
E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Verifying the Equivalence of Logic Programs

in the Disjunctive Case

Emilia Oikarinen and Tomi Janhunen

Helsinki University of Technology

Laboratory for Theoretical Computer Science

{emilia.oikarinen,tomi.janhunen}@hut.fi

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Outline

• Motivation: Equivalence of Logic Programs

• Disjunctive Logic Programs: Syntax and Semantics

• Translation-based Verification Method

• Experiments

• Conclusions

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Motivation

• Solving a problem in answer set programming (ASP) typically

results in several versions of the logic program formalizing the

problem.

• Problem: how to ensure that different encodings yield the same

output i.e. have the same answer sets?

• We consider the following two notions of equivalence

• Logic programs P and Q are (weakly) equivalent (P ≡ Q)

⇐⇒ P and Q have exactly the same answer sets.

• Logic programs P and Q are strongly equivalent (P ≡s Q)

⇐⇒ P ∪R ≡ Q ∪R for all logic programs R.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Motivation Cont’d

• We consider (weak) equivalence of disjunctive logic programs.

• We have previously developed an automated translation-based

method for verifying the equivalence of programs supported by the

smodels system.

• P ≡s Q =⇒ P ≡ Q (by setting R = ∅), but P ≡ Q 6=⇒ P ≡s Q.

• Whether P ≡ Q holds, remains open whenever P 6≡s Q holds

=⇒ Verifying P ≡ Q remains as a problem of its own.

• Complexity results support this view: deciding P ≡ Q for finite

propositional disjunctive programs is ΠP

2
-hard whereas deciding

P ≡s Q is only coNP-complete.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Disjunctive Logic Programs

• A (propositional) disjunctive logic program (DLP) P is a set of

rules of the form

a1 | . . . | an ← b1, . . . , bm,∼c1, . . . ,∼ck,

where a1, . . . , an, b1, . . . , bm, c1, . . . , ck are propositional atoms

and n, k, m are natural numbers.

• A shorthand: A← B,∼C.

• Program P is normal if n = 1 for each rule of P .

• Program P is positive if k = 0 for each rule of P .

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Satisfaction Relation and Minimal Models

• The Herbrand base Hb(P) is the set of atoms appearing in P .

• An interpretation I ⊆ Hb(P) of P defines which atoms

a ∈ Hb(P) are true (a ∈ I) and which are false (a 6∈ I).

• An interpretation I is a (classical) model of P (I |= P) ⇐⇒

for each A← B,∼C ∈ P , B ⊆ I and C ∩ I = ∅ imply A ∩ I 6= ∅.

• M is a minimal model of P , if there is no M ′ ⊂M such that

M ′ |= P . The set of minimal models of P is denoted by MM(P).

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Stable Model Semantics

• Given a DLP P and M ⊆ Hb(P), the Gelfond-Lifschitz reduct of

P is a positive program

PM = {A← B | A← B,∼C ∈ P and M ∩ C = ∅}.

• M is a stable model of P ⇐⇒ M ∈MM(PM).

• We denote the set of stable models of P by SM(P).

Example. Consider P = {a | b← ∼b. b← ∼a} and M = {a}. Now,

PM = {a | b← } and MM(PM) = {{a}, {b}}. Thus M ∈ SM(P).

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Verifying Equivalence

• We assume that Hb(P) = Hb(Q) without loss of generality, since

{a← a} ≡s ∅.

• We consider a translation TR(P, Q) such that TR(P, Q) has a

stable model ⇐⇒ ∃M ∈ SM(P) s.t. M 6∈ SM(Q). Thus,

P ≡ Q ⇐⇒ SM(TR(P, Q)) = ∅ and SM(TR(Q, P)) = ∅.

• We can distinguish two types of counter-examples for equivalence.

• T1: 〈M, M〉 s.t. M ∈ SM(P) and M 6|= QM .

• T2: 〈M, M ′〉 s.t. M ∈ SM(P), M |= QM , M ′ ⊂M and

M ′ |= QM .

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

The translation TR(P,Q) contains

• all the rules of P without modifications,

• a rule unsat← B,∼(A ∪ C) for each rule A← B,∼C ∈ Q,

• rules a• ← a,∼a◦,∼unsat and a◦ ← a,∼a•,∼unsat for each

atom a ∈ Hb(P),

• a rule unsat• ← B•,∼(A• ∪ C),∼unsat for each rule

A← B,∼C ∈ Q,

• a rule diff ← a,∼a•,∼unsat for each atom a ∈ Hb(P) and

• rules ok ← unsat; ok ← diff,∼unsat,∼unsat• and ⊥ ← ∼ok.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Example

• Programs P = {a | b} and Q = {a← ∼b}. The translation

TR(P, Q) = {a | b. unsat← ∼a,∼b. unsat• ← ∼a•,∼b,∼unsat

a• ← a,∼a◦,∼unsat. a◦ ← a,∼a•,∼unsat

b• ← b,∼b◦,∼unsat. b◦ ← b,∼b•,∼unsat

diff ← a,∼a•,∼unsat. diff ← b,∼b•,∼unsat

ok ← unsat. ok ← diff,∼unsat,∼unsat•. ⊥ ← ∼ok}.

• Consider interpretation N = {b, b◦, diff, ok}:

TR(P, Q)N = {a | b. a• ← a. a◦ ← a. b◦ ← b. diff ← a. diff ← b

ok ← unsat. ok ← diff}.

• MM(TR(P, Q)N) = {{a, a•, a◦, diff, ok}, {b, b◦, diff, ok}}, thus

N ∈ SM(TR(P, Q)), SM(TR(P, Q)) 6= ∅ and therefore P 6≡ Q.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Two-Phased Translation

• Since there are two types of counter-examples for equivalence,

testing can be performed in two phases.

• Phase 1: SM(TR1(P, Q)) 6= ∅

⇐⇒ ∃M ∈ SM(P) s.t. M 6|= QM ,

i.e. there exists a counter-example of type T1.

• Phase 2 (if SM(TR1(P, Q)) = ∅): SM(TR2(P, Q)) 6= ∅

⇐⇒ ∃M ∈ SM(P) s.t. M 6∈MM(QM),

i.e. there exists a counter-example of type T2.

• TR1(P, Q) and TR2(P, Q) can easily be obtained from TR(P, Q).

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Experiments

• The translation functions have been implemented in C under

Linux and a naive cross-checking approach as a shell script.

• The current implementation dlpeq is available in the web:

http://www.tcs.hut.fi/Software/lpeq/

• The performance of the naive and the two translation-based

approaches was compared in several experiments.

• A two-way search of counter-examples was performed in any case.

• GnT was used for the computation of stable models.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Disjunctive Random 3-sat

• We use problem of finding a minimal model of a random 3-sat

instance containing specified atoms as our first test problem.

• Encoding as DLPs that solve an instance of a random 3-sat

problem and additional rules for random atoms ci, for

i = 1, . . . , ⌊2v/100⌋, where v is the number of atoms.

• A fixed clauses to variables ratio c/v = 3.5.

• We test the equivalence of each program P against a variant P ′

obtained by dropping a random rule from P .

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Results: Disjunctive Random 3-sat

 0.01

 0.1

 1

 10

 100

 1000

 50 55 60 65 70 75 80 85 90 95 100

tim
e

(s
)

number of variables

NAIVE max
DLPEQ max
DLPEQ2 max
NAIVE ave
DLPEQ ave
DLPEQ2 ave
NAIVE min
DLPEQ min
DLPEQ2 min

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Random 2-qbf

• Similarly to the previous experiment, but using DLP encodings of

random 2-qbf instances Φ = ∃X∀Y φ, where φ is a 3-sat

instance in DNF over X ∪ Y .

• |X | = |Y |, v = |X |+ |Y | and c/v = 3.5 = constant.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Results: Random 2-qbf

 0.01

 0.1

 1

 10

 100

 8 10 12 14 16 18 20 22 24

tim
e

(s
)

number of variables

NAIVE max
DLPEQ max
DLPEQ2 max
NAIVE ave
DLPEQ ave
DLPEQ2 ave
NAIVE min
DLPEQ min
DLPEQ2 min

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen Verifying the Equivalence of Logic Programs in the Disjunctive Case

Conclusions

• Two translation-based methods and an implementation for

verifying the equivalence of DLPs have been presented.

• In many cases, the time needed for computations is less than in a

naive approach of cross-checking the stable models.

• If programs have no/few stable models, then the naive approach

can become superior to the translation-based ones.

• Two-phased translation is faster than the one-phased one.

• Future work: experiments using real-life problems, extension to

other classes of logic programs, other notions of equivalence.

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

