Multicast Source Authentication for Limited Devices

JANNE LUNDBERG, CATHARINA CANDOLIN, HANNU KARI
Laboratory for Theoretical Computer Science
Helsinki University of Technology
P.O. Box 5400, 02015 HUT
FINLAND
{jlu, candolin, hhk}@tcs.hut.fi

Abstract: - Multicast has potential to make delivery of large files and streams over the Internet very
efficient. However, strong source authentication for multicast is needed to make delivery of impor-
tant data possible. Information such as stock quotes is valuable only if the data can be trusted.
In this paper, we present an architecture which allows wireless mobile devices with limited compu-
tational abilities to receive source authenticated multicast over an unreliable wireless access network.

Key-Words: - multicast, wireless, caching, source authentication, optimization, content delivery

1 Introduction

The problem in delivering source authenticated
multicast data to wireless mobile devices is
twofold. First, as the connectivity to the fixed
network can be frequently lost in a sparce net-
work, the multicast data cannot be always re-
ceived immediately when it is sent. This problem
can be alleviated using multicast caches which
temporarily store packets. The multicast cache
can then be requested to retransmit the lost
packets locally. The second problem is in the
computational capabilities of many mobile de-
vices. If the source authentication algorithm re-
quires heavy computations, such as digital sig-
nature verifications, the capabilities of small de-
vices may be exceeded. Some optimization which
allows mobile devices to easily verify digital sig-
natures is needed.

In this paper, we introduce an architecture
which allows a wireless device with limited capa-
bilities to receive source authenticated multicast
data over an unreliable wireless network. The
optimization intriduced here is an addition to an
existing architecture for delivering multicast data
to a large group of receivers.

The rest of this paper is organized as follows.
In Section 2 we present some relevant technolo-
gies and problems which are typical to multicast.
Section 3 presents our solution, and Section 4
discusses the properties of our solution. Finally,
Section 5 concludes the paper.

2 Background

Multicast
Server

Internet

Mobile terminals

Figure 1: High-level view of the architecture

Figure 1 illustrates the environment where the
architecture described in this paper is assumed
to operate. The environment consists of one or
more multicast servers which send content over
the Internet to a number of mobile terminals
which connect to the fixed network using wire-
less networks. In the figure, the boxed R-letters
in the figure are routers which connect the net-
work together. The towers with dashed ellipses

are wireless access points with the range of their
radio technology shown. The cache servers are
points of temporary storage where content can
be stored as long as the mobile terminals may re-
quest retransmissions of lost packets. The mobile
terminals can freely move between the access net-
works. The mobile terminals are also expected to
frequently move to an area without wireless net-
work coverage. When a mobile terminal returns
within network coverage, it can request the re-
transmission of the packet that were lost while
the terminal was outside network coverage.

Next, we give an overview of the architecture
at a high level. Further details of the architecture
are omitted from this paper. The details can be
found in [3], [1], and [2].

2.1 Architecture

Communication between the components of the
system are illustrated in Figure 2. The system
consists of three main components. The compo-
nents which are located at the content provider
network are responsible for encoding the data
into a format that enables it to be delivered via
multicast caches. The components in the ac-
cess networks are responsible for storing the data
while the data is considered to be interesting to
a large enough number of receivers.

Raw data

authentication and,
packetization

i

send multicast)

) fixed network)

receive client requests.
send data to clients

receive and store data.

8

access networks content provider network

wireless

request network response

request data from cache.
application connections

Figure 2: Communication between components.

receive and store data.

client device

The components in the client devices are re-
sponsible for requesting and storing data that has
been received from the multicast caches.

2.1.1 Encoder

The encoder is located within the multicast
server, and its task is to divide the information
into packets that can be sent to the network.
The encoder takes either a data file or a data
stream as input. The encoder divides the data
into packets that are small enough to be trans-
mitted over the network without requiring frag-
mentation. Next, each packet is given a globally
unique packet identity and possibly encrypted.
The packet identity of each packet consists of a
sequence number and the source and destination
addresses of the multicast group to which the
data will be sent. Finally, the encoder adds the
source authentication data into to each packet
using the technique described in [5].

After the data has been processed by the
encoder, it is given to the multicast server in
the form of packets that are ready to be sent
to the network. The multicast server transmits
the packets at a predefined rate, and the server
can also use any one of the reliable multicast
transport techniques described in Section 77 to
guarantee that packet are received correctly by
caches.

2.1.2 Multicast Cache

When a multicast cache receives a packet, it
first verifies that the received packet belongs to
a stream that the cache is configured to listen
to. The stream is identified using the source
and destination addresses from the packet. If
the packet does not belong to a storable stream
it is discarded. A packet that has passed the
stream identification check is next authenticated
to guarantee that the packet was sent by the mul-
ticast server that owns the address in the source
address field of the received packet. A packet
that passes the authentication, is then stored to
the memory of the multicast cache. It is impor-
tant to note, that the packet must be stored on
disk in the exact format in which it was received
in the network, including the header that con-
tains its sequence number and authentication in-
formation. In particular, the cache does not need
to decrypt the data even if the payload in the
packet is encrypted. That is, caches are not re-
quired to have decryption keys to the data that
they store.

The task of the multicast cache is to re-
spond to request messages sent by other multi-
cast caches and local host caches in client devices.
A request message contains the the identities of
the requested packets, that is, the source and
destination addresses of the packets, and the se-
quence numbers of the packets that are needed.
When a cache receives a request it sends the re-
quested packets to the requester.

The replacement policy that is used by a
cache can be configured individually for each
data stream, and depends on the task the cache
is performing to the given stream. If the cache
is acting only as a device that is used to repair
damaged multicast packet streams, it can start
to delete packets that are no more than a few
minutes older, or it can store data for periods of
arbitrary length.

The mode of operation where data is stored
for only a short time is useful, for example, when
a server is sending a multicast stream containing
a newspaper in PDF format and the client de-
vice is in a likely situation of experiencing brief
network outages during the transmission. If the
PDF newspaper is not received in its entirety, the
rest of the data also is useless. If a client device
experiences a network outage during the trans-
mission, it can request the lost packets from the
closest cache when it regains connection to the
network.

The mode of operation where data is stored
for longer periods of time can be used to cache,
for example, popular movies or TV-shows, that
are requested often and would require large re-
sources from the fixed network to download from
the originating server.

2.2 Mobile Terminal

The mobile terminal is the device which users
use to consume content created by the content
providers. The basic network connectivity re-
quirements for mobile terminals are very small.
The only connectivity requirement for a mobile
terminal is the ability to receive data over one
wireless network interface, which may even be
unidirectional. The abilities of such a device
is, however, very limited. A terminal with only
unidirectional connectivity cannot be used to re-
quest data from the network. The terminal can
only be used to receive data that is already be-
ing sent in an area covered by the wireless link
technology used by the device. Such a device is
very similar to a traditional radio or television.
The user can choose which transmitted data is
received but the user cannot request data to be

transmitted.

A more advanced mobile terminal also has the
ability to send data over a wireless channel. The
channel can be used for requesting data, which
might not otherwise be sent, from the network.
The mobile node can request retransmission of
data that was lost when it was transmitted ear-
lier. It can also request content which would oth-
erwise not be transmitted in the area where the
mobile node is currently located.

Another advanced feature in a mobile ter-
minal is multiple radio technologies. A mobile
terminal which can utilize more than one radio
technology has the additional option of selecting
the best possible service for different situations.
Switching between technologies can help the mo-
bile terminal optimize between variables such as
cost and capacity.

2.3 Multicast Source Authentication

Source authentication algorithms which are used
in unicast communication cannot automatically
be used for source authenticating multicast com-
munication. Such algorithms are usually based
on the assumption that only the two commu-
nicating parties have access to a shared secret.
When one of the parties uses the shared secret
to authenticate data, the other party uses the
same shared secret to verify the authentication.
If nodes A and B authenticate their communi-
cation using key k, A can verify that the data
actually came from B by verifying a Message
Authentication Code (MAC) in the data, using
the same shared secret k. Now, if the commu-
nication system is expanded to include a third
node C, which also has the key k, the system
breaks down. Node A can no longer assume that
data authenticated with the key £ originates from
node B, because it may as well have been created
by node C'. The problem becomes even worse as
the number of nodes in the communication in-
creases. This problem makes IPsec unsuitable
for multicast authentication.

Another problem for multicast authentication
is that each packet needs to be authenticatable
immediately when it is received. That is, each
packet needs to contain all information that is
needed to authenticate it. The alternative of re-
ceiving several packets and authenticating all of
them together, for example, through one pub-
lic key signature over several packets cannot be
used. A system relying on authenticating sev-
eral packets in one operation is vulnerable to a
simple denial of service attack. Even one forged
packet among the ones being authenticated is

enough to make the authentication fail. An at-
tacker sending packets with forged signatures to
a multicast group could effectively force receivers
to drop even packets which have been sent by a
legitimate sender.

A better method for source authentication of
multicast streams, known as TESLA, is discussed
in [4]. The system is based on loose time synchro-
nization between the sender and the receiver. In
this system, the sender authenticates packets us-
ing a keyed hash algorithm. The system uses
late release of authentication keys as protection
against forged messages. Since the data is re-
ceived before the server reveals the key which
was used for authenticating the data, a receiver
cannot forge messages even if symmetric algo-
rithms are used for authentication. However,
this results in a system where the data cannot
be even temporarily stored in the network, be-
cause data that is received after the authentica-
tion keys have been released, cannot be properly
authenticated. Thus, the authentication mecha-
nism is suitable for authenticating the data to a
storage host which is guaranteed to receive the
data as soon as it is transmitted into the net-
work. However, a terminal which later receives
the data from a storage server, cannot anymore
source authenticate the data.

The property which is really needed from the
source authentication algorithm is nonrepudia-
tion. Nonrepudiation is an additional property
to a source authentication algorithm. As in any
source authentication algorithm, the algorithm
needs the ability to prove the sender of the data
to the receiver. The additional property, which
is also needed, is the ability to prove the iden-
tity of the original sender to any terminal that
receives the data from the storage server. The
simplest method of providing nonrepudiation is
through signing the data using a digital signature
algorithm.

The most simplistic method of signing multi-
cast flows is to sign each packet separately from
all other packets in the flow. However, such a
system requires performing one public key signa-
ture verification every time a multicast packet is
received. In this case, terminals with low com-
putational capacity cannot be used for receiving
multicast data.

In [5], a method for signing and verifying the
sender of multiple packets using only one public
key operation per a set of packets is introduced.
The scheme is based on amortizing the signature
on several packets using a tree based chaining
technique. Even though multiple packets can be
authenticated by only one signature, the system

allows the receiver to authenticate the data im-
mediately as it is received, even if other packets
using the same signature are lost. The system
also allows the receiver to verify the identity of
the sender, even if the packet has been stored in
a cache for any length of time.

Figure 3 illustrates the algorithm. The leaves
correspond to hashes that are calculated over the
packets to be signed. The value of each parent
node is the hash of the concatenation of its chil-
dren. For example, the value of node P8 is com-
puted as P8 = hash(P0|P1), where the vertical
line denotes concatenation. When the tree has
been generated, the sender signs the root of the
tree. To enable the receiver to verify the signa-
ture, the sender must include into each packet,
the hashes which are necessary to generate the
path to the root. In the figure, the packet to
be sent is P4. The sender must therefore include
into the packet the hashes of nodes P5, P11, and
P12. The sender also sends the signature of the
root of the tree to the receiver.

P14

P12

§>P8 P9 P10 P11
PO PL P2 P3 PA P5 P67

Figure 3: Hash tree

When the client receives a new packet, it must
regenerate the path to the root of the tree. In
the case of Figure 3, the client first computes the
hash over the received packet, which corresponds
to leaf P4 of the tree. It then generates the par-
ent node by hashing the newly computed P4 and
the P5 that was received in the packet, that is,
P10 = hash(P4|P5). The receiver continues this
process until it hash created the hash of the root
node. The receiver then checks the signature to
verify the validity of the hash of the root. If
the verification succeeds, the packet is valid. A
more detailed description of the algorithm can be
found in [5].

3 Solution

If the low capacity mobile terminal is unable to
verify the digital signatures at a rate sufficient

for receiving the multicast stream, it has several
alternatives.

1. The mobile terminal may choose to ignore
the digital signature entirely. However, this
alternative makes the mobile terminal vul-
nerable to forged packets transmitted by
hostile caches or nodes. If the integrity of
the received data is important, this alter-
native cannot be used.

2. Another possibility is to only verify only
some percentage of the packet signatures.
If the signatures in the verified packets are
correct, the mobile terminal assumed that
the other signatures received in the unver-
ified packets are also valid. This solution
too makes the mobile terminal vulnerable
to forged packets.

3. The mobile terminal may verify the pack-
ets later. The digital signatures in received
packets are not immediately verified. The
mobile terminal only stores the received
packets in its memory. Once the mobile
terminal has a sufficient amount proces-
sor capacity available for the verification,
the packets can be processed. This solu-
tion, however, cannot be used for real time
data streams where packets are used imme-
diately when they are received. Examples
of real time streams include, for example,
radio shows that are delivered in real time
to a multicast group.

4. The signature verification is delegated to
another node. The node performing the
verification is located somewhere in the
network.

3.1 Delegated Verification

The alternative number 4 in the previous sec-
tion delegates the verification of the signatures
to another node in the network. This solution
allows the mobile terminal to trust the received
data while completely avoiding the computation-
ally intensive digital signature verifications.
Figure 4 illustrates our solution. The mobile
terminal is receiving multicast data from a mul-
ticast server in the Internet. The received data is
source authenticated using the tree chaining al-
gorithm. Although, the tree chaining algorithm
reduces the number of digital signature verifica-
tions required to authenticate each packet of the
multicast stream, the device may not be able to
verify the signatures in real time. Instead, the

mobile terminal delegates the verification to a
trusted server in the Internet.

Verification

Multicast
Server

Internet

Figure 4: Solution

Verification requests, which are sent to the
verification server, contains the following infor-
mation.

1. The root hashes of the authentication trees
which need to be verified.

2. The signatures received in the packets
which need to be verified.

3. The verification key which can be used for
authenticating the received packets. If this
key has already been delivered to the ver-
ifications server, the key does not need to
be sent again.

The verification request is sent to the verification
server through an authenticated path, such as an
IPsec tunnel. Any other security protocol which
provides authentication for unicast communica-
tion can also be used instead of IPsec.

Once the server received the verification re-
quest, it verifies the signatures. The results of the
verification is then sent back to the mobile ter-
minal through the same autheneticated commu-
nication path which was used for sending the re-
quest. The mobile terminal then wither accepts
or rejects the multicast packets based on the in-
formation received from the verification server.

4 Analysis

The most important benefit of using delegated
verification for the signtures is the reduction in
procesor capacity needed from the device receic-
ing multicast. The system completely eliminates
the need to perform digital signature verifica-
tions for receiving multicast in the mobile ter-
minal. The signature verifications are replaced
with a small number of symmetric cryptographic
operations. Symmetric algorithms are orders of
magnitude less expensive compared with digital
signatures. Even very simple devices are able to
easily perform these operations.

Delegated verification requires that a trusted
verification server is always available to perform
verifications when needed. Additionally, trans-
ferring the verification requests and responses be-
tween the mobile terminal and the verification
server adds extra delay to the verification pro-
cess.

The amount of network capacity required be-
tween the mobile terminal and the verification
server is also small. The tree chaining algorithm
in [5], allows a large number of packets to be au-
thenticated using one hash tree. Therefore, only
one signature needs to be transferred to the veri-
fication server to verify a large number of packets.
Furthermore, if several verification requests are
transferred in one request, the number of pack-
ets transferred between the mobile terminal and
the verification server is reduced even further.

5 Conclusion

In this paper, we presented an architecture which
allows mobile devices with very limited computa-
tional resources to receive source authenticated
multicast data over an unreliable wireless net-
work. Our method allows the mobile terminal
to temporarily lose connection with the fixed in-
frastructure and request the lost packets to be
retransmitted when connectivity with the fixed

network is regained.

Earlier solutions based on digital signatures
have been too computationally intesive. The pre-
vious alternatives to digital signatures, such as
TESLA, cannot be used together with caching,
since the source authentication is based on late
release of keys. Our arhitecture solves both prob-
lems by using a trusted verification server in the
fixed network for performing the digital signature
computations.

Future work includes extending our existing
implementation of the architecture with the op-
timization presented in this paper.

References

[1] Janne Lundberg and Catharina Candolin.
Multicast caching: Efficient distribution of
encrypted content to mobile clients. In Pro-
ceedings of International Conference on Com-
puter Networks (ICON’02), Rio de Janeiro,
Brazil, October 2002.

Janne Lundberg and Catharina Candolin. Hi-
erarchical Multicast Caching. In In Proceed-
ings of The 9th IEEFE Asia-Pacific Confer-
ence on Communication, September 2003.

Janne Lundberg and Catharina Candolin.
Support for transparent multicast content
distribution to mobile wireless clients. In Pro-
ceedings of the 2003 International Conference
on Wireless Networks (ICWN 2003), Las Ve-
gas, Nevada, USA, June 2003.

Adrian Perrig, Ran Canetti, J. D. Tygar, and
Dawn Xiaodong Song. Efficient authentica-
tion and signing of multicast streams over
lossy channels. In IEEE Symposium on Secu-
rity and Privacy, pages 56-73, 2000.

C. Wong and S. Lam. Digital signatures for
flows and multicasts. In IEEE ICNP ‘98,
1998.

