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Q1. Let us consider a cryptosystem whereP = {a, b, c} and
C = {1, 2, 3, 4}, K = {K1, K2, K3}, and the encryption mappingseK

are defined as follows:

K eK(a) eK(b) eK(c)
K1 1 2 3
K2 2 3 4
K3 3 4 1

The keys are chosen equiprobably, and the plaintext probability
distribution isPr[a] = 1/2, Pr[b] = 1/3, Pr[c] = 1/6. Compute H(P),
H(C), H(K), H(K|C) and H(P|C).

H(K|C) = H(K) + H(P) − H(C)

H(P|C) = H(P, C) − H(C)



A1. SincePr[a] = 1/2, Pr[b] = 1/3, Pr[c] = 1/6.

H(P) =
1
2

log2 2 +
1
3

log2 3 +
1
6

log2 6 =
2
3

+
1
2

log2 3 ≈ 1.459.

In HW-1, the probability distribution ofC was calculated as

Pr[y = 1] =
2
9

Pr[y = 2] =
5
18

Pr[y = 3] =
1
3

Pr[y = 4] =
1
6

thus, the entropy of the ciphertext is

H(C) = −
2
9

log2
2
9
−

5
18

log2
5
18

−
1
3

log2
1
3
−

1
6

log2
1
6
≈ 1.955.

The keys are chosen equiprobably,

H(K) =
1
3

log2 3 +
1
3

log2 3 +
1
3

log2 3 ≈ 1.585.

By Theorem 2.10 in Stinson, we get

H(K|C) = H(K) + H(P) − H(C) ≈ 1.089.



In HW-1, we calculated

Pr[x = a, y] =
1
6
, for y = 1, 2, 3 Pr[x = b, y] =

1
9
, for y = 2, 3, 4

Pr[x = c, y] =
1
18

, for y = 1, 3, 4

The three remaining probabilities were zero. Then,

H(P, C) = 3× [
1
6

log2 6 +
1
9

log2 9 +
1
18

log2 18] ≈ 3.044,

Hence,
H(P|C) = H(P, C) − H(C) ≈ 1.089.

Remark. Since the plaintext and the ciphertext determine the key
uniquely,H(K|P, C) = H(K, P, C) − H(P, C) = 0. Hence,

H(P|C) = H(P, C) − H(C) = H(K, P, C) − H(C)

= H(K) + H(P) − H(C) ≈ 1.089.



Q2. Prove that, in any cryptosystem

a) H(C| K) = H(P), and

b) H(P|C) ≤ H(K|C).

Intuitively, the second result means that given the ciphertext,
uncertainty of the plaintext is at most the same as uncertainty about
the key.



a) Following the idea of Proof of Thm 2.10 (Stinson), we get

H(C|K) = H(K, C) − H(K)

= H(K, P, C) − H(K) = H(K, P) − H(K) = H(P).

b) By Proof of Theorem 2.10, we know that
H(K, P, C) = H(K, P) = H(K) + H(P). By Theorem 2.8,
H(C) + H(P|C) = H(P, C) and
H(K|P, C) = H(K, P, C) − H(P, C). Since the entropy is
always nonnegative, we get, by Theorem 2.10,

H(K|C) − H(P|C) = H(K) + H(P) − H(C) − H(P|C)

= H(K, P, C) − H(P, C) = H(K|P, C) ≥ 0



Q3. A PIN code for a smart card is a number of four decimal digits
(p1, p2, p3, p4), where eachpi, i = 1, 2, 3, 4, is derived from a
uniformly distributed random string of 16 bits(r1, r2, ..., r16) by
computing

pi = (r4i−3 + r4i−2 · 2 + r4i−1 · 22 + r4i · 23) mod 10.

Determine the entropy of the PIN code. Compare it with the
maximum entropy of a string of four decimal digits.



A3. Eachpi, i = 1, 2, 3, 4 is chosen independently. Thus,
H(P) = 4H(Pi). Sincepi is computed by mapping a 4-bit random
string into a decimal digit, we know that
Pr[pi = 0] = · · · = Pr[pi = 5] = 2

16 and
Pr[pi = 6] = · · · = Pr[pi = 9] = 1

16.
Hence, we get

H(P) = 4H(Pi) = 4

(

−6

(

2
16

log2
2
16

)

− 4

(

1
16

log2
1
16

))

= 13.

The maximum entropy of a four decimal digit number equals
log2 104 ≈ 13.29.



Q4. (Stinson 2.4) Prove that if a cryptosystem has perfect secrecy and
|K| = |C| = |P|, then every ciphertext has equal probability.

Theorem 2.4 (Stinson)
Suppose|P| = |C| = |K|. The cryptosystem provides perfect secrecy
iff every key is used with 1/|K| and for everyx ∈ P and everyy ∈ C,
there is a unique keyK such thateK(x) = y.



A4. In Theorem 2.4 (Stinson) it is proved that under the given
assumptions every key has equal probability, and for eachx andy
there is a unique keyKx,y such thateKx,y(x) = y. It follows that

pC(y) =
∑

K:y∈C(K)

pK(K)pP(dK(y))

=
∑

x∈P

pK(Kx,y)pP(x)

=
1
|K|

∑

x∈P

pP(x) =
1
|K|

.

This proves the claim.



Q5. The keystreamzi, i = 1, 2, . . . of a binary stream cipher is
generated by repeating a finite random sequenceK = (k1, . . . , km) of
m bits, which is the key. Hencezi = ki, for i = 1, 2, . . . , m, and
zi+m = zi, for all i = 1, 2, . . ..

a) This stream cipher is used to encrypt plaintext with redundancy
RL. Give an estimate for the unicity distance.

b) Suppose thatm = 5 and the plaintext bit string is formed by
repeating the following procedure (a finite number of times): two
bits are generated at random, and a third bit is computed as an
xor sum of these two bits. The first fifteen bits of the ciphertext
are: 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1. Attempt to find the key
K = (k1, k2, k3, k4, k5).



A5-a).
Since the key is a randomly generated string ofm bits, and the
plaintext character is one bit, we know|K| = 2m and|P| = 2. Then,
the unicity distancen0 can be estimated by the formula

n0 ≈
log2 |K|

RL log2 |P|
=

log2 |2
m|

RL log2 2
=

m
RL

.



A5-b).

P x1 x2 x3 = x1 ⊕ x2 x4 x5 x6 = x3 ⊕ x4 x7 x8 x9 = x7 ⊕ x8 · · ·

K k1 k2 k3 k4 k5 k1 k2 k3 k4 · · ·

C 0 1 0 1 0 1 1 1 1 · · ·

For each third plaintext bit:
{

x3 = x1 + x2 = k1 + k2 + 1
x3 = k3

{

x6 = x4 + x5 = k4 + k5 + 1
x6 = k1 + 1

{

x9 = x7 + x8 = k2 + k3

x9 = k4 + 1
{

x12 = x10 + x11 = k5 + k1 + 1
x12 = k2

{

x15 = x13 + x14 = k3 + k4

x15 = k5 + 1



The resulting system of five equations and five unknown key bits

k1 + k2 + k3 = 1
k1 + k4 + k5 = 0

k2 + k3 + k4 = 1
k1 + k2 + k5 = 1

k3 + k4 + k5 = 1

By solving above equations, we find that the key isK = (1, 0, 0, 1, 0).

Note that this result is in accordance with the theoretical estimate
given in Q5-a.



Q6. The DES keys are 64 bits long, where each eighth bit is a parity
bit computed as a modulo 2 sum of the preceding seven bits. A key
management center uses AES encryption algorithm and a 128-bit
“master” key to encrypt DES keys to end users. Each ciphertext block
consists of two encrypted DES keys. Using the concept of unicity
distance give an estimate of the number of encrypted DES keys that
an attacker needs to have to be able to determine the master key
uniquely given enough computing time.



A6. In the AES encryption algorithm

P = {0, 1}128, C = {0, 1}128,K = {0, 1}128

Each 128-bit ciphertext consists of two encrypted 64-bit DES keys.
Data(L) to be encrypted; DES keys, 64 bits each, each eighth bit is a
parity check bit.

HL = 64− 8 = 56; RL = 1−
HL

log2 |L|
= 1−

56
64

=
1
8
.

Then, unicity distance can now be estimated as:

n0 ≈
log2 |K|

RL · log2 |P|
=

128
1
8 · 128

= 8.

Since each ciphertext block of AES contains two DES keys, an
attacker needs 16 encrypted DES keys to determine the master key
uniquely.


