λ5) =
∑

Φ

εa′(Φ,Λ2)εe′(Φ,Λ5). (18)

Note that we need to guess 64 memory bits this time since the linear mask Φ can be an

arbitrary value among [1, 232 − 1].

4.1. Experiments

In order to find the distinguisher holding the biggest bias, we need to search all possible

combinations of Γ2 and Γ5 and test their biases by Equation (18). Furthermore, for each

Γ2 and Γ5, the computation of Equation (18) requires a large number of iterations due to

large sizes of the intermediate masks. Hence, our experiments focus on reducing the overall

size of the masks that are required for the computation of the bias. To achieve this goal, we

implemented two techniques that can remove a large portion of terms from the summation

in Equation (18).

In the first technique, we remove the unnecessary terms from Equations (15) and (16). Note

that these terms are generated by the condition ε = 0. The approximations of the modular

addition have non-trivial biases only in a portion of bits which is determined by the values

of an input and an output masks.

Lemma 4.1. Assume that the bias of the approximation Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) = 0

is represented by ε+(Λ1,Λ3,Λ2). Given Λ2 = b31b30 · · · b0 where bi stands for the i-th bit of

Λ2, we assume that the most significant non-zero bit of Λ2 is located in the bit position of bt

where 0 ≤ t ≤ 31. Then, the bias ε+(Λ1,Λ3,Λ2) is zero when Λ1,Λ3 < 2t or Λ1,Λ3 ≥ 2t+1.

In other words, we conclude that

232
−1

∑

Λ1=1

232
−1

∑

Λ3=1

ε+(Λ1,Λ3,Λ2) =
2t+1

−1
∑

Λ1=2t

2t+1
−1

∑

Λ3=2t

ε+(Λ1,Λ3,Λ2).

Proof. See Appendix C.

According to Lemma 4.1, the value of the biases (15) and (16) depends on the size of the out-

put mask of the modular addition. For example, if Λ2 = 0x0600018D, then, ε+(Λ1,Λ3,Λ2)

becomes zero when Λ1,Λ3 < 0x04000000 or Λ1,Λ3 ≥ 0x08000000.

In the second technique, we restrict the biases of the modular additions in Equations (15)

and (16) and reduce the number of iterations. Instead of iterating the full space of the

intermediate masks, we use only relatively highly biased approximations of the modular

additions. In the paper of [6], authors proposed an efficient algorithm for finding all input

and output masks for addition with a given correlation. This algorithm enables us to reduce

the number of iteration for Equations (15) and (16) significantly. We restricted the effective

correlation of the modular addition up to ±2−24, as suggested in the paper of [6].

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

11

Based on these techniques, we re-calculated the bias of Distinguisher (17) and found that the

bias is estimated to be 2−75.32. It is interesting to observe how the biases can be improved

by considering the dependencies of the combinations of the approximation. Table 5 shows

that the bias measurement without considering the dependencies can underestimate the real

bias of the approximation.

Due to the restrictions on computing resources, we searched for the best distinguisher under

the condition that Λ2 = Λ5 and we could not perform the experiment for the cases when

the different values of Λ2 and Λ5 are allowed. Even though Bias (18) tends to be high

when Λ2 = Λ5, there is a possibility that two different values of Λ2 and Λ5 may lead to a

distinguisher with a bigger bias. We leave this issue as an open problem.

Table 5. Comparison of the bias of the distinguisher computed by two

methods

Λ2 = Λ5 εD without dependencies εD with dependencies

0x0600018D 2−75.81 2−75.32

0x002C0039 −2−129.55 2−81.77

0x00001809 2−84.13 2−79.51

5. Conclusion

In this paper, we presented a new distinguisher for Dragon. Since the amount of observations

for the distinguishing attack is by far larger than the limit of keystream available from a

single key, our distinguisher leads only to a theoretical attack on Dragon. However, our

analysis shows that some approximations of the functions G and H have larger biases than

the ones expected by the designers. As far as we know, our distinguisher is the best one for

Dragon published so far in open literature. In addition, we present an efficient algorithm to

compute the bias of approximation of modular addition, which is expected to be useful for

other attacks against ciphers using modular additions.

Acknowledgment

We wish to thank Matt Henricksen for invaluable comments. The authors were supported

by ARC grants DP0451484, DP0663452 and Macquarie University ARC Safety Net Grant.

References

1. E. Dawson, K. Chen, M. Henricksen, W. Millan, L. Simpson, H. Lee and S. Moon, Dragon: A
fast word based stream cipher eSTREAM, ECRYPT Stream Cipher Project, Report 2005/006,
(2005), http://www.ecrypt.eu.org/stream.

2. K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson, E. Dawson, H. Lee and S. Moon,
Dragon: A fast word based stream cipher, in Information Security and Cryptology - ICISC 2004 ,
eds. C. Park and S. Chee, Lecture Notes in Computer Science, Vol. 3506 (Springer, 2004).

3. E. NoE, eSTREAM - the ECRYPT stream cipher project Available at
http://www.ecrypt.eu.org/stream/, (2005).

4. H. Englund and A. Maximov, Attack the Dragon, in Progress in Cryptology - INDOCRYPT

2005 , eds. S. Maitra, C. E. V. Madhavan and R. Venkatesan, Lecture Notes in Computer Science,
Vol. 3797 (Springer, 2005).

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

12

5. M. Matsui, Linear cryptoanalysis method for des cipher, in EUROCRYPT , 1993.
6. K. Nyberg and J. Wallen, Improved linear distinguishers for SNOW 2.0., in Fast Software En-

cryption - FSE 2006 , ed. M. J. B. Robshaw, Lecture Notes in Computer Science, Vol. 4047
(Springer, 2006).

7. K. Nyberg, Discrete Applied Mathematics 111, 177 (2001).

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

13

Appendix A. Proof of Theorem 3.1

Suppose that z = x + y where x = (xn−1, · · · , x0), y = (yn−1, · · · , y0) and z =

(zn−1, · · · , z0). Then, each zi bit is expressed a function of xi, · · · , x0 and yi, · · · , y0 bits

as follows

z0 = x0 ⊕ y0, zi = xi ⊕ yi ⊕ xi−1yi−1 ⊕

i−2
∑

j=0

xjyj

i−1
∏

k=j+1

(xk ⊕ yk), i = 1, · · · , n.

If we define the carry R(x, y) as

R(x, y)0 = x0y0, R(x, y)i = xiyi ⊕

(i−1)
∑

j=0

xjyj

i
∏

k=j+1

(xk ⊕ yk), i = 1, 2, . . . ,

then, it is clear that zi = xi ⊕ yi ⊕ R(x, y)i−1 for i > 0. By the definition, R(x, y)i has the

following recursive relation

R(x, y)i = xiyi ⊕ (xi ⊕ yi)R(x, y)i−1. (A.1)

First, we examine the bias of the Γ of which the Hamming weight is 2, i.e. m = 2. Without

loss of generality, we assume that γi = 1 and γj = 1 where 0 ≤ j < i < n. Then, by Relation

(A.1), Approximation (1) is expressed as

Γ · (x + y) ⊕ Γ · (x ⊕ y) = zi ⊕ zj ⊕ (xi ⊕ yi) ⊕ (xj ⊕ yj)

= R(x, y)i−1 ⊕ R(x, y)j−1

= xi−1yi−1 ⊕ (xi−1 ⊕ yi−1)R(x, y)i−2 ⊕ R(x, y)j−1.

Let us denote pi−1 = Pr[R(x, y)i−1 ⊕ R(x, y)j−1 = 0]. Since xi and yi are assumed as

uniformly distributed random variables, the probability pi−1 is split into the three cases as

follows.

pi−1 =

Pr[R(x, y)j−1 = 0], if (xi−1, yi−1) = (0, 0)

Pr[1 ⊕ R(x, y)j−1 = 0], if (xi−1, yi−1) = (1, 1)

Pr[R(x, y)i−2 ⊕ R(x, y)j−1 = 0], if (xi−1, yi−1) = (0, 1), (1, 0)

Clearly, Pr[R(x, y)j−1 = 0] = 1 − Pr[1 ⊕ R(x, y)j−1 = 0]. Hence, we get

pi−1 =
1

4
+

1

2
Pr[R(x, y)i−2 ⊕ R(x, y)j−1 = 0] =

1

4
+

1

2
pi−2.

If j = i− 1, then Pr[R(x, y)i−2 ⊕R(x, y)j−1 = 0] = 1. Hence, pi−1 = 1
4 + 1

2 = 3
4 . Otherwise,

pi−2 is determined recursively by the same technique used as above until pj−1 is reached.

Hence, we obtain the following result

pi−1 =
1

4
(1 + · · · + 2−(i−j−1)) + 2−(i−j) =

1

2
(1 + 2−(i−j)). (A.2)

Therefore, the bias ε+(Γ,Γ) is determined by the difference between two position i and j of

Γ only.

Next, we consider the case that Γ has an arbitrary Hamming weight, which is denoted m.

Assume that we convert m into an even number m′ by using the following technique.

• If m is even, then set m′ = m.

• If m is odd and γ0 = 0, then set γ0 = 1 and m′ = m + 1.

February 22, 2008 9:11 WSPC - Proceedings Trim Size: 9in x 6in dragon-iwcc

14

• If m is odd and γ0 = 1, then set γ0 = 0 and m′ = m − 1.

In result, the Γ is transformed to Γ′ which has the Hamming weight of m′. Since the modular

addition is linear for the least significant bit, ε+(Γ,Γ) = ε+(Γ′,Γ′). Hence, a new position

vector for Γ′ is defined as WΓ′ = (wm′
−1, · · · , w0), where 0 ≤ wj < n.

Now, we decompose Γ′ into a combination of sub-masks which have the Hamming weight of

2. That is, Γ is expressed as

Γ = Ωm′/2−1 ⊕ · · · ⊕ Ω0,

where Ωk is a sub-mask which has the nonzero coordinates only at position w2k and w2k+1

for k = 0, 1, · · · , m′

2 − 1. Clearly, the number of such sub-masks is m′

2 . For example, if

Γ = (0, 0, 1, 1, 0, 1, 1), then Γ = Ω1 ⊕ Ω0 = (0, 0, 1, 1, 0, 0, 0) ⊕ (0, 0, 0, 0, 0, 1, 1).

From (A.2), we know that the bias of Ωk · (x + y) ⊕ Ωk · (x ⊕ y) is only determined by the

difference w2k+1 − w2k. Hence, according to Piling-up Lemma [5], the bias of Γ · (x + y) ⊕

Γ · (x ⊕ y) is obtained by combining the m′

2 approximations. Note that the there are no

inter-dependencies among sub-masks. Therefore, the claimed bias is computed as

ε+(Γ,Γ) = 2−[wm′
−1−wm′

−2]+···+[w1−w0].

If m′ is replaced by m, we obtain the claimed bias. ¤

Appendix B. Proof of Corollary 3.1

Recall Theorem 3.1. If m is even, then,

d1 =

m/2−1
∑

i=0

(w2i+1 − w2i) ≥

m/2−1
∑

i=0

1 = m/2.

If m is odd, then,

d2 =

(m−1)/2
∑

i=1

(w2i − w2i−1) + w0 ≥

(m−1)/2
∑

i=1

1 = (m − 1)/2.

Hence, the bias ε+(Γ,Γ) ≤ 2−(m−1)/2. ¤

Appendix C. Proof of Lemma 4.1

Let xi and yi denote the i-th bits of 32-bit words x and y. According to the notation used

in Appendix A, the approximation using the output mask Λ2 can be expressed as

Λ2 · (x + y) = xt ⊕ yt ⊕ R(x, y)t−1 ⊕ A(x, y)t−1,

where A(x, y)t−1 is a function which does not contain xt and yt bits as variables.

When Λ1 < 2t or Λ3 < 2t, the input approximation Λ1 · x⊕Λ3 · y does not contain xt or yt

bit as a variable. Thus, Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) retains a linear term xt or yt so that

the bias of the approximation becomes zero.

On the other hand, given Λ1 ≥ 2t+1 or Λ3 ≥ 2t+1, the input approximation Λ1 · x ⊕ Λ3 · y

contain xu or yv bit as a variable where u, v > t. Thus, Λ1 · x ⊕ Λ3 · y ⊕ Λ2 · (x + y) retains

a linear term xu or yv so that the bias of the approximation becomes zero. ¤

