
Packet level authentication in military networks

Catharina Candolin, Janne Lundber, Hannu Kari
Laboratory for Theoretical Computer Science

Helsinki University of Technology
PB 5400, FI-02015 HUT, Finland

{firstname.lastname}@hut.fi

Abstract
Some of the worst problems in heterogeneous military networks are related to security. Several
solutions have been proposed to ensure that the network is able to perform its tasks, namely to
transport the right packets to the right place at the right time, however, the solutions have typically
been tailored to specific protocols or made assumptions that are not realistic. In this paper, we
present a generic security solution based on packet level authentication and briefly describe our
prototype implementation. The architecture can be used for authentication, access control, firewall
applications, denial-of-service prevention, and so on. It also secures all routing protocols.

Keywords

Packet level authentication, security, IPv6

INTRODUCTION

An ad hoc network is a collection of nodes that do not need to rely on a predefined infrastructure to
establish and maintain communications. Most or all nodes participate in network operations, such as
routing and network management, according to their capacity with respect to CPU, memory, and
battery power. Ad hoc networks tend to be dynamic in nature, that is, nodes are able to enter and leave
the network on frequent basis as well as to move within the network itself. Furthermore, the whole ad
hoc network may be mobile.

Future military networks are designed to consist of several heterogeneous ad hoc networks that are
connected to each other through a temporary or permanent backbone. The resulting "system of
systems" will consist of everything from sensor networks to command and control as well as weapon
systems. This interconnectivity is realized by relying on internet technology (IPv6 and other internet
protocols) and COTS solutions.

However, the military networks reside in an extremely hostile environment, where an active enemy is
present. Hence, for the network to be useful, it is crucial that it is secured from both external and
internal attacks. Although several security proposals exist, many still focus on securing the
information or are tailored into a specific protocol, such as a routing protocol. In this paper, we present
a generic security solution based on packet level authentication (PLA) that can be used to protect the
infrastructure from both external and internal attacks, including denial-of-service attacks, and that can
be used for access control, authentication, firewall applications, QoS policing, and so on. The solution
is based on the fact that all IP packets traveling in the communication network can be verified for
legitimacy by any legitimate node in the network, not only the source and destination nodes. We also
present our prototype implementation of our architecture and provide some cost estimates.

SECURITY ISSUES IN THE MILITARY ENVIRONMENT

The military network has to function under extreme circumstances. The following requirements with
respect to security must be met:

Authentication of nodes: the nodes in the network must be able to authenticate each other and
perform a key exchange even without prior communication with each other.

Access control: a solution for access control to the network and its services is required.

Denial-of-service prevention: a compromised node should not be able to launch a denial-of-service
attack that is propagated in the network. The damage of the attack should be restricted to the area of
the compromised node only.

Revocation of compromised nodes: a means for removing compromised nodes from the network is
needed.

Ensuring network functionality: the purpose of the network is to deliver the right packets (packet
integrity) to the right place at the right time. Security measures are required to ensure this
functionality.

PACKET LEVEL AUTHENTICATION

The PLA concept resembles that of the security of money. Every modern note (e.g. a 100 euro note)
contains several security measures to ensure the authenticity of the note, such as micro print, changing
colors, watermark, hologram, metal string, etc. When a merchant receives the note from a customer,
the legitimacy of the note can be verified on the spot without having to consult a bank. The
requirement is that the merchant must be able to verify the authenticity of a note using predefined
security procedures and without prior knowledge of the customer.

In PLA, the same idea is applied to IP packets, that is, any node is able to verify the authenticity of the
IP packet using predefined security procedures and without prior knowledge of or communication
with the sender. The requirement applies for any receiver on the path from the source to the final
destination(s). Thus, PLA is able of detecting illegitimate, erroneous, duplicated, and delayed packets
in every router, not only at the final destination. In this way it is possible to restrict several classical
attacks, such as denial-of-service attacks that are based on spoofing/forging IP packets and copying or
manipulating legitimate IP packets. PLA also includes additional security features to cope with
duplicated and replayed packets.

Design issues of packet level authentication

The PLA architecture takes advantage of standard IPv6 [2] header extension techniques used for
example in Mobile IP [4][7]. The PLA header is added to every IP packet and contains the following
information:

Node level information

• The identity of the trusted third party that has certified the node

• The public key of the node

• The validity period

• The certificate from the trusted third party that certifies the node

Packet level information

• Timeliness of the packet

• The sequence number of the packet

• The signature of the source node over the packet

With the node level information, any node (on the path from the originator to the final destination) that
trusts the third party can verify that the originator of the packet is still among the trusted nodes without
prior communication with that node. With the packet level information, that node can then verify that
the originator of the packet has really generated this packet and the packet is not altered on the path
from the sender to the receiver. Also, the node can verify the timeliness of the packet. Duplication of
the packet is detected by using sequence numbers. Thus, corrupted, old, and duplicated packets can be
discarded. This restricts the possibilities that the enemy have to attack the network. In the worst case
[6], the enemy can make as many copies as there are separate routes to the destination node. In other
words, the worst case is that the enemy is able to make a few extra duplicates.

Public key algorithms are used for signing the certificates stating the validity of the node as well as the
node's signature over the packet. The lifetime of the certificates is limited, thus making it possible to
reduce the damages caused by internal attacks either by revoking the certificate or not renewing it
once its lease expires.

Packet level authentication extension header

The PLA extension header is depicted in Figure 1. Since the header is based on the standard IPv6
header extension technique, it is fully transparent and interoperable with routers that do not understand
PLA. This means that PLA can be used together with any other protocols, such as Mobile IP or IPsec.
If the PLA header is the first header in the packet, it protects both the data and all the other headers in
the packet. Since PLA uses the standard IP header technique, the maximum IP packet size (MTU)
handling is done correctly.

The PLA header consists of seven fields divided into two categories:

Node level information:

• Auth_id: The identity of the trusted third party that has certified the node (i.e., the identity that
has authorized the node, this can be for example a general, TTP, access-network operator,
home operator)

• Pub_key: The public key of the node (this public key is used by the verifying node to validate
the sending node’s signature)

• Val_period: The validity period (this field indicates when the public key is considered to be
valid by the trusted third party)

• Auth_signature: The certificate from the trusted third party that certifies the node (that the
public key and validity period are correct)

Packet level information:

• Time: Timeliness of the packet (i.e., time when the packet was sent; it can be used to discard
old packets)

• Seq_number: Sequence number of the packet (this monotonically growing field can be used in
discarding duplicates and replay attacks)

• Node_signature: The originating node's signature over the packet (this signature field ensures
that the IP packet has really generated by the sending node and it has not been altered on the
path).

Figure 1. The PLA extension header

When the source node sends an IP packet, it fills the PLA header by taking the node level information
(that is packet independent), incremented sequence number and current time. Finally, it calculates a
signature over the entire packet and puts the result into the header. Then the IP packet is sent as any
normal IP packet.

When a node receives the first packet from the sending node, it first validates the node level
information and after that the packet level information. If any of the PLA fields is invalid or incorrect,
the receiving node can discard the packet and optionally inform its upstream neighbor about the
problem. For the subsequent packets from the same sending node, it is not needed to validate the node

level information if the verifier caches the previous validation result. Then, only the packet level
verification is needed. Hence, the number of digital signatures that must be validated per packet is
reduced from two signatures per packet to just one in case of several packets from the same sender.

IMPLEMENTATION

We have implemented the PLA architecture for the Linux operating system. The architecture was
implemented as two user space programs which utilize the ip6_queue netfilter kernel module for
capturing, modifying, and reinjecting packets into the network stack. Our PLA implementation is
completely transparent to applications, and the applications do not need any modifications to use our
implementation.

Architecture

Figure 2 illustrates the location of the Linux Netfilter hooks within the IPv6 stack. The hooks are
originally intended for implementing the firewall in the Linux IPv6 stack. The figure shows three
hooks called INPUT, OUTPUT and FORWARD.

Figure 2: the Linux netfilter hooks in the IPv6 stack

The INPUT hook captures packets which are being delivered to this host. The FORWARD hook
handles incoming packets and resides behind the routing functionality. This hook differs from the
INPUT hook, in that it captures the packets that are being forwarded by this host. A packet that is
captured by the INPUT hook is never captured by this hook. The OUTPUT hook captures all packets
that originate from this host. Packets that have been received by the FORWARD hook are not seen by
this hook.

Figure 3: Implementation architecture

Figure 3 shows the communication between the modules in our implementation. The implementation
consists of two modules in user space. The PLA module handles packet flows, including the decision
to accept or drop any packets. The key_mgt module is used only for configuring the PLA module.

Inbound Packet Processing

When an inbound packets enters the IPv6 stack from the link layer, a routing decision is made. As is
shown in Figure 3, the routing code can either forward the packet to another node or deliver the packet
to local receivers. The packet is then intercepted either by the FORWARD or the INPUT hook
depending on the routing decision. Next, the packet is given to the ip6_queue module which delivers
the packet to the PLA daemon in user space.

The user space daemon receives the packet using the libipq library, which is the user space libary for
intercepting and reinjecting packets into the Linux IPv6 stack. The packet is determined to be valid if
it passes all of the steps in the PLA verification, and it will be reinjected into the IPv6 stack. If the
packet was received via the INPUT hook, the PLA header is removed from the packet before
reinjecting it, while a packet that was received through the FORWARD hook is forwarded
unmodified.

Outbound Packet Processing

Outbound packets are intercepted by the OUTPUT hook in the IPv6 stack. At this point, the captured
packets already have complete IPv6 headers. Like in inbound packet processing, the packets are
intercepted to the ip6_queue module and passed on to user space through the libipq library. Once the
packet is received by the user space daemon, the PLA header is added into the packet. After the header
has been added, the user space daemon signs the packet using the host's private key, and the packet is
reinjected into the IPv6 stack through the libipq library.

PLA PERFORMANCE

PLA uses Elliptic Curve Digital Signature Algorithm (ECDSA) [1] for packet integrity ensurance.
When estimating the time needed to compute or validate one digital signature, we refer to an FPGA
implementation of elliptic curve point multiplication [5], where one 163 bit ECC multiplication takes
106 ms with 90 MHz clock speed with 18079 slices (equals about 300 000 gates). This
implementation is reported to perform about 5000 ECDSAs in a second [5] [3].

The ultimate goal is to be able to validate, in wire-speed, all traffic of standard 1 Gigabit and 10
Gigabit Ethernet interfaces. This means that we are then enabled to implement either a “bump-in-the-
wire” module that could be attached as an add-on module to old routers or an integral part of a
network interface card in new routers. In order to gain higher capacities, we shall scale up the HW by
increasing the clock frequency and dice size. In Table 1, we have illustrated the number of parallel
ECDSA modules and the number of gates that are needed to compute/validate all traffic with various
packet sizes and wire speeds, when assuming that the chip runs at 500 MHz. The clock speed and the
number of gates needed for PLA validation is still relatively small when compared with modern
microprocessors that contain over 1000 million transistors and run over 3GHz clock speed.

Number of ECC modules needed
Packet size [bytes] 1GE 10GE

100 45.00 450.00
1500 3.00 30.00

64000 0.07 0.70

Total number of gates needed
Packet size [bytes] 1GE 10GE

100 15 750 000 157 500 000
1500 1 050 000 10 500 000

64000 24 609 246 094
Table 1: Estimated number of ECC calculation modules and total number of gates on PLA HW
acceleration module

Additionally, it is possible to increase the performance at intermediate routers by applying an adaptive
algorithm of packet validation. Assuming, that there are flows of packets from same originating node
and there are several routers on the path from the originator to the destination, we can start the
validation of every packet in every router on the path, but once the flow goes smoothly, we can lower
the frequency of validation and check randomly, for example, every tenth packet in each router. Once
a router detects erroneous packet, it shall inform upstream routers to start validate every packet of that
flow.

CONCLUSION

In this paper, we have presented an architecture based on packet level authentication. The PLA
concept can be used for authentication, access control, firewall applications, denial-of-service
prevention, routing protocol security, and so on. In short, PLA secures the whole infrastructure. Our
current implementation serves as a proof of concept that the architecture actually works as desired.
According to our performance calculations, it is possible to achieve wire speed with PLA.

Furthermore, PLA is easy to integrate into the existing internet architecture, making it both usable in
practice and cost efficient.

REFERENCES

[1] ANSI X9.62:1998, Public Key Cryptography: The Elliptic Curve Digital Signature Algorithm
(ECDSA), ANSI Standard, X9F Data & Information Security Working Group, X9F1 - Cryptographic
Tools Working Group, 1998.

[2] Deering, S. and Hinden, R.; Internet Protocol, Version 6 (IPv6) Specification; IETF RFC 2460;
December 1998.

[3] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve Digital Signature Algorithm
(ECDSA). International Journal of Information Security, Volume 1, Issue 1, Springer-Verlag, pages
36-63, August 2001.

[4] Johnson, D., Perkins, C., Arkko, J.; Mobility support in IPv6; IETF RFC 3775, June 2004

[5] K. Järvinen, M. Tommiska and J. Skyttä, "A Scalable Architecture for Elliptic Curve Point
Multiplication", proceedings of the 2004 IEEE International Conference on Field-Programmable
Technology, FPT 2004, pages 303-306, Brisbane, Queensland, Australia, December 6 - 8, 2004.

[6] Lundberg, J.; Packet level authentication protocol implementation; In Military Ad Hoc Networks;
Series 1, No 19, Helsinki 2004

[7] Perkins, C.; IP Mobility Support for IPv4, IETF RFC 3220; 2002

COPYRIGHT

 [Candolin, Lundberg, Kari] ©2005. The author/s assign the Deakin University a non-exclusive license to use
this document for personal use provided that the article is used in full and this copyright statement is reproduced.
The authors also grant a non-exclusive license to the Deakin University to publish this document in full in the
Conference Proceedings. Such documents may be published on the World Wide Web, CD-ROM, in printed
form, and on mirror sites on the World Wide Web. Any other usage is prohibited without the express permission
of the authors

