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Q1. Using the Berlekamp-Massey Algorithm find an LFSR that
generates the sequence:

00011100.

Compare your solution with the polynomial found in HW4.

Lykt1 = max{Lk, k+1-— Lk}
fk+1(X) — X'—k+1—|-k fk(X) + XLk+1—k+m—|-m fm(X)



Running the Berlekamp-Massey algorithm we get:

ot

k| z g | Lg | f® observingz

2 0 0|1

3| 0 01 zz = 1 (the first nonzero term), se
Ly =4 andf®(x) = x* + 1

41 1 | 4 | x¥+1 does not work fozs = 1, change:
Ls = max{4,5—4} = 4 andf(®) =
XO(x¢ +1) +x443.1

5/ 1 |4 |x¥+x3+1 OK for zs = 1, no changes

6| 1 |4 |x¥+3+1 does not work fozs = 0, change:
L; = max{4,7—4} = 4andf(") =
OO+ x3+1) +x+63.1

71 0 | 4| xX*+x3+x+1| OKforz =0, nochanges

8| 0 | 4| x*+x3+x+1| nomore sequence




Q2. Consider the 4-bit to 4-bit permutatiag defined as follows:
0 1 2 3 45 6 7 8 9 A B C D E H
3 F 0O6 A1 DUS8 945 B C 7 2 H

(This is the fourth row of the DES S-b@&.) Denote by

(X1, X2, X3, X4) and by(y1, y2, ¥3, y4) the input bits and output bits
respectively. Find the output byf for which the bias of

X1 D X2 D X3 D Xq DY is the largest.
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Q3. Suppose thaf, andX; are independent random variables which
take on values from the s¢d, 1}. We use; to denote the bias of;,

e = PiXj = 0] — 3, fori = 1,2. Prove that the random variablXs
andXq @ X, are independent if and onlyéb = 0 ore; = i%.



A3. Claim: The random variable§, andX; & X, are independent if
and only ife; = 0 oreg = £3.

Suppose thaX; andX; are independent random variables. kgt
denote the bias of; @ Xz andes12 the bias ofX; @ (X1 @ X2).

['="]

We prove that, = 0 ore; = i% if the random variableX; and

X1 @ Xp are independent. By the Piling-Up Lemma, we have

€12 = 2¢€1€2 andeg12 = 2¢1€12. Hence,

€112 = 2€12¢1€2 = 46%62.
SinceX; @ (X1 @ X2) = X2, we haveei12 = e, and thus
46%62 = €.

This equation holds if and only if eithes = 0 ore; = +3.



[«<]

We prove thalX; andX; & X, are independent #, = 0 ore; = i%.

The proof makes use of the converse of the Piling-Up Lemma. Since
X1 andX; are independent random variables, we have

0 ifep =0
2e1610 = Aeler = ’
1 12 {62 if 61::t%.
In other words, 21€10 = e if e = 00re; = i%. Becauseq12 = €5,
we geterg2 = 2¢e1€12. By the converse of the Piling-Up Lemmyé,
andX; ¢ X, are independent.



Q4. Suppose that € {0,1}". Show that

_awx_ J 0, forw#0
Z (=1) _{ 2" forw=20
xe{0,1}"

Hint. Determine the number ofe {0, 1}" such thatv - x = 0.



If w= 0, we get

doo(=pvr= > 1=2"

xe{0,1}n xe{0,1}n
If w=# 0, we get
YooEymr= Y 1+ ) (-p=2t-27t=o
xe{0,1}" X:W-x=0 X:w-x=1

This is true because there is an equal amoumt®f{0, 1}" that
satisfyw - x =0 andw - x = 1 forw # 0.



To prove the latter case more strictly, we use induction on the number
of coordinates iw = (wy, ..., Wy) andx = (Xg,...,%n). If n=1, we
havew = 1 # 0, and it follows that

S ()™ = (-0 + (-1t =0,
xe{0,1}

Hence, the claim is true far = 1. Suppose that the claim is true for
n =k > 1. We show that the claim is true far= k 4 1. Denote

W = (Wi, ...,W) andxX' = (Xq, ..., X). Dividing the sum into
separate parts based on whethgr, = 0 orxc, 1 = 1, we get

Z (_1)W.X: Z (_l)w’~x’eawk+1-0+ Z (_1)w’-x’@wk+1-1

x€{0,1}k+1 X' €{0,1}k X' €{0,1}k
_ Z (_1)w’-x’ +(_1)Wk+l Z (_1)w’-x/
X' €{0,1}k X' €{0,1}k
=0 =0
=0.

This proves the claim fon = k + 1.



Q5. Consider the example linear attack in the textbook, Section 3.3.3.
For S5 replace the random variable by UZ @ V3. Then in the third
round the random variablEs is not needed. What is the final random
variable corresponding to Equation (3.3) and what is its bias?
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T, = Ug D Vg

T3 is not needed. Hence, the arrows thro@tare removed.
U2 andU?, are removed.

The new final variable is

X5 @® X7 ® Xg ® Ug & Ut

The bias of the new variablF5 : in the table of the S-box
(Figure 3.2)a = 0100= 4 andb = 0001= 1. Hence,
N.(a,b) = N (4,1) = 10. The bias}, = 10/16 - 1/2 =1/8.
The biases of approximation is

23" Yerehes = 4(1/4)(1/8)(—1/4) = —1/32.



Q6.
Consider the finite fiel@F (2%) = Z,[x]/(f(x)) with polynomial
f(x) = x3 + x+ 1 (see Stinson 6.4).
1. Compute the look-up table for the inversion functpnz — z—*
in GF(23), where we seg(0) = 0.
2. Compute the algebraic normal form of the Boolean function
defined by the least significant bit of the inversion function.



A6-a. The multiplication table of the finite field
GF(2%) = Z,[¥/(x® + x + 1) is given on page 253 of the textbook.
Using it we can, given a honzero element, find another element such
that the product is equal to 1 = 001. We get:
z |zt

000 | 000

001 | 001

010| 101

011 | 110

100 | 111

101 | 010

110| 011

111 | 100




A6-a. Another approach to create this function table is to express the
seven elements of the multiplicative groupZafx]/(x3 + x + 1) as
powers of the element= 010:

k|

0| x0 =001
1| x=010
2 | X2 =100
3| x=011
4| x¥*=110
5| x°=111
ixszlol

Theg(z) = g(x¢) = x*=x""K forallk = 0,1,...6 as the order of
the multiplicative group o [x]/(x® + x + 1) is seven.



A6-b. Using the ANF algorithm (Lecture 6) we get
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