An Architecture for Context Aware Management

Catharina Candolin
Laboratory for theoretical computer science
Helsinki University of Technology
P.B. 5400, FIN-02015 HUT, Finland
catharina.candolin@hut.fi
and
Hannu H. Kari
Laboratory for theoretical computer science
Helsinki University of Technology
P.B. 5400, FIN-02015 HUT, Finland
hannu.kari@hut.fi

Abstract— Military networks are subject to frequent
changes due to hostile activities, movement of forces,
weather conditions, terrain, etc. In order to function op-
timally, the network nodes must be able to rapidly adapt to
the changes in the environment. Traditionally, this has been
done by tailoring applications and protocols to exchange in-
formation. However, such solutions suffer from several dis-
advantages, e.g. due to their lack of generality. In this
paper we present a context aware management architecture
that adapts the behavior of the node to the current environ-
ment. The protocols and applications are responsible only
for the tasks for which they have originally been designed,
and need not be aware of the environment at all. The CAM
architecture is especially suitable to mobile military ad hoc
networks, which are seen as a possible future communication
network solution on the battlefield.

Keywords— ad hoc network, core ad hoc network, context
aware management, policy management

I. INTRODUCTION

E tworking in a military environment is difficult, since

the environment is subject to frequent changes due to
hostile activities, movement of forces, weather conditions,
terrain, and so forth. Ad hoc networks have been pro-
posed as a solution to battlefield networking, as they do
not need to rely on a predefined infrastructure to establish
and maintain communications, and they allow nodes to en-
ter and leave the network on frequent basis and to move
within the network.

Apart from the routing protocols, ad hoc networks rely
on many of the same protocols as static networks do. Most
of these protocols are, however, designed for connections
that are fairly static. However, when the environment
changes, the node must be able to adapt to the changes
rapidly. If the reaction is too slow, the result may be:

1. The quality of service is bad. For example, the trans-
mission of a video stream may be glitchy or the service
cannot be provided at all.

2. Resources are wasted. For example, a video stream is
transferred from a server to the ad hoc network, but the ad
hoc network is unable to deliver the stream to the node.
3. An uneconomical connection is used. For example, the
node has several connections to the network, but uses one

that is more expensive than another.

4. The decisions are not optimal. For example, the mo-
bility management system chooses a non-optimal access
medium.

Traditionally, each application or protocol tries to adapt
to the new environment independently. In some solutions,
an application is specifically tailored to communicate with
one other protocol layer. For example, the Real Time Pro-
tocol (RTP) [6] (and its control protocol RTCP) monitors
the quality of the connection and informs the application
(e.g. the multimedia video player) about degradation in
quality. The application then changes the video encoding
to better suit the current quality of the connection. An-
other example is a combination of Mobile IP [5] with a
mechanism for choosing the access medium considered op-
timal for the applications.

The main problems with the current solutions are the
following:

1. The solutions are not generic. Thus, it is hard to add
context awareness to protocols and applications.

2. Protocol and application design becomes complex, as
each protocol and application has to be tailored to inter-
communicate with each other.

3. 0O1d protocols and applications cannot take advantage
of information provided by new protocols or applications
without modification.

To overcome these problems, a new Context Aware Man-
agement (CAM) layer is added to the Internet protocol
stack [4]. The purpose of CAM is to monitor the environ-
ment for changes and to adapt the behavior of the node
to the current environment. The applications and pro-
tocols need not be aware of the environment at all, but
rather focus on taking care of the tasks they have been
designed for in the first place. For example, a routing pro-
tocol is responsible for establishing routes and forwarding
packets, but need not handle issues regarding the choice of
access medium. The decisions how to change the behavior
of the node are made by the Policy Manager (PM). Fur-
thermore, the architecture consists of a common database,
which contains all environment related data of the node.
The database is accessed via CAM. Protocols and applica-

lof 5

tions communicate with each other and with the database
through CAM, using a standard interface.

The rest of this paper is structured as follows: in Sec-
tion II, the concept of ad hoc networking is discussed and
the network architecture on which the context aware man-
agement model relies is described. In Section III, the con-
text aware management architecture is described in further
detail. Section IV describes how the context aware man-
agement architecture can cooperate with other nodes in
the neighborhood by sharing information. In Section V, a
case study on other ways of deploying the context aware
management architecture is described. Finally, Section VI
concludes the paper.

II. BACKGROUND

An ad hoc network is a collection of nodes that do not
need to rely on a predefined infrastructure to establish and
maintain communications. Ad hoc networks are thus dy-
namic in nature, as they allow nodes to enter and leave
the network on frequent basis. The network nodes are also
able to move within the ad hoc network and between ad
hoc networks. Typically, most or all nodes participate in
network operations, such as routing, mobility management,
and network management, depending on their capacity, lo-
cation, and capabilities. This is achieved by allowing nodes
to share environment information with each other.

In [2], we described a secure network architecture for
military ad hoc networks. A conceptual model of the ar-
chitecture is depicted in Figure 1. The picture shows how
different network operations are related to each other in
the node. The network interface may be any transmission
medium, either wired or wireless. A node may use several
network interfaces simultaneously. However, the node will
typically use the network medium that is most optimal at
the time. Before processing any packets arriving from the
network, each packet is verified for authenticity on a node-
to-node security level. If authentication fails, the packet is
dropped, otherwise it is processed further by the routing
engine. Routing and mobility management is performed
by the routing and mobility management engines so that
the former handles nano and micro mobility and the latter
macro mobility. The node may use several routing proto-
cols simultaneously, but typically uses the one that is most
optimal at the time. Traffic destined for the application of
the node itself is further processed by the end-to-end level
security module. This module verifies the authenticity, in-
tegrity, non-repudiability etc. of the information received.

The current problem with this architecture is that the
multitude of protocols and network interfaces is difficult to
manage. The protocols should in principle only perform the
tasks for which they have been designed. For example, a
routing protocol should merely forward packets and update
routing tables. It should not have to decide if it functions
in an optimal fashion or whether it should shut itself down
and initialize another routing protocol. The mobility man-
agement scheme should not be concerned with choosing the
access medium by monitoring QoS issues, but should rather
use the one that is made available to it. The context aware

NETWORK
MOBILITY MM rule update

MM
MANAGEMENT | rules
DB

AGENT
ENVIRONMENT
DB Security
rule
update

MM update | MOBILITY MANAGEMENT

(MM)

MM info §

MM msg |
ROUTING ENGINE _

I

ode trust
evel .
B SECURITY
2111, | MANAGEMENT[™

‘ | NODE LEVEL SECURITY ‘
L) [

‘ | HARDWARE |

NETWORK

Fig. 1.

ROUTING
TABLE DB

Link/node info

A conceptual model of the network architecture

management scheme described in Section III shows how the
ad hoc network node can cope with the variety of protocols
and interfaces in a constantly changing environment.

III. CONTEXT AWARE M ANAGEMENT

As the network environment changes, the node must be
able to rapidly adapt to the new situation. For example,
the QoS level may decrease or increase, the network topol-
ogy may change as nodes enter and leave the network, the
mobility rate may vary, or the hostility of the environment
may change depending on the location and course of ac-
tion. These changes typically require that the node switch
to different access technologies, change the routing proto-
col, enhance the security requirements, and so forth.

To enable a node to adapt its behavior according to
its current environment, a Context Aware Management
(CAM) layer is added to the Internet protocol stack. The
purpose of CAM is to allow modules (applications, proto-
cols, drivers, etc.) to perform the tasks to which they are
dedicated while allowing CAM to make decisions regarding
the operation of the node. Furthermore, modules need not
be aware of each other to take advantage of environment
related information. CAM therefore functions as a com-
mon layer through which modules may communicate in a
standard fashion.

The CAM architecture is depicted in Figure 2. It con-
tains the following components:

1. The Context Aware Management (CAM) layer.
2. The Policy Manager (PM)

3. The common database (CDB)

4. The modules attached to CAM.

CAM monitors the environment for changes by providing
a standard interface to all modules, through which they can
communicate environment information. The information is
stored in a common database. A module can provide CAM
with environment information or request information from
CAM. The PM makes decisions about the functionality
of the node depending on the environment. It initializes
the modules to be used at the time and schedules events
requested by CAM.

For example, the node may be in a situation where it has

20of 5

Policy
manager
‘ Application ‘e
[
Mobility, security, QoS, access control, multicast }@
Context
\ awaro -
Ad hoc networking management =
layer layer

‘ Common

database
P }@
[[[
Access
technology N

Access Access
Fig. 2. The CAM architecture

technology 1 technology 2

very limited bandwidth available. However, an application
needs to send some non-critical images to another node.
Due to the limited bandwidth, the node is not able to send
the images, but merely short text messages. Thus, the
application will not be allowed to send the images at the
current time. However, as soon as more network bandwidth
is available, CAM notices it and the PM then allows the
application to send the images. An event is issued to the
application, allowing it to proceed. The main advantage
of this is that the application has not had to deal with the
reasons for why it is not allowed to send or the possible
change of network medium. The application merely does
what it has been designed to do in the first place.

A. The CAM layer

The CAM layer provides a common interface to all mod-
ules that operate in the node. All modules communicate
through CAM and never directly with each other. CAM
offers two interfaces; one to the modules and one to the
PM.

A.1 Interfaces

CAM contains two standard interfaces: one for com-
munication between CAM and PM, and one for commu-
nication between CAM and the modules. The common
database is regarded as a module and thus uses the same
interface as the other modules do.

The CAM-PM interface is defined for communication
between CAM and the PM. The CAM-PM interface pro-
vides the following functions:

1. PM—CAM: register(PM, parameters). The function
registers the policy manager PM with the given parameters
to CAM.

2. PM—CAM: deregister(PM). The function deregisters
the policy manager PM from CAM.

3. PM—CAM: set(module, parameter, value).
value of the parameter in module to value

4. PM—CAM: get(module, parameter). Gets the value of
parameter in module

5. CAM—PM: event(module, parameter, value). Requests
an event to be issued to module when parameter reaches

Sets the

value

Thus, the PM can register and deregister itself from
CAM. Tt can assign values to parameters in the different
modules and read values from them. Typically the module
that the PM will access the most is the CDB. The PM can
also schedule events as requested by CAM.

The CAM-Module interface is defined for communica-
tion between CAM and the modules. The CAM-Module
interface provides the following functions:

1. Module—CAM: register(module, parameters).
ters module with the given parameters to CAM.
2. Module—CAM: deregister(module). Deregisters module
from CAM.

Regis-

3. Module—+CAM: set(module, parameter, value). Sets
parameter in module to value.
4. Module—+CAM: get(module, parameter). Gets the
value of parameter in module.
5. CAM—Module: event(parameter, value). Issues an

event to the module, assigning parameter to value.

Modules can register and deregister themselves to CAM.
Registration is done e.g. when a module is added to the
node or when the PM decides to initialize a sleeping mod-
ule. Deregistration is done e.g. when a module is removed
from a node altogether or when the PM decides to deini-
tialize the module. Modules can also read information
from other modules and assign information to other mod-
ules. Assigning values to other modules is restricted by
authorization rules. Typically, the module read from and
assigned values to is the common database. There is no
reason for why the modules should exchange information
directly with each other. CAM can also issue events to the
modules.

B. The Policy Manager

The PM is responsible for making the decisions regarding
how the behavior of the node should be changed. The PM
is aware of all modules that are loaded into the node. The
PM also maintains the state information of each module.
Thus, it is possible for the PM to make complicated deci-
sions regarding the functionality of the node. For example,
if the node enters an ad hoc network, the PM makes the
decision regarding which routing protocol to use and with
what parameters. If the node changes to another ad hoc
network that uses another routing protocol, the PM may
switch off the old protocol and switch on another. Another
functionality provided by CAM is event handling. A mod-
ule may request the PM to send a wake up signal upon the
occurrence of a given event. For example, an application
may request the PM to signal it once a given QoS level
can be offered. This may occur when a network interface
(e.g. a WLAN driver) informs the PM of a base station
with sufficient signal strength. The security management
module of the node may have declared that the given base
station is on the list of trusted base stations and access
could thus be allowed. The PM then informs the mobility
management protocol to make a location update through
the given base station. Once the connection is established

3of 5

and the required level of QoS can be offered, the PM in-
forms the application.

The PM makes the decisions based on a set of rules.
The rules can be dynamically updated during the lifetime
of the node. For example, the network management system
in the network may decide that the nodes need to update
their policy rules, and issues each node a new set of rules.
The nodes in the network then perform the update. The
policy can also be changed by the user of the node. The
PM of the nodes in the network can also communicate with
each other and exchange environment information and even
policy rules (under some circumstances).

C. Common database

The CDB contains all environment related information
that is of interest to several modules. Such information
may be the level of QoS, security related information, such
as cryptographic material and trust levels of other nodes,
and so forth.

Access to the CDB is managed through CAM. Each mod-
ule is given a set of authorities as to which information in
the CDB it is allowed access to and for what purposes.
Typically, a module will be allowed to read a large vari-
ety of entries and to update its own entries. The PM can
access and modify all entries in the CDB.

The information in the CDB is always related to a mod-
ule, although several modules may access and even modify
the information (depending on their authority). The mod-
ule is said to be the owner of the information. Information
that is not owned by any module is owned by the PM. The
owner of information may change, e.g. if the routing proto-
col owns certain information and PM switches the protocol
to another, the new protocol will inherit the information.

D. Modules

The modules are the protocols, applications, device
drivers, and other pieces of software that communicate with
each other and the PM via CAM. Modules are organized in
a hierarchical fashion so that e.g. all network modules are
organized under the category ”access devices” etc. Thus,
the PM is able to recognize new modules without modifi-
cation. If a new category is added, the PM will be updated
accordingly.

When a module registers itself to CAM, it may (if CAM
requires it) provide CAM with some proof of statement
signed by a trusted authority stating that the module is
trustworthy, i.e. that it does what it claims to do and
nothing else. If the module is not considered trustworthy,
it will not be loaded into CAM.

If registration succeeds, the module will be assigned a
set of authorities to CAM. The authorities state which in-
formation the module is allowed to read from the CDB and
which information it is allowed to modify. Typically, the
module will be allowed access to the information that is
needed for it to perform its tasks as well as the privilege to
update information related to itself.

A module may deregister itself from CAM e.g. if the PM
decides to deinitialize it. This may be because the user

broadcast(CDB-entries) Does the message pass the
security tests?
=

If YES: _update(CDB-entries) i

If NO: discard

Does the request query(mod_list, n, par_list, m)

pass the security
tests?

If YES:

reply(values_list)

If NO: discard

Fig. 3. A C2C protocol

has made the request to change the module, the network
management system has ordered a change, or CAM has
detected a change in the environment that calls for the
change of modules.

IV. AD HOC NETWORK ENVIRONMENT

One of the characteristics of ad hoc networks is that
nodes are able to share information with each other. A
node can retrieve network information in three ways: by
own experience (as expressed by the modules), by local
experience (i.e. by sharing information with other nodes in
the neighborhood), or by global information distribution
(e.g. from the network management system).

Each network node that deploys the CAM architecture
can use it to exchange environment information. CAM
contains a special CAM-to—~CAM (C2C) module that is
dedicated to the task of collecting and distributing infor-
mation from the environment. When the C2C module re-
ceives information from another node, it first verifies the
authenticity and authority of the information before pass-
ing it on to CAM. CAM does not handle this information
any differently than it does information from other mod-
ules; it merely verifies the authority of the C2C module. In
such a way, network information is transparent to the rest
of the node. Furthermore, if another node requests infor-
mation, the C2C module first verifies that the other node
is authorized to request such information before retrieving
it from the CDB, again presenting its own credentials to
CAM. The C2C module may also distribute information to
the network by broadcasting it.

A. CAM-to—CAM protocol

The C2C modules in the various nodes need a protocol
through which they communicate. An example protocol is
depicted in Figure 3. The protocol is very similar to the
protocol used for distributing incomplete trust presented
in [3]. The concept of incomplete trust was presented in
[2].
The protocol provides a function broadcast(CDB-
entries), which broadcasts a list of entries from the CDB.
The function query(mod_list, n, par_list, m) allows the node
to query another node for a list of m parameters from a list

40f 5

of n modules. The function reply(values_list) returns the
values of the parameters of the modules. If a parameter
was not available, the value is set to null.

The update() procedure in the picture updates the CDB
according to some predefined set of rules. The C2C mod-
ule may need to scale and normalize the values received
from other nodes to suit its own sense of the environment.
Also, the information received from other nodes may not
be given as much credibility as information collected by
oneself; thus, the effect of the received information should
not be as large.

V. CASE sTUDY: CORE AD HOC NETWORKING

Ad hoc networks can be interconnected with fixed net-
works in order to provide global network connectivity to
ad hoc network nodes. In such a case, the ad hoc net-
work functions as a (temporary) access network. However,
also the core network is vulnerable to destruction. In [1],
the concept of core ad hoc networking is introduced as a
solution to the destruction of core networks. The main
idea is to dynamically assign any available node from any-
where in the network to handle the tasks of the destroyed
node in the core network until the network can be rebuilt.
Thus, the core network is reestablished in an ad hoc fash-
ion. However, the core ad hoc network does probably not
have the same capacity as the original network, nor is it
able to provide the same level of QoS. It may also have a
limited lifetime if the node operates on batteries. The pur-
pose of core ad hoc networks is to allow at least the most
crucial network traffic to be transmitted in the network, as
it is better than having the connections completely down.

If the core network is partially or completely destroyed,
a CAM enabled node can be reassigned the tasks of a core
network node by updating the PM. The new PM deregis-
ters the modules that are no longer needed and registers the
ones that are required for the new task. Also the contents
of the CDB are updated. The node then starts function-
ing as its predecessor node. However, the ad hoc network
node may not have the same capacity and resources as the
previous node. Security issues are mainly related to au-
thorization of nodes to perform network operations in the
core network. In [1], certificates are used to prove author-
ity of the node. The authority has been assigned to the
node beforehand, stating that in the case of a crisis, the
node is allowed to perform a given set of tasks. Should the
crisis occur, the node will hook up to the core network by
proving its authority. Furthermore, the node must itself
verify that the request to be assigned to a new task comes
from a valid source. The trust relationship between the
source and the node is typically established beforehand, so
normal authentication or authorization procedures can be
deployed in this case.

VI. CONCLUSION

Networking in a military environment is a difficult task,
since the network is subject to frequent changes which af-
fect the nodes in various ways. In order to be able to func-
tion optimally, network nodes must be able to rapidly react

to the changes in the environment. Traditionally, each pro-
tocol and application has tried to adapt the environment
independently of each other. At most, one application has
been especially tailored to communicate with a given pro-
tocol layer. The problem with such solutions is that they
are not generic, application and protocol design becomes
complex, and old protocols and applications cannot take
advantage of information provided by new protocols.

Future military networks are likely to be mobile ad hoc
networks with varying size, mobility rate, and functional-
ity. Ad hoc networks may have a large variety of protocols
to choose from depending on the environment. In order
to manage the protocols to be used at each given time, a
context aware management (CAM) layer is added to the
IPv6 protocol stack. The purpose of CAM is to monitor
the environment for changes and to adapt the behavior of
the node accordingly. The protocols and applications need
only be concerned with the tasks they have been designed
for in the first place. The policy manager makes the deci-
sions regarding the change of behavior according to a set
of rules, which may be dynamically updated during the
lifetime of the node.

The CAM enabled nodes may share environment infor-
mation with each other. A special CAM—to—CAM module
collects information from the environment and distributes
information to the environment.

The CAM architecture can also be deployed for core ad
hoc networks in case the core infrastructure has been de-
stroyed. In such a case the node is assigned a new PM (or
a new set of rules), which initializes the modules needed
for the new assignment and deinitializes those that will no
longer be needed.

ACKNOWLEDGMENTS

This research was done in cooperation between the
Helsinki University of Technology and the National De-
fence College in Finland, and was funded by the Finnish
Defence Forces.

REFERENCES

[1] Catharina Candolin and Hannu Kari. Dynamic management of
core ad hoc networks. In Proceedings of InfoWarCon 2002, Perth,
Australia, November 2002.

[2] Catharina Candolin and Hannu Kari. A security architecture for
wireless ad hoc networks. In Proceedings of IEEE Milcom 2002,
Anaheim, California, USA, October 2002.

[3] Catharina Candolin and Hannu Kari. Distributing incomplete
trust in wireless ad hoc networks. In Proceedings of IEEE South-
eastcon 2003, Ocho Rios, Jamaica, April 2003.

[4] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. Request For Comments 2460, IETF, December
1998.

[5] D.B. Johnson, C. Perkins, and J. Arkko. Mobility Support in
IPv6. IETF Internet-Draft draft-ietf-mobileip-ipv6-21.txt, Febru-
ary 2002.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP:
A Transport Protocol for Real-Time Applications. IETF Request
For Comments 1889, January 1996.

50of 5

