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Abstract. NLS is a stream cipher which was submitted to eSTREAM project. A
linear distinguishing attack against NLS was presented by Cho and Pieprzyk, which
was called as Crossword Puzzle (CP) attack. NLSv2 is the tweak version of NLS which
aims mainly at avoiding the CP attack. In this paper, a new distinguishing attack
against NLSv2 is presented. The attack exploits high correlation amongst neighboring
bits of the cipher. The paper first shows that the modular addition preserves pairwise
correlations as demonstrated by existence of linear approximations with large biases.
Next it shows how to combine these results with the existence of high correlation
between bits 29 and 30 of the S-box to obtain a distinguisher whose bias is around
2−37. Consequently, we claim that NLSv2 is distinguishable from a random process
after observing around 274 keystream words.
Keywords : Distinguishing Attacks, Crossword Puzzle Attack, Stream Ciphers, eS-
TREAM, NLS, NLSv2.

1 Introduction

NLS is one of stream ciphers submitted to the eSTREAM project [5]. The second phase of
the eSTREAM included NLS in both profiles 1 (Software) and 2 (Hardware). During the
first phase, a distinguishing attack against NLS was presented in [3]. The attack requires
around 260 keystream observations.

NLSv2 is a tweaked version of NLS to counter the distinguishing attack mentioned above.
Unlike in the orignal NLS, NLSv2 periodically updates the value Konst every 65537 clock.
The new value of Konst is taken from the output of the non-linear filter. In [4], the lin-
ear approximation from non-linear feedback shift register (NFSR) was derived and the sign
of bias can be either positive or negative depending on the value of Konst. Thus, a ran-
domly updated Konst is expected to “neutralize” the overall bias of approximations, which
eventually minimizes the bias of distinguisher.

In [3], the authors presented a distinguishing attack on NLS by Crossword Puzzle attack
(or shortly CP attack) method. The CP attack is a variant of the linear distinguishing
attack which was specifically designed to work for NFSR based stream ciphers. The attack
concentrates on finding approximations and combining them in such a way that the internal
states of NFSR cancel each other.

Being more specific, the authors showed that, for the attack on NLSv2, the effect of Konst

could be eliminated by using ’even’ number of NFSR approximations. A distinguisher was
constructed by combining eight NFSR approximations and two NLF approximations, for
which 296 observations of keystream are required. However, due to the explicit upper limit
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of 280 on the number of observed keystream imposed by the designers of the cipher, this
attack does not break the cipher.

In this paper, we have improved the linear distinguishing attack on NLSv2 presented in the
latter part of [3]. We still use the CP attack from [3] for our distinguisher. However, we have
observed that there are linear approximations of S-boxes whose biases are much higher than
those used in the previous attack.

Using those more effective approximations, we can now construct a distinguisher whose bias
is around 2−37. Therefore, we claim that NLSv2 is distinguishable from a truly random
cipher after observing around 274 keystream words which are within the limit of permitted
observations during the session with a single key.

This paper is organized as follows. Section 2 presents some properties of multiple modular
additions which are useful for our attack. Section 3 presents the structure of NLSv2. Section
4 presents the technique we use to construct linear approximations required in our attack.
Section 5 contains the main part of the paper and presents the CP attack against NLSv2.
Section 6 concludes the work.

Notation :

1. + denotes the addition modulo 232,
2. x≪k represents the 32-bit x which is left-rotated by k-bit,
3. x(i) stands for i-th bit of the 32-bit string x,

These notations will be used throughout this paper.

2 Probabilistic properties of multiple modular additions

The attack explores a correlation between two neighboring bits. This Section describes the
behavior of neighboring bits in modular additions and establishes the background for our
further considerations. Suppose that z = x + y where x, y, z ∈ {0, 1}32 are independently
uniformly random. According to [2], there exist the following relations among x(i),y(i) and
z(i):

z(0) = x(0)⊕y(0), z(i) = x(i)⊕y(i)⊕x(i−1)y(i−1)⊕

i−2
∑

j=0

x(j)y(j)

(i−1)
∏

k=j+1

(x(k)⊕y(k)), 1 ≤ i ≤ 31

Definition 1. Γi denotes a linear masking vector over GF (2) which has ’1’ only on the
bit positions of i and i + 1. Then, given 32-bit x, Γi · x = x(i) ⊕ x(i+1), where · denote the
standard inner product.

Definition 2. The carry R(x, y) generated in modular addition is defined as follows.

R(x, y)(0) = x(0)y(0), R(x, y)(i) = x(i)y(i) ⊕

(i−1)
∑

j=0

x(j)y(j)

i
∏

k=j+1

(x(k) ⊕ y(k)), i = 1, 2, . . .

It is clear that R(x, y)(i) can be determined using the following recursive relation:

R(x, y)(i) = x(i)y(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1)

Now we are ready to present a collection of properties that are formulated in the lemmas
given below. These results are essential for setting up our attack. In the following, we assume
that all the variables are independently uniformly random.
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Lemma 1. Given x, y ∈ {0, 1}32, then the probability distribution of the carry bits can be
expressed as follows

Pr[R(x, y)(i) = 0] =
1

2
+ 2−i−2 for i = 0, . . . , 30.

Proof. The proof is given by induction.

(1) Let i = 0. Then the carry occurs only if x(0) = 1 and y(0) = 1 so Pr[R(x, y)(0) =

x(0)y(0) = 0] = 3
4 = 1

2 + 2−2

(2) In the induction step we assume that Pr[R(x, y)(i−1) = 0] = 1
2 + 2−i−1. Then, from the

recursive relation, we have

Pr[R(x, y)(i) = 0] =

{

Pr[x(i)y(i) = 0] = 3
4 , if R(x, y)i−1 = 0

Pr[x(i)y(i) ⊕ (x(i) ⊕ y(i)) = 0] = 1
4 , if R(x, y)(i−1) = 1

Hence, the following equation holds

Pr[R(x, y)(i) = 0] =
3

4
· (

1

2
+ 2−i−1) +

1

4
· (

1

2
− 2−i−1) =

1

2
+ 2−i−2.

This proves our lemma. ⊓⊔

Corollary 1. Given x, y ∈ {0, 1}32, the following approximation holds with the constant
probability as

Pr[Γi−1 · R(x, y) = 0] =
3

4
for i = 1, . . . , 31.

Proof. By definition, we obtain

Γi−1 · R(x, y) = R(x, y)(i−1) ⊕ R(x, y)(i) = x(i)y(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1)

Hence, from Lemma 1, we get

Pr[Γi−1 · R(x, y) = 0] =
3

4
· (

1

2
+ 2−i−1) +

3

4
· (

1

2
− 2−i−1) =

3

4

and the corollary holds. ⊓⊔

Due to Corollary 1, the following approximation has the probability of 3
4 , as stated in [3].

Γi · (x + y) = Γi · (x ⊕ y), i = 0, . . . , 30

Lemma 2. Suppose that x, y, z ∈ {0, 1}32. Then, the following linear approximation

Γi · (x + y + z) = Γi · (x ⊕ y ⊕ z)

holds with the probability of 2
3 − 1

32−2i−1 for i = 0, . . . , 30.

Proof. See Appendix B.

Lemma 3. Suppose that x1, x2, . . . , xn, k ∈ {0, 1}32 where n is an even number. Then, the
following linear approximation

Γi · (x1 + k) ⊕ Γi · (x2 + k) ⊕ · · · ⊕ Γi · (xn + k) = Γi · (x1 ⊕ x2 ⊕ · · · ⊕ xn)

holds with the probability of around n+2
2(n+1) for i = 1, . . . , 30.
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Proof. See Appendix E.

Corollary 2. Given x, y, z ∈ {0, 1}32, the following linear approximation

Γi · (x + y) ⊕ Γi · (x + z) = Γi · (y ⊕ z)

holds with the probability of 2
3 + 1

32−2i−2 for i = 0, . . . , 30.

Proof. See Appendix F.

Lemma 4. Given x, y, z, w ∈ {0, 1}32, the following linear approximation

Γi · (x + y) ⊕ Γi · (z + w) = Γi · (x + z) ⊕ Γi · (y + w)

has the probability of 2
3 + 1

32−2i−2 for i = 0, . . . , 30.

Proof. See Appendix C.

Corollary 3. Let x, y, z, w ∈ {0, 1}32, then the following linear approximation

Γi · (x + y) ⊕ Γi · (x + z) ⊕ Γi · (y + w) = Γi · (z ⊕ w)

holds with the probability of 29
48 + 1

32−2i−4 for i = 0, . . . , 30.

Proof. See Appendix D.

For convenience, in the rest of the paper we are going to use bias of approximation rather
than probability that an approximation holds.

3 Brief description of NLSv2

NLS is a synchronous, word-oriented stream cipher controlled by a secret key of the size
up to 128 bits. The keystream generator of NLS is composed of a non-linear feedback shift
register (NFSR) and a non-linear filter (NLF) with a counter. In this section, we describe
only the part of NLS which is necessary to understand our attack. The structure of NLSv2 is
exactly the same as that of NLS except a periodically updated Konst [5]. For more details,
refer to [5] and [6].

3.1 Non-linear Feedback Shift Register (NFSR)

At time t, the state of NFSR is denoted by σt = (rt[0], . . . , rt[16]) where rt[i] is a 32-bit
word. Konst is a key-dependent 32-bit word, which is set at the initialization stage and is
updated periodically. The transition from the state σt to the state σt+1 is defined as follows:

(1) rt+1[i] = rt[i + 1] for i = 0, . . . , 15;
(2) rt+1[16] = f((rt[0]≪19) + (rt[15]≪9) + Konst) ⊕ rt[4];
(3) if t ≡ 0 (modulo f16), then

(a) rt+1[2] is modified by adding t (modulo 232),
(b) Konst is changed to the output of NLF,
(c) the output of NLF at t = 0 is not used as a keystream word,
where f16 is a constant integer 216 + 1 = 65537.
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rt[0]≪19 rt[15]≪9
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rt[4]
-

?

rt+1[16]

ω(H) : most significant byte of ω

α(H) : most significant byte of α

α(L) : first 24 bits of α

Fig. 1. The update function of NFSR

The f function The function f is defined as f(ω) = S-box(ω(H)) ⊕ ω where ω(H) is the
most significant 8 bits of 32-bit word ω. The main S-box is composed of two independent
smaller S-boxes: the Skipjack S-box (with 8-bit input and 8-bit output) [8] and a custom-
designed QUT S-box (with 8-bit input and 24-bit output). The output of main S-box in
NLSv2 is defined as a concatenation of outputs of the two smaller S-boxes. Note that the
input of Skipjack S-box (that is ω(H)) is added to the output of Skipjack S-box in advance
for fast implementation. Since the output of the main S-box is added to ω again, the original
output of Skipjack S-box is restored. See Figure 1 for details.

3.2 Non-linear Filter (NLF)

Each output keystream word νt of NLF is generated by the following equation.

νt = NLF (σt) = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ (rt[6] + Konst). (1)

Note that there is no output word when t = 0 modulo f16.

4 Building linear approximations

In this section, linear approximations of NLF and NFSR are developed for the CP attack
against NLS and NLSv2. The main effort is to derive new approximations of NFSR which
have a higher bias than those presented in [3]. Note that we adapt the following definition
of the bias for analysis.

Definition 3. A bias ǫ is defined as follows.

P =
1

2
(1 + ǫ), 1 |ǫ| > 0

1 ǫ is also known in the literature as the correlation or the imbalance.
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where P is the probability that an approximation holds.

The advantage of the definition is that the bias of the combination of n independent ap-
proximations each of bias ǫ is equal to ǫn as asserted by the Piling-up lemma. [7]

4.1 Linear approximations of NFSR

We investigate the bias of the approximation of linear combination of two neighboring bits
of α = S-box(ω(H)). As ω(H) is an 8-bit input, the bias ǫi can be calculated as follows

ǫi =
#(Γi · α = 0) − #(Γi · α = 1)

256
, i = 0, . . . , 30.

Table 1 shows the results obtained by exhaustive search.

i, i + 1 ǫi i, i + 1 ǫi i, i + 1 ǫi i, i + 1 ǫi

0, 1 0 8, 9 −2−3.678 16, 17 0 24, 25 −2−6

1, 2 2−5 9, 10 −2−5 17, 18 2−4.415 25, 26 −2−4

2, 3 2−4 10, 11 2−3.678 18, 19 −2−6 26, 27 −2−6

3, 4 0 11, 12 0 19, 20 −2−5 27, 28 2−5

4, 5 −2−4 12, 13 2−5 20, 21 −2−4.415 28, 29 −2−5

5, 6 −2−3.678 13, 14 2−6 21, 22 −2−4.415 29,30 −2−2.3

6, 7 0 14, 15 −2−6 22, 23 2−4.415 30, 31 0

7, 8 −2−6 15, 16 −2−3.678 23, 24 −2−6

Table 1. Bias of linear approximations of two adjacent output bits of S-box

According to Table 1, the linear approximation α29 ⊕ α30 = 1 has the largest bias of 2−2.3.
We notice that these two bits are involved in Skipjack S-box and this weakness has already
been observed by Biham et al. in 1998. [1]

Since f(ω) = S-box(ω(H)) ⊕ ω, it is clear that the following output approximation has the
bias of 2−2.3.

Γ29 · (ω ⊕ f(ω)) = 1 (2)

Having Approximation (2), we derive the best approximation of the NLF function. From
the structure of NLF, the following relation is always true.

Γ29 · (f(ω)t ⊕ rt[4] ⊕ rt+1[16]) = 0

By combining the above relation with Approximation (2), we obtain the approximation

Γ29 · (ωt ⊕ rt[4] ⊕ rt+1[16]) = 1 (3)

that has the bias of 2−2.3.

4.2 Linear approximations of NLF

The best linear approximation of NLF for our attack is similar to the one which was given
in [3] except that we use the bit position 29 and 30 instead of 12, 13, 22 and 23. However,
we provide a proof of the bias of the approximation which was not given in [3].
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Lemma 5. Given two consecutive outputs of NLF which are νt and νt+1, the following
approximation.

Γi · (νt ⊕ νt+1) = Γi · (rt[0] ⊕ rt[2] ⊕ rt[6] ⊕ rt[7] ⊕ rt[13] ⊕ rt[14] ⊕ rt[16] ⊕ rt+1[16])

has the bias of 1
36 (1 + 2−2i−1)2.

Proof. From the non-linear filter function (1), we know that

νt ⊕ νt+1 = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ (rt[6] + Konst)

⊕ (rt+1[0] + rt+1[16]) ⊕ (rt+1[1] + rt+1[13]) ⊕ (rt+1[6] + Konst)

for two consecutive clocks (t, t + 1). Note that rt[1] and Konst are used twice in above
expression. Hence, according to Corollary 2, the following two approximations have the
probability of 1

2 (1 + 1
3 + 1

32−2i−1) each.

Γi · (rt[6] + Konst) ⊕ Γi · (rt+1[6] + Konst) = Γi · (rt[6] ⊕ rt+1[6])

Γi · (rt[1] + rt[13]) ⊕ Γi · (rt+1[0] + rt+1[16]) = Γi · (rt[13] ⊕ rt+1[16])

In addition, due to Corollary 1, the approximation given below has the probability of 1
2 (1 +

2−1), respectively.

Γi · (rt[0] + rt[16]) = Γi · (rt[0] ⊕ rt[16])

Γi · (rt+1[1] + rt+1[13]) = Γi · (rt+1[1] ⊕ rt+1[13])

Hence, the overall bias is ( 1
3 + 1

32−2i−1)2 × 2−2 = 1
36 (1 + 2−2i−1)2. ⊓⊔

Therefore, the best linear approximation of NLF for our attack is

Γ29 · (νt ⊕ νt+1) = Γ29 · (rt[0] ⊕ rt[2] ⊕ rt[6] ⊕ rt[7] ⊕ rt[13] ⊕ rt[14] ⊕ rt[16] ⊕ rt+1[16] (4)

that has the bias of 1
36 (1 + 2−2×29−1)2 ≈ 2−5.2.

4.3 Linear property of NFSR

Due to the update rule of NFSR, rt+i[j] = rt+j [i] where i, j > 0.

5 Crossword Puzzle (CP) Attack on NLSv2

In NLSv2, the Konst is updated by taking the output of NLF at every 65537 clock. In [3],
authors showed that Konst terms could be removed from the distinguisher by combining
two consecutive approximations of NLF. In this section, the similar technique is adapted
for our attack. That is, the distinguisher are derived by combining the approximations of
NFSR and NLF appropriately in such a way that the internal states of the shift register are
canceled out.

However, we develop more efficient attack on NLSv2 using Approximation (3) and (4) at
clock positions η which are

η = {0, 2, 6, 7, 13, 14, 16, 17}

Note that Approximation (3) consists of non-linear terms and linear terms: Γ29 · ωt and
Γ29 · (rt[4] ⊕ rt+1[16]), respectively. In the following section, we develop the bias of two
approximations Xt and Yt separately which are defined as

Xt =
⊕

k∈η

Γ29 · (rt+k[4] ⊕ rt+k+1[16]), Yt =
⊕

k∈η

Γ29 · ωt+k.
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5.1 Bias of Xt

Due to Approximation (4) and the linear property of NFSR, we know that

Xt =
⊕

k∈η

Γ29 · (rt+k[4] ⊕ rt+k+1[16]) =
⊕

k∈η

Γ29 · (rt+4[k] ⊕ rt+17[k])

= Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18) (5)

The bias of (5) is 2−8.6. The calculations of the bias are given below. The definition of νt

from Equation (1) gives the following equation

Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18)

= Γ29 · (rt+4[0] + rt+4[16]) ⊕ Γ29 · (rt+4[1] + rt+4[13]) ⊕ Γ29 · (rt+4[6] + Konst)

⊕Γ29 · (rt+5[0] + rt+5[16]) ⊕ Γ29 · (rt+5[1] + rt+5[13]) ⊕ Γ29 · (rt+5[6] + Konst)

⊕Γ29 · (rt+17[0] + rt+17[16]) ⊕ Γ29 · (rt+17[1] + rt+17[13]) ⊕ Γ29 · (rt+17[6] + Konst)

⊕Γ29 · (rt+18[0] + rt+18[16]) ⊕ Γ29 · (rt+18[1] + rt+18[13]) ⊕ Γ29 · (rt+18[6] + Konst)

We can see that several terms are shared due to the linear property of NFSR. Hence, the
approximations are applied separately into four groups as follows.

1. According to Corollary 3, we get

Γ29 · (rt+4[1] + rt+4[13]) ⊕ Γ29 · (rt+17[0] + rt+17[16]) ⊕ Γ29 · (rt+5[0] + rt+5[16])

= Γ29 · rt+17[16] ⊕ Γ29 · rt+5[16]

that has the probability of 29
48 + 1

32−2×29−4 ≈ 1
2 (1 + 2−2.3).

2. Due to Lemma 3, the approximation

Γ29 · (rt+5[1] + rt+5[13]) ⊕ Γ29 · (rt+18[0] + rt+18[16]) ⊕ Γ29 · (rt+17[1] + rt+17[13])

= Γ29 · (rt+5[1] ⊕ rt+5[13] ⊕ rt+18[16] ⊕ rt+17[13])

has the probability of around 5
8 = 1

2 (1 + 2−2).

3. Lemma 3 also asserts that the approximation

Γ29 · (rt+4[6] + Konst) ⊕ Γ29 · (rt+5[6] + Konst) ⊕ Γ29 · (rt+17[6] + Konst)

⊕Γ29 · (rt+18[6] + Konst) = Γ29 · (rt+4[6] ⊕ rt+5[6] ⊕ rt+17[6] ⊕ rt+18[6])

has the probability of around 3
5 = 1

2 (1 + 2−2.3).

4. Corollary 1 says that the approximation

Γ29 · (rt+4[0] + rt+4[16]) ⊕ Γ29 · (rt+18[1] + rt+18[13])

= Γ29 · (rt+4[0] ⊕ rt+4[16]) ⊕ Γ29 · (rt+18[1] ⊕ rt+18[13])

has the probability of 1
2 (1 + 2−2).

Therefore, the bias of Approximation (5) is 2−2.3 × 2−2 × 2−2.3 × 2−2 = 2−8.6.



Multiple Modular Additions and Crossword Puzzle Attack on NLSv2 9

5.2 Bias of Yt

Recall that

ωt = (rt[0]≪19) + (rt[15]≪9) + Konst

Due to Lemma 2, ωt has the following approximation.

Γ29 · ω = Γ29 · (rt[0]≪19 ⊕ rt[15]≪9 ⊕ Konst)

= Γ10 · rt[0] ⊕ Γ20 · rt[15] ⊕ Γ29 · Konst

that has the probability of 2
3 − 1

32−2×29−1 ≈ 1
2 (1 + 2−1.6). Due to Lemma 5, Yt can be

approximated as

Yt =
⊕

k∈η

Γ29 · ωt+k =
⊕

k∈η

(Γ10 · rt+k[0] ⊕ Γ20 · rt+k[15] ⊕ Γ29 · Konst)

= Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16) (6)

The bias of (6) is at least 2−10.4. The detail analysis on the bias will be discussed in Section
5.4.

Notice that Konst terms have disappeared since the binary addition of eight approximations
cancels Konst as presented in [3]. Due to the lack of a keystream word at every f16-th clock,
we can see precisely when Konst is updated. Since the updated Konst has been effective
to all states of registers after the first 17 clocks, the observations generated from the first
17 clocks should not be counted for the bias. Hence, Konst is regarded as a constant in all
approximations 2.

5.3 Bias of the distinguisher

The bias of distinguisher for NLSv2 is derived as follows. From (3), the following approxi-
mation has the bias of 2−2.3×8 by the Piling-up Lemma [7].

⊕

k∈η

Γ29 · (ωt+k ⊕ rt+k[4] ⊕ rt+1+k[16]) = Xt ⊕ Yt = 0 (7)

On the contrary, by adding up the approximations of (5) and (6), we obtain the following
approximation

Xt ⊕ Yt = Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18) ⊕ Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16) (8)

that has the bias equal to 2−8.6 × 2−10.4. Therefore, by combining (7) and (8), the distin-
guisher on NLSv2 is described by the approximation

Γ29 · (νt+4 ⊕ νt+5 ⊕ νt+17 ⊕ νt+18) ⊕ Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16) = 0 (9)

that has the bias of around 2−2.3×8 × 2−8.6 × 2−10.4 = 2−37.4.

2 By this reason, the notation Konstt is not used in the approximations.
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5.4 The bias of Approximation (6)

According to the definition of νt given by (1), we can write the following approximation

Γ10 · (νt ⊕ νt+1) ⊕ Γ20 · (νt+15 ⊕ νt+16)

= Γ10 · (rt[0] + rt[16]) ⊕ Γ10 · (rt[1] + rt[13])Γ10 · (rt[6] + Konst)

⊕Γ10 · (rt+1[0] + rt+1[16]) ⊕ Γ10 · (rt+1[1] + rt+1[13]) ⊕ Γ10 · (rt+1[6] + Konst)

⊕Γ20 · (rt+15[0] + rt+15[16]) ⊕ Γ20 · (rt+15[1] + rt+15[13]) ⊕ Γ20 · (rt+15[6] + Konst)

⊕Γ20 · (rt+16[0] + rt+16[16]) ⊕ Γ20 · (rt+16[1] + rt+16[13]) ⊕ Γ20 · (rt+16[6] + Konst)

, ∆1 ⊕ ∆2 ⊕ ∆3

where

∆1 = Γ10 · (rt[0] + rt[16]) ⊕ Γ20 · (rt+15[0] + rt+15[16])

⊕Γ10 · (rt+1[1] + rt+1[13]) ⊕ Γ20 · (rt+16[1] + rt+16[13])

∆2 = Γ10 · (rt[1] + rt[13]) ⊕ Γ20 · (rt+15[1] + rt+15[13])

⊕Γ10 · (rt+1[0] + rt+1[16]) ⊕ Γ20 · (rt+16[0] + rt+16[16])

∆3 = Γ10 · (rt[6] + Konst) ⊕ Γ20 · (rt+15[6] + Konst)

⊕Γ10 · (rt+1[6] + Konst) ⊕ Γ20 · (rt+16[6] + Konst)

In order to determine the bias of ∆1,∆2 and ∆3, the following two lemmas are required.

Lemma 6. Given x, y, a, b, c, d, k ∈ {0, 1}32, the following approximation has the bias of
2−3.1 when i > 0.

Γi · (x + a) ⊕ Γi · (y + b) ⊕ Γi · (x + c) ⊕ Γi · (y + d)

= Γi · (a + b + k) ⊕ Γi · (c + d + k)

Proof. (Sketch) We assume that x = 0 and y = 0 since the variables x and y are independent
on the expressions (a + b + k) and (c + d + k). Then, the approximation being considered
is simplified as follows.

Γi · (x + a) ⊕ Γi · (y + b) ⊕ Γi · (x + c) ⊕ Γi · (y + d) ⊕ Γi · (a + b + k) ⊕ Γi · (c + d + k)

= Γi−1 · (R(a, b) ⊕ R(a + b, k)) ⊕ Γi−1 · (R(c, d) ⊕ R(c + d, k))

By using the recursive relation (11) in Appendix B and by counting appropriate probabilities,
we get

Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0] ≈
33

59
=

1

2
(1 + 2−3.1)

Since Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0] is identical to Pr[Γi−1 ·
(R(a, b) ⊕ R(a + b, k)) ⊕ Γi−1 · (R(c, d) ⊕ R(c + d, k)) = 0], the lemma holds. See Appendix
G for details.

Lemma 7. Given x, y, z, w, a, b, c, d, k ∈ {0, 1}32, the following approximation has the bias
of 2−4.2 when i > 0.

Γi · (x + a) ⊕ Γi · (y + b) ⊕ Γi · (z + c) ⊕ Γi · (w + d)

= Γi · (x + y + k) ⊕ Γi · (a + b + k) ⊕ Γi · (z + w + k) ⊕ Γi · (c + d + k) (10)
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Proof. (Sketch) Suppose k = 0. Then, the approximation (10) is divided into two independent
approximations as follows.

Γi · (x + a) ⊕ Γi · (y + b) = Γi · (x + y) ⊕ Γi · (a + b)

Γi · (z + c) ⊕ Γi · (w + d) = Γi · (z + w) ⊕ Γi · (c + d)

By applying Lemma 4 twice, we see that above approximation has the bias of 1
9 (1+2−2i−2)2 ≈

2−3.2 for i > 0.

For k = 1, 2, . . . , 2i, the bias of (10) has the following properties.

– the bias decreases monotonously for k = 1, 2, . . . , 2i−1.
– the bias increases monotonously for k = 2i−1 + 1, . . . , 2i.
– the bias is the highest at k = 2i and is the lowest (around zero) at k = 2i−1.

This bias pattern is repeated for k = 2i + 1, . . . , 2i+2 − 1. If i > 0, the overall bias of (10) is
around a half of the highest bias, which is 2−3.2 ∗ 2−1 = 2−4.2. Hence, the lemma holds.

∆1 : From the definition of the rotations, we know that

∆1 = Γ29 · (rt[0]≪19 + rt[16]≪19) ⊕ Γ29 · (rt+15[0]≪9 + rt+15[16]≪9)

⊕Γ29 · (rt+1[1]≪19 + rt+1[13]≪19) ⊕ Γ29 · (rt+16[1]
≪9 + rt+16[13]≪9)

According to Lemma 7, the following approximation has a bias of 2−4.2.

∆1 = Γ29 · (rt[0]≪19 + rt+15[0]≪9 + Konst) ⊕ Γ29 · (rt[16]≪19 + rt+15[16]≪9 + Konst)

⊕Γ29 · (rt+1[1]≪19 + rt+16[1]
≪9 + Konst) ⊕ Γ29 · (rt+1[13]≪19 + rt+16[13]≪9 + Konst)

= Γ29 · (ωt ⊕ ωt+16 ⊕ ωt+2 ⊕ ωt+14)

∆2 and ∆3 : Due to Lemma 6, we can write the approximations

∆2 = Γ29 · (rt[1]≪19 + rt+15[1]≪9) ⊕ Γ29 · (rt[13]≪19 + rt+15[13]≪9)

⊕Γ29 · (rt+1[0]≪19 + rt+16[0]≪9) ⊕ Γ29 · (rt+1[16]≪19 + rt+16[16]≪9)

= Γ29 · (rt[13]≪19 + rt+15[13]≪9 + Konst) ⊕ Γ29 · (rt+1[16]≪19 + rt+16[16]≪9 + Konst)

= Γ29 · (ωt+13 ⊕ ωt+17)

∆3 = Γ29 · (rt[6]≪19 + rt+15[6]≪9) ⊕ Γ29 · (Konst≪19 + Konst≪9)

⊕Γ29 · (rt+1[6]≪19 + rt+16[6]≪9) ⊕ Γ29 · (Konst≪19 + Konst≪9)

= Γ29 · (rt[6]≪19 + rt+15[6]≪9 + Konst) ⊕ Γ29 · (rt+1[6]≪19 + rt+16[6]≪9 + Konst)

= Γ29 · (ωt+6 ⊕ ωt+7)

with the same bias of 2−3.1. Thus, Approximation (6) has the bias of 2−(4.2+3.1×2) = 2−10.4.

5.5 Experiments

The verification of the bias of Distinguisher (9) is not directly applicable due to the re-
quirement of large observations of keystream. Instead, our experiments have been focused
on verifying the biases of Approximation (5) and (6) independently. Figure 2 shows that the
graphs follow the expected biases of those approximations.
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Fig. 2. The biases of Approximation (5) and (6)

6 Conclusion

In this paper, we present a Crossword Puzzle (CP) attack against NLSv2 that is a tweaked
version of NLS. Even though the designers of NLSv2 aimed to avoid the distinguishing attack
that was constructed for the NLS, we have shown that the CP attack can be applied for
NLSv2. The distinguisher has a bias higher than 2−40 and consequently, the attack requires
less than 280 observations which was given as the security benchmark by the designers.
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A Recursion Relation

Let us remind a calculus on recursion relation. Assume that we have the recursive relation

xn = r · xn−1 + c

then, we can write

x1 = r · x0 + c, x2 = r · x1 + c = r2 · x0 + rc + c, · · · , xn = rn · x0 + c(1 + r + · · ·+ rn−1).

If r 6= 1, we get

1 + r + r2 + · · · + rn−1 =
1 − rn

1 − r
.

Thus, xn can be expressed as follows.

xn =
c(1 − rn)

1 − r
+ x0 · r

n

If r = 1, then xn = x0 + c · n.

B Proof of Lemma 2

From Definition 2, we obtain

Γi · (x + y + z) = Γi · (x ⊕ y ⊕ z) ⊕ Γi−1 · (R(x, y) ⊕ R(x + y, z)).

Thus, our task is to find Pr[Γi−1 · (R(x, y) ⊕ R(x + y, z)) = 0]. Let us denote

– Li = x(i) ⊕ y(i) ⊕ z(i)

– Qi = x(i)y(i) ⊕ y(i)z(i) ⊕ z(i)x(i)

– Ti = x(i)y(i)z(i)

Assume further that Xi and Yi are defined as follows.

Xi , R(x, y)(i) ⊕ R(x + y, z)(i)

= x(i)y(i) ⊕ y(i)z(i) ⊕ z(i)x(i) ⊕ (x(i) ⊕ y(i) ⊕ z(i))(R(x, y)(i−1) ⊕ R(x + y, z)(i−1)) ⊕

R(x, y)(i−1)R(x + y, z)(i−1)

= Qi ⊕ LiXi−1 ⊕ Yi−1

Yi , R(x, y)(i)R(x + y, z)(i)

= x(i)y(i)z(i)(R(x, y)(i−1) ⊕ R(x + y, z)(i−1)) ⊕

(x(i)y(i) ⊕ y(i)z(i) ⊕ z(i)x(i))R(x, y)(i−1)R(x + y, z)(i−1)

= TiXi−1 ⊕ QiYi−1

Since Qi · Li = Ti, the following relation between Xi and Yi holds

Yi = QiXi ⊕ Qi.

Let us find out the Pr[Xi = 0]. We start from the equation Xi = Qi ⊕ LiXi−1 ⊕ Yi−1 and
replace Yi−1 by Yi−1 = Qi−1Xi ⊕ Qi−1, so we find

Xi = Qi ⊕ LiXi−1 ⊕ Yi−1 = Qi ⊕ Qi−1 ⊕ (Li ⊕ Qi−1)Xi−1. (11)
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This gives us

Pr[Xi = 0] =
1

2
Pr[Xi−1 = 0] +

1

4
(1 − Pr[Xi−1 = 0]) =

1

4
+

1

4
Pr[Xi−1 = 0]

Therefore, applying the recursion relation from Appendix A, we obtain

Pr[Xi = 0] =
1

3
+

1

3
2−2i−1. (12)

Note that Pr[X0 = 0] = Pr[x(0)y(0) ⊕ y(0)z(0) ⊕ z(0)x(0) = 0] = 1
2 . From our definitions, we

can write that

Γi−1 · (R(x, y) ⊕ R(x + y, z)) = Xi−1 ⊕ Xi = Qi ⊕ (Li ⊕ 1)Xi−1 ⊕ Yi−1

= Qi ⊕ Qi−1 ⊕ (Li ⊕ Qi−1 ⊕ 1)Xi−1

Therefore,

Pr[Γi−1 · (R(x, y) ⊕ R(x + y, z)) = 0] =

{

Pr[Qi ⊕ Qi−1 = 0] = 1
2 , if Xi−1 = 0,

P r[Qi ⊕ Li ⊕ 1 = 0] = 3
4 , if Xi−1 = 1

By applying Equation (12), we get the final result

Pr[Γi−1 · (R(x, y) ⊕ R(x + y, z))] =
1

2
Pr[Xi−1 = 0] +

3

4
(1 − Pr[Xi−1 = 0])

=
3

4
−

1

4
Pr[Xi−1 = 0]

=
2

3
−

1

3
2−2i−1

C Proof of Lemma 4

Our task is to determine the probability that the following approximation is true:

Γi · (x + y) ⊕ Γi · (z + w) = Γi · (x + z) ⊕ Γi · (y + w).

We add both sides of the approximation and are going to find the probability that it becomes
zero. So we have

Γi · (x + y) ⊕ Γi · (z + w) ⊕ Γi · (x + z) ⊕ Γi · (y + w)

= Γi−1 · (R(x, y) ⊕ R(z, w) ⊕ R(x, z) ⊕ R(y, w))

= x(i)y(i) ⊕ z(i)w(i) ⊕ x(i)z(i) ⊕ y(i)w(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1)

⊕(z(i) ⊕ w(i) ⊕ 1)R(z, w)(i−1) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1) ⊕ (y(i) ⊕ w(i) ⊕ 1)R(y, w)(i−1)

, Λi

Then, Λi can be split into eight cases according to the values of (x(i), y(i), z(i), w(i)) as follows:

– (0,0,0,0),(1,1,1,1) : R(x, y)(i−1) ⊕ R(z, w)(i−1) ⊕ R(x, z)(i−1) ⊕ R(y, w)(i−1)

– (0,0,0,1),(1,1,1,0) : R(x, y)(i−1) ⊕ R(x, z)(i−1)

– (0,0,1,0),(1,1,0,1) : R(x, y)(i−1) ⊕ R(y, w)(i−1)

– (0,1,0,0),(1,0,1,1) : R(x, z)(i−1) ⊕ R(z, w)(i−1)

– (1,0,0,0),(0,1,1,1) : R(y, w)(i−1) ⊕ R(z, w)(i−1)
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– (0,0,1,1),(1,1,0,0) : R(x, y)(i−1) ⊕ R(z, w)(i−1) ⊕ 1
– (0,1,0,1),(1,0,1,0) : R(x, z)(i−1) ⊕ R(y, w)(i−1) ⊕ 1
– (0,1,1,0),(1,0,0,1) : 0

In order to compute Pr[Λi = 0], the following three probabilities are required.

– αi = Pr[R(x, y)(i) ⊕ R(z, w)(i) ⊕ 1 = 0]
– βi = Pr[R(x, y)(i) ⊕ R(x, z)(i) = 0]
– γi = Pr[R(x, y)(i) ⊕ R(z, w)(i) ⊕ R(x, z)(i) ⊕ R(y, w)(i) = 0]

They can be used to state that

Pr[Λi = 0] =
1

4
αi−1 +

1

2
βi−1 +

1

8
γi−1 +

1

8
(13)

Now the probabilities αi, βi and γi are computed as follows.

(1) From Lemma 1, we get

αi =
3

8
+

1

4
αi−1 ⇒ αi =

1

2
− 2−2i−3

(2) Using Appendix F, we write

βi =
1

2
+

1

4
βi−1 ⇒ βi =

2

3
+

1

3
2−2i−2

(3) By definition, we see that

R(x, y)(i) ⊕ R(z, w)(i) ⊕ R(x, z)(i) ⊕ R(y, w)(i)

= x(i)y(i) ⊕ z(i)w(i) ⊕ x(i)z(i) ⊕ y(i)w(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1)

⊕(z(i) ⊕ w(i))R(z, w)(i−1) ⊕ (x(i) ⊕ z(i))R(x, z)(i−1) ⊕ (y(i) ⊕ w(i))R(y, w)(i−1)

According to the values of (x(i), y(i), z(i), w(i)), we consider the following cases:

– (0,0,0,0),(1,1,1,1) : 0
– (0,0,0,1),(1,1,1,0) : R(z, w)(i−1) ⊕ R(y, w)(i−1)

– (0,0,1,0),(1,1,0,1) : R(z, w)(i−1) ⊕ R(x, z)(i−1)

– (0,1,0,0),(1,0,1,1) : R(x, y)(i−1) ⊕ R(y, w)(i−1)

– (1,0,0,0),(0,1,1,1) : R(x, y)(i−1) ⊕ R(x, z)(i−1)

– (0,0,1,1),(1,1,0,0) : 1 ⊕ R(x, z)(i−1) ⊕ R(y, w)(i−1)

– (0,1,0,1),(1,0,1,0) : 1 ⊕ R(x, y)(i−1) ⊕ R(z, w)(i−1)

– (0,1,1,0),(1,0,0,1) : R(x, y)(i−1) ⊕ R(z, w)(i−1) ⊕ R(x, z)(i−1) ⊕ R(y, w)(i−1)

Hence, we establish that

γi =
1

4
αi−1 +

1

2
βi−1 +

1

8
γi−1 +

1

8

=
1

4

i−1
∑

j=0

αj2
−3(i−j−1) +

1

2

i−1
∑

j=0

βj2
−3(i−j−1) + 2−3iγ0 +

1

7
(1 − 2−3i)

=
2

3
+

1

3
2−2i−2
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Therefore, the probability given in Equation (13) becomes

Pr[Λi = 0] =
1

4
αi−1 +

1

2
βi−1 +

1

8
γi−1 +

1

8

=
1

4
(
1

2
− 2−2i−1) +

1

2
(
2

3
+

1

3
2−2i) +

1

8
(
2

3
+

1

3
2−2i) +

1

8

=
2

3
+

1

3
2−2i−2

and gives the final result.

D Proof of Corollary 3

We take both sides of the approximation, add them and find the probability when it becomes
zero so

Γi · (x + y) ⊕ Γi · (x + z) ⊕ Γi · (y + w) ⊕ Γi · (z ⊕ w)

= Γi−1 · (R(x, y) ⊕ R(x, z) ⊕ R(y, w))

= x(i)y(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1) ⊕ x(i)z(i) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1)

⊕y(i)w(i) ⊕ (y(i) ⊕ w(i) ⊕ 1)R(y, w)(i−1)

Next, the expression Γi ·(R(x, y)⊕R(x, z)⊕R(y, w)) is split into the following cases according
to (x(i), y(i), z(i), w(i)):

– (0, 0, 0, 0) : R(x, y)(i−1) ⊕ R(x, z)(i−1) ⊕ R(y, w)(i−1)

– (1, 1, 1, 1) : 1 ⊕ R(x, y)(i−1) ⊕ R(x, z)(i−1) ⊕ R(y, w)(i−1)

– (1, 0, 0, 0) : R(y, w)(i−1), (0, 1, 1, 1) : 1 ⊕ R(y, w)(i−1)

– (0, 1, 0, 0) : R(x, z)(i−1), (1, 0, 1, 1) : 1 ⊕ R(x, z)(i−1)

– (0, 0, 1, 1) : R(x, y)(i−1), (1, 1, 0, 0) : 1 ⊕ R(x, y)(i−1)

– (0, 0, 1, 0), (1, 1, 0, 1) : R(x, y)(i−1) ⊕ R(y, w)(i−1)

– (0, 1, 0, 1), (1, 0, 1, 0) : 1 ⊕ R(x, z)(i−1) ⊕ R(y, w)(i−1)

– (0, 0, 0, 1), (1, 1, 1, 0) : R(x, y)(i−1) ⊕ R(x, z)(i−1)

– (0, 1, 1, 0), (1, 0, 0, 1) : 0

Note that there are four pairs which are complement of each other. Using the notation of
Appendix C, we get

αi = Pr[1 ⊕ R(x, z)i ⊕ R(y, w)i = 0] =
1

2
− 2−2i−3

βi = Pr[R(x, y)i ⊕ R(x, z)i = 0] = Pr[R(x, y)i ⊕ R(y, w)i = 0] =
2

3
+

1

3
2−2i−2

Therefore, we get the final result

Pr[Γi−1 · (R(x, y) ⊕ R(x, z) ⊕ R(y, w)) = 0]

=
3

8
+

1

4
β(i−1) +

1

16
α(i−1) =

3

8
+

1

4
(
2

3
+

1

3
2−2i) +

1

8
(
1

2
− 2−2i−1)

=
29

48
+

1

3
2−2i−4
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E Proof of Lemma 3

Let us denote Φn,(i) as

Φn,(i) = R(x1, k)(i) ⊕ R(x2, k)(i) ⊕ · · · ⊕ R(xn, k)(i)

E.1 Pr[Φn,(i) = 0]

By definition, R(x, k)(i) = x(i)k(i) ⊕ (x(i) ⊕ k(i))R(x, k)(i−1). Thus,

Φn,(i) = k(i)(x1,(i) ⊕ x2,(i) ⊕ · · · ⊕ xn,(i)) ⊕ (x1,(i) ⊕ k(i))R(x1, k)(i−1) ⊕

(x2,(i) ⊕ k(i))R(x2, k)(i−1) ⊕ · · · ⊕ (xn,(i) ⊕ k(i))R(xn, k)(i−1)

Then, Φn,(i) has the following properties.

– If
⊕n

t=1 xt,(i) = 0, then there exists a pair of (x1,(i), x2,(i), . . . , xn,(i), k(i)) which generate
the same Φn,(i). For instance, (x1,(i), x2,(i), . . . , xn,(i), k(i)) and (1⊕x1,(i), . . . , 1⊕xn,(i), 1⊕
k(i)) produce the identical Φn,(i).

– If
⊕n

t=1 xt,(i) = 1, then there exists a pair of (x1,(i), x2,(i), . . . , xn,(i), k(i)) whose Φn,(i)s
are complement each other. For instance, (x1,(i), x2,(i), . . . , xn,(i), k(i)) and (1⊕x1,(i), 1⊕
x2,(i), . . . , 1 ⊕ xn,(i), 1 ⊕ k(i)) produce a complement Φn,(i) each other.

Hence, by defining, Pr,(i) = Pr[
⊕r

t=1 R(xt, k)(i) = 0], we get

Pn,(i) =
1

2n+1
[

n/2
∑

r=0

(

n

2r

)

2P2r,(i−1) +

n/2−1
∑

r=0

(

n

2r + 1

)

] =
1

4
+

1

2n

n/2
∑

r=0

(

n

2r

)

P2r,(i−1)

where P0 = 1.

Hence, when i > 0,

Pn,(i) ≈
n + 2

2(n + 1)

E.2 Pr[Φn,(i−1) ⊕ Φn,(i) = 0]

By definition, we can write (x + k)(i) = x(i) ⊕ k(i) ⊕ R(x, k)(i−1). Thus, we get

Γi · (x1 + k) ⊕ Γi · (x2 + k) ⊕ · · · ⊕ Γi · (xn + k) ⊕ Γi · (x1 ⊕ x2 ⊕ · · · ⊕ xn)

= Γi−1 · (R(x1, k) ⊕ R(x2, k) ⊕ · · · ⊕ R(xn, k))

= Φn,(i−1) ⊕ Φn,(i)

= k(i)(x1,(i) ⊕ x2,(i) ⊕ · · · ⊕ xn,(i)) ⊕ (x1,(i) ⊕ k(i) ⊕ 1)R(x1, k)(i−1) ⊕

(x2,(i) ⊕ k(i) ⊕ 1)R(x2, k)(i−1) ⊕ · · · ⊕ (xn,(i) ⊕ k(i) ⊕ 1)R(xn, k)(i−1)

As before, we can get the following equation

Pr[Φn,(i−1) ⊕ Φn,(i) = 0] =
1

4
+

1

2n

n/2
∑

r=0

(

n

2r

)

Pn−2r,(i−1)

=
1

4
+

1

2n

n/2
∑

r=0

(

n

n − 2r

)

Pn−2r,(i−1)

= Pn,(i)
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Therefore, when i > 0, we have

Pr[Φn,(i−1) ⊕ Φn,(i) = 0] ≈
n + 2

2(n + 1)

which concludes the proof.

F Proof of Corollary 2

From Definition 2, we write

R(x, y)(i) ⊕ R(x, z)(i) = x(i)y(i) ⊕ (x(i) ⊕ y(i))R(x, y)(i−1) ⊕ x(i)z(i) ⊕ (x(i) ⊕ z(i))R(x, z)(i−1)

Then, according to (x(i), y(i), z(i)), the expression R(x, y)(i) ⊕ R(x, z)(i) is split as follows.

– (0, 0, 0), (1, 1, 1) : 0
– (0, 1, 1), (1, 0, 0) : R(x, y)(i−1) ⊕ R(x, z)(i−1)

– (0, 0, 1) : R(x, z)(i−1), (0, 1, 0) : R(x, y)(i−1)

– (1, 1, 0) : 1 ⊕ R(x, z)(i−1), (1, 0, 1) : 1 ⊕ R(x, y)(i−1)

We can see that the third and fourth are pairwise complement with the probability of 1
8

each. Hence,

Pr[R(x, y)(i) ⊕ R(x, z)(i) = 0] =
1

4
+ 2 ·

1

8
+

1

4
Pr[R(x, y)(i−1) ⊕ R(x, z)(i−1) = 0]

=
1

2
+

1

4
Pr[R(x, y)(i−1) ⊕ R(x, z)(i−1) = 0]

Using the recursion relation from Appendix A, we state that

Pr[R(x, y)(i) ⊕ R(x, z)(i) = 0] =
2

3
+

1

3
2−2i−2

Applying Definition 2, we can get

Γi · (x + y) ⊕ Γi · (x + z) ⊕ Γi · (y ⊕ z)

= Γi−1 · (R(x, y) ⊕ R(x, z))

= x(i)y(i) ⊕ (x(i) ⊕ y(i) ⊕ 1)R(x, y)(i−1) ⊕ x(i)z(i) ⊕ (x(i) ⊕ z(i) ⊕ 1)R(x, z)(i−1)

Therefore, arguing in similar way as above, we establish that

Pr[Γi · (R(x, y) ⊕ R(x, z)) = 0] =
1

2
+

1

4
Pr[R(x, y)(i−1) ⊕ R(x, z)(i−1) = 0]

=
2

3
+

1

3
2−2i−2.

G Proof of Lemma 6

From the approximation being considered, w.l.g we assume that x = 0 and y = 0 since the
variables x and y are independent on the expressions (a + b + k) and (c + d + k).
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Then, the approximation is simplified as follows.

Γi · (x + a) ⊕ Γi · (y + b) ⊕ Γi · (x + c) ⊕ Γi · (y + d) ⊕ Γi · (a + b + k) ⊕ Γi · (c + d + k)

= Γi−1 · (R(a, b) ⊕ R(a + b, k)) ⊕ Γi−1 · (R(c, d) ⊕ R(c + d, k))

Using the recursive relation (11) in Appendix B, we have

(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i)

= Q1,(i) ⊕ Q1,(i−1) ⊕ (L1,(i) ⊕ Q1,(i−1))(R(a, b)(i−1) ⊕ R(a + b, k)(i−1)) ⊕

Q2,(i) ⊕ Q2,(i−1) ⊕ (L2,(i) ⊕ Q2,(i−1))(R(c, d)(i−1) ⊕ R(c + d, k)(i−1))

where Q1,(i) = a(i)b(i) ⊕ b(i)k(i) ⊕ k(i)a(i), Q2,(i) = c(i)d(i) ⊕ d(i)k(i) ⊕ k(i)c(i), L1,(i) =
a(i) ⊕ b(i) ⊕ k(i) and L2,(i) = c(i) ⊕ d(i) ⊕ k(i).

According to the values of ten variables (a(i), b(i), c(i), d(i), k(i), a(i−1), b(i−1), c(i−1), d(i−1), k(i−1)),
the above expression is simplified as a function of (R(a, b)(i−1) ⊕ R(a + b, k)(i−1)) and
(R(c, d)(i−1) ⊕ R(c + d, k)(i−1)).

Hence, by counting appropriate probabilities, we get

Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0]

=
35

64
−

3

64
· Pr[(R(a, b) ⊕ R(a + b, k))(i−1) = 0] −

3

64
· Pr[(R(c, d) ⊕ R(c + d, k))(i−1) = 0]

+
5

64
· Pr[(R(a, b) ⊕ R(a + b, k))(i−1) ⊕ (R(c, d) ⊕ R(c + d, k))(i−1) = 0]

From Lemma 2, we know that

Pr[(R(a, b) ⊕ R(a + b, k))(i−1) = 0] = Pr[(R(c, d) ⊕ R(c + d, k))(i−1) = 0] =
1

3
+

1

3
2−2i+1

Therefore, by the recursive relation of Appendix A, for i > 0,

Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0] ≈
33

59
=

1

2
(1 + 2−3.1)

Since Pr[(R(a, b) ⊕ R(a + b, k))(i) ⊕ (R(c, d) ⊕ R(c + d, k))(i) = 0] is identical to Pr[Γi−1 ·
(R(a, b) ⊕ R(a + b, k)) ⊕ Γi−1 · (R(c, d) ⊕ R(c + d, k)) = 0], the lemma holds.


