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Q1. Test the primality of 2009 using

1. the Solovay-Strassen test witha = 442

2. the Miller-Rabin test witha = 442.



A1-a). (The Solovay-Strassen test)
We proceed as written in the lecture slides. We haven = 2009,
a = 442= 2 · 13 · 17.
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Also, we compute 442
n−1

2 = 4421004 mod 2009. Since
4424 ≡ 1 mod 2009, we get 4421004 = 4424·251 ≡ 1 mod 2009.
Hence,
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2 son is prime.



A1-b). (The Miller-Rabin test) We haven = 2009,a = 442,
n − 1 = 23 · 251 andk = 3.

• b ← 442251 mod 2009= 50 by square-and-multiply.

• b 6≡ 1 modn, continue.

• i = 0: b 6≡ −1 (mod n), b ← b2 = 491.

• i = 1: b 6≡ −1 (mod n), b ← b2 = 1.

• i = 2: b 6≡ −1 (mod n), b ← b2 = 1.

• Answer: “n is composite”.



Q2.

1. Find all square roots of 1 modulo 4453= 61 · 73.

2. 2777 is a square root of 3586 modulo 4453. Find all square roots
of 3586 modulo 4453.



A2-a). The task is to findx such thatx2 ≡ 1 mod 4453.

• It is obvious thatx = ±1 are square roots.

• Also, we have

x ≡ −1(mod61)

x ≡ 1(mod73).

We get 61−1 ≡ 6 mod 73 and 73−1 ≡ 56 mod 61.

• Using CRT, we getx = −1 · 73· 56+ 1 · 61· 6 ≡ 731 mod 4453.

• In a similar way, we can getx = −731. Hence,±1 and±731 are
four square roots of 1 mod 4453.



A2-b). From the lecture slides,

• ±1 and±731 are the square roots of 1 modn. Putw = 731.

• Given a square rootb of a, the four square roots ofa mod n are
±b and±bw.

• So witha = 3586,b = 2777,n = 4453,w = 731, the four
square roots of 3586 mod 4453 are±2777 and±2777· 731,
namely,{2777, 1676, 3872, 581}.



Q3. (Stinson 5.24) Suppose thati ≥ 2 andb2 ≡ a (modpi−1). it was
shown that there is a uniquex ∈ Zpi , such thatx2 ≡ a (modpi) and
x ≡ b (modpi−1) and

b2 = a + mpi−1 modpi (1)

x = b + npi−1 modpi (2)

n =
p − 1

2
b−1m modp. (3)

Starting with the congruence 62 ≡ 17(mod 19), find square roots of
17 modulo 192.



A3. We haveb2 ≡ a (modpi−1), x2 ≡ a (modpi) and
x ≡ b (modpi−1).

b2 = a + mpi−1 modpi

x = b + npi−1 modpi

n =
p − 1

2
b−1m modp.

Using these equations, we find square roots of 17 modulo 192 and
modulo 193.

1. a = 17,b = 6, p = 19 andi = 2.

2. By (1), b2 = 36 = 17+ 1 · 19. We getm = 1

3. b−1 mod 19= 16. By (3),n = 9 · 16 · 1 mod 19= 11.

4. x = 6 + 11 · 19 mod 192 = 215 from (2).

5. Similarly, for b = −6 = 13, we getx = 146.



A3. Find square roots of 17 modulo 193.

b2 = a + mpi−1 modpi

x = b + npi−1 modpi

n =
p − 1

2
b−1m modp.

Let nowi = 3.

1. a = 17,b = 215,p = 19 andi = 3, p2 = 361,p3 = 6859.

2. By (1), b2 ≡ 5071= 17+ 14 · 361. We getm = 14

3. b−1 mod 19= 16. By (3),n = 9 · 16 · 14 mod 19= 2.

4. x = 215+ 2 · 192 mod 193 = 937 from (2).

Similarly, for b = −215 modp2 = 146, we getx = −937= 5922.



Q4. Compute

2120(mod122183).

Then using thep − 1 method, attempt to factor 122183.



A4.

• We calculate 2120 mod 122183 by square-and-multiply as
follows:

2120 = 26423221628 ≡ 15068 mod 122183.

• We also know that 120= 5! = 5 · 4 · 3 · 2.

• According to Pollardp − 1, we set
a = 2B! ≡ 15068 mod 122183 whereB = 5.

• Then, we calculate
d = gcd(a − 1, n) = gcd(15067, 122183) = 61. Since
1 < d < n, we conclude that 61 is a factor of 122183. Indeed,
we can see 122183= 61 · 2003.

• Note this worked because all prime power divisors of
d − 1 = 60 = 22 · 3 · 5 were less than or equal toB = 5.



Q5. Letn = pq, wherep andq are primes. We can assume that
p > q > 2 and we denoted = p−q

2 andx = p+q
2 . Thenn = x2 − d2.

Attempt to factorn = 400219845261001 by searching for small
non-negative integerst such thatx2 − n = (d√ne + t)2 − n is a
perfect square. (This is a simple form of the Quadratic Sieve method.)



A5. The task is to search for small non-negativet such that
(d√ne + t)2 − n is a perfect square, and as a result we have an
equation liken = a2 − b2 = (a + b)(a − b) with a, b known and we
find the factors ofn. We setn = 400219845261001 and try for
t = 1 . . .:

• t ← 1, (20005496+ 1)2 − 400219845261001= 64956008 is
not a square.

• t ← 2, (d√ne + 2)2 − n = 104967003 is not a square.

• t ← 3, (d√ne + 3)2 − n = 144978000 is not a square.

• t ← 4, (d√ne + 4)2 − n = 184988999 is not a square.

• t ← 5, (20005501)2 − n = 225000000= 150002.

We now have the factors: 20005501± 15000 and
400219845261001= 19990501× 20020501. This worked because
p, q were too close to each other.



Q6.

1. Bob : (n, b1), Charlie :(n, b2), and gcd(b1, b2) = 1

2. Alice: y1 = xb1 modn =⇒ Bob andy2 = xb2 modn =⇒ Charlie
3. Oscar interceptsy1 andy2, and performs

i) Computec1 = b−1
1 modb2

ii) Computec2 = (c1b1 − 1)/b2

iii) Computex1 = yc1
1 (yc2

2 )−1 modn

1. Prove that the valuex1 computed in step iii) is in fact Alice’s
plaintext,x. Thus Oscar can decrypt the message Alice sent,
even though the cryptosystem may be “secure”.

2. Illustrate the attack by computingx by this method ifn = 18721,
b1 = 43,b2 = 7717,y1 = 12677 andy2 = 14702.



A6.
We recall the three equations from the problem description:

c1 = b−1
1 mod b2 (4)

c2 = (c1b1 − 1)/b2 (5)

x1 = yc1
1 (yc2

2 )−1 mod n (6)

1. In (4) bothb1 andb2 are public and relatively prime thus Oscar
can computec1.

2. In (5) notec1b1 = 1 + kb2 and thusc1b1 − 1 is divisible byb2.

3. Rearranging (5) asb1c1 − b2c2 = 1 and combining with (6) we
get

x1 = yc1
1 (yc2

2 )−1 = xb1c1(xb2c2)−1 = xb1c1−b2c2 = x

4. x1 is indeed the original plaintextx, which Oscar has recovered
without knowledge of the private keys or factoring the modulus.



A6-b). We calculate

c1 = 43−1 mod 7717= 2692

c2 = (2692· 43− 1)/7717= 15

x1 = 126772692 · (1470215)−1 mod 18721

= 13145· (3947)−1 mod 18721

= 13145· 5668= 15001 mod 18721

and the plaintextx1 = x = 15001. We can verify this as

1500143 mod 18721= 12677= y1

150017717 mod 18721= 14702= y2


