Verifying the Equivalence of Logic Programs in the Disjunctive Case

Motivation

- Solving a problem in answer set programming (ASP) typically results in several versions of the logic program formalizing the problem.
- Problem: how to ensure that different encodings yield the same output i.e. have the same answer sets?
- We consider the following two notions of equivalence
 - Logic programs P and Q are (weakly) equivalent (P ≡ Q)
 ⇒ P and Q have exactly the same answer sets.
 - Logic programs P and Q are strongly equivalent (P ≡_s Q)
 ⇔ P ∪ R ≡ Q ∪ R for all logic programs R.

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen

Verifying the Equivalence of Logic Programs in the Disjunctive Case

Outline

Verifying the Equivalence of Logic Programs

in the Disjunctive Case

Emilia Oikarinen and Tomi Janhunen

Helsinki University of Technology

Laboratory for Theoretical Computer Science

{emilia.oikarinen,tomi.janhunen}@hut.fi

- Motivation: Equivalence of Logic Programs
- Disjunctive Logic Programs: Syntax and Semantics
- Translation-based Verification Method
- Experiments

E. Oikarinen and T. Janhunen

Conclusions

Motivation Cont'd

- We consider (weak) equivalence of disjunctive logic programs.
- We have previously developed an automated translation-based method for verifying the equivalence of programs supported by the SMODELS system.
- $P \equiv_{s} Q \Longrightarrow P \equiv Q$ (by setting $R = \emptyset$), but $P \equiv Q \not\Longrightarrow P \equiv_{s} Q$.
- Whether P ≡ Q holds, remains open whenever P ≢_s Q holds
 ⇒ Verifying P ≡ Q remains as a problem of its own.
- Complexity results support this view: deciding P ≡ Q for finite propositional disjunctive programs is Π^P₂-hard whereas deciding P ≡_s Q is only coNP-complete.

Disjunctive Logic Programs

• A (propositional) *disjunctive logic program* (DLP) *P* is a set of *rules* of the form

 $a_1 \mid \ldots \mid a_n \leftarrow b_1, \ldots, b_m, \sim c_1, \ldots, \sim c_k,$

where $a_1, \ldots, a_n, b_1, \ldots, b_m, c_1, \ldots, c_k$ are propositional atoms and n, k, m are natural numbers.

- A shorthand: $A \leftarrow B, \sim C$.
- Program P is *normal* if n = 1 for each rule of P.
- Program P is *positive* if k = 0 for each rule of P.

E. Oikarinen and T. Janhunen

Verifying the Equivalence of Logic Programs in the Disjunctive Case

Satisfaction Relation and Minimal Models

- The *Herbrand base* Hb(P) is the set of atoms appearing in P.
- An *interpretation* $I \subseteq Hb(P)$ of P defines which atoms $a \in Hb(P)$ are true $(a \in I)$ and which are false $(a \notin I)$.
- An interpretation I is a (classical) *model* of $P(I \models P) \iff$ for each $A \leftarrow B, \sim C \in P$, $B \subseteq I$ and $C \cap I = \emptyset$ imply $A \cap I \neq \emptyset$.
- M is a *minimal model* of P, if there is no $M' \subset M$ such that $M' \models P$. The set of minimal models of P is denoted by $\mathbf{MM}(P)$.

Stable Model Semantics

• Given a DLP P and $M \subseteq \operatorname{Hb}(P)$, the *Gelfond-Lifschitz reduct* of P is a positive program

 $P_M = \{ A \leftarrow B \mid A \leftarrow B, \sim C \in P \text{ and } M \cap C = \emptyset \}.$

- M is a stable model of $P \iff M \in \mathbf{MM}(P_M)$.
- We denote the set of stable models of P by $\mathbf{SM}(P)$.

Example. Consider $P = \{a \mid b \leftarrow \neg b. \ b \leftarrow \neg a\}$ and $M = \{a\}$. Now, $P_M = \{a \mid b \leftarrow \}$ and $\mathbf{MM}(P_M) = \{\{a\}, \{b\}\}$. Thus $M \in \mathbf{SM}(P)$.

E. Oikarinen and T. Janhuner

Verifying the Equivalence of Logic Programs in the Disjunctive Case

Verifying Equivalence

- We assume that Hb(P) = Hb(Q) without loss of generality, since $\{a \leftarrow a\} \equiv_s \emptyset$.
- We consider a translation $\operatorname{TR}(P,Q)$ such that $\operatorname{TR}(P,Q)$ has a stable model $\iff \exists M \in \mathbf{SM}(P)$ s.t. $M \notin \mathbf{SM}(Q)$. Thus,

 $P \equiv Q \iff \mathbf{SM}(\mathrm{TR}(P,Q)) = \emptyset \text{ and } \mathbf{SM}(\mathrm{TR}(Q,P)) = \emptyset.$

- We can distinguish two types of counter-examples for equivalence.
 - T1: $\langle M, M \rangle$ s.t. $M \in \mathbf{SM}(P)$ and $M \not\models Q_M$.
 - T2: $\langle M, M' \rangle$ s.t. $M \in \mathbf{SM}(P)$, $M \models Q_M$, $M' \subset M$ and $M' \models Q_M$.

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

The translation TR(P,Q) contains

- all the rules of *P* without modifications,
- a rule $unsat \leftarrow B, \sim (A \cup C)$ for each rule $A \leftarrow B, \sim C \in Q$,
- rules $a^{\bullet} \leftarrow a, \sim a^{\circ}, \sim unsat$ and $a^{\circ} \leftarrow a, \sim a^{\bullet}, \sim unsat$ for each atom $a \in Hb(P)$,
- a rule $unsat^{\bullet} \leftarrow B^{\bullet}, \sim (A^{\bullet} \cup C), \sim unsat$ for each rule $A \leftarrow B, \sim C \in Q$,
- a rule $diff \leftarrow a, \sim a^{\bullet}, \sim unsat$ for each atom $a \in Hb(P)$ and
- rules $ok \leftarrow unsat$; $ok \leftarrow diff, \sim unsat, \sim unsat^{\bullet}$ and $\perp \leftarrow \sim ok$.

E. Oikarinen and T. Janhunen

Verifying the Equivalence of Logic Programs in the Disjunctive Case

Example

- Programs P = {a | b} and Q = {a ← ~b}. The translation TR(P,Q) = {a | b. unsat ← ~a, ~b. unsat[●] ← ~a[●], ~b, ~unsat a[●] ← a, ~a[◦], ~unsat. a[◦] ← a, ~a[●], ~unsat b[●] ← b, ~b[◦], ~unsat. b[◦] ← b, ~b[●], ~unsat diff ← a, ~a[●], ~unsat. diff ← b, ~b[●], ~unsat ok ← unsat. ok ← diff, ~unsat, ~unsat[●]. ⊥ ← ~ok}.
- Consider interpretation N = {b, b°, diff, ok}: TR(P,Q)_N = {a | b. a[•] ← a. a° ← a. b° ← b. diff ← a. diff ← b ok ← unsat. ok ← diff}.
- $\mathbf{MM}(\mathrm{TR}(P,Q)_N) = \{\{a, a^{\bullet}, a^{\circ}, diff, ok\}, \{b, b^{\circ}, diff, ok\}\}, \text{ thus } N \in \mathbf{SM}(\mathrm{TR}(P,Q)), \mathbf{SM}(\mathrm{TR}(P,Q)) \neq \emptyset \text{ and therefore } P \neq Q.$

Two-Phased Translation

- Since there are two types of counter-examples for equivalence, testing can be performed in two phases.
 - Phase 1: SM(TR₁(P,Q)) ≠ Ø
 ⇒ ∃M ∈ SM(P) s.t. M ⊭ Q_M,
 i.e. there exists a counter-example of type T1.
 - Phase 2 (if SM(TR₁(P,Q)) = Ø): SM(TR₂(P,Q)) ≠ Ø
 ⇒ ∃M ∈ SM(P) s.t. M ∉ MM(Q_M),
 i.e. there exists a counter-example of type T2.
- $\operatorname{TR}_1(P,Q)$ and $\operatorname{TR}_2(P,Q)$ can easily be obtained from $\operatorname{TR}(P,Q)$.

E. Oikarinen and T. Janhunen

Verifying the Equivalence of Logic Programs in the Disjunctive Case

Experiments

- The translation functions have been implemented in C under Linux and a *naive cross-checking approach* as a shell script.
- The current implementation DLPEQ is available in the web: http://www.tcs.hut.fi/Software/lpeq/
- The performance of the naive and the two translation-based approaches was compared in several experiments.
- A two-way search of counter-examples was performed in any case.
- $\bullet~{\rm GNT}$ was used for the computation of stable models.

Disjunctive Random 3-SAT

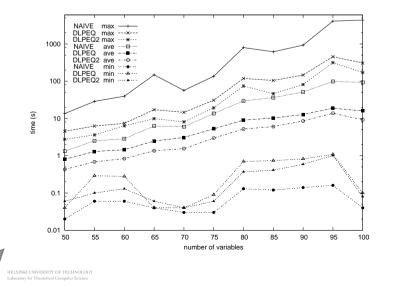
- We use problem of finding a minimal model of a random 3-SAT instance containing specified atoms as our first test problem.
- Encoding as DLPs that solve an instance of a random 3-SAT problem and additional rules for random atoms c_i, for i = 1,..., |2v/100|, where v is the number of atoms.
- A fixed clauses to variables ratio c/v = 3.5.
- We test the equivalence of each program P against a variant P' obtained by dropping a random rule from P.

HELSINKI UNIVERSITY OF TECHNOLOGY Laboratory for Theoretical Computer Science

E. Oikarinen and T. Janhunen

Verifying the Equivalence of Logic Programs in the Disjunctive Case

Results: Disjunctive Random 3-SAT



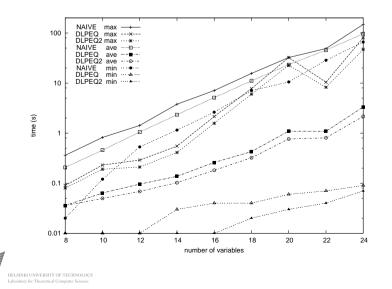
Random 2-QBF

- Similarly to the previous experiment, but using DLP encodings of random 2-QBF instances Φ = ∃X∀Yφ, where φ is a 3-SAT instance in DNF over X ∪ Y.
- |X| = |Y|, v = |X| + |Y| and c/v = 3.5 = constant.

E. Oikarinen and T. Janhunen

Verifying the Equivalence of Logic Programs in the Disjunctive Case

Results: Random 2-QBF



Conclusions

- Two translation-based methods and an implementation for verifying the equivalence of DLPs have been presented.
- In many cases, the time needed for computations is less than in a naive approach of cross-checking the stable models.
- If programs have no/few stable models, then the naive approach can become superior to the translation-based ones.
- Two-phased translation is faster than the one-phased one.
- Future work: experiments using real-life problems, extension to other classes of logic programs, other notions of equivalence.

