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Motivation

• Solving a problem in answer set programming (ASP) typically

results in several versions of the logic program formalizing the

problem.

• Problem: how to ensure that different encodings yield the same

output i.e. have the same answer sets?

• We consider the following two notions of equivalence

• Logic programs P and Q are (weakly) equivalent (P ≡ Q)

⇐⇒ P and Q have exactly the same answer sets.

• Logic programs P and Q are strongly equivalent (P ≡s Q)

⇐⇒ P ∪R ≡ Q ∪R for all logic programs R.
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Motivation Cont’d

• We consider (weak) equivalence of disjunctive logic programs.

• We have previously developed an automated translation-based

method for verifying the equivalence of programs supported by the

smodels system.

• P ≡s Q =⇒ P ≡ Q (by setting R = ∅), but P ≡ Q 6=⇒ P ≡s Q.

• Whether P ≡ Q holds, remains open whenever P 6≡s Q holds

=⇒ Verifying P ≡ Q remains as a problem of its own.

• Complexity results support this view: deciding P ≡ Q for finite

propositional disjunctive programs is ΠP

2
-hard whereas deciding

P ≡s Q is only coNP-complete.
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Disjunctive Logic Programs

• A (propositional) disjunctive logic program (DLP) P is a set of

rules of the form

a1 | . . . | an ← b1, . . . , bm,∼c1, . . . ,∼ck,

where a1, . . . , an, b1, . . . , bm, c1, . . . , ck are propositional atoms

and n, k, m are natural numbers.

• A shorthand: A← B,∼C.

• Program P is normal if n = 1 for each rule of P .

• Program P is positive if k = 0 for each rule of P .
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Satisfaction Relation and Minimal Models

• The Herbrand base Hb(P ) is the set of atoms appearing in P .

• An interpretation I ⊆ Hb(P ) of P defines which atoms

a ∈ Hb(P ) are true (a ∈ I) and which are false (a 6∈ I).

• An interpretation I is a (classical) model of P (I |= P ) ⇐⇒

for each A← B,∼C ∈ P , B ⊆ I and C ∩ I = ∅ imply A ∩ I 6= ∅.

• M is a minimal model of P , if there is no M ′ ⊂M such that

M ′ |= P . The set of minimal models of P is denoted by MM(P ).
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Stable Model Semantics

• Given a DLP P and M ⊆ Hb(P ), the Gelfond-Lifschitz reduct of

P is a positive program

PM = {A← B | A← B,∼C ∈ P and M ∩ C = ∅}.

• M is a stable model of P ⇐⇒ M ∈MM(PM ).

• We denote the set of stable models of P by SM(P ).

Example. Consider P = {a | b← ∼b. b← ∼a} and M = {a}. Now,

PM = {a | b← } and MM(PM ) = {{a}, {b}}. Thus M ∈ SM(P ).
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Verifying Equivalence

• We assume that Hb(P ) = Hb(Q) without loss of generality, since

{a← a} ≡s ∅.

• We consider a translation TR(P, Q) such that TR(P, Q) has a

stable model ⇐⇒ ∃M ∈ SM(P ) s.t. M 6∈ SM(Q). Thus,

P ≡ Q ⇐⇒ SM(TR(P, Q)) = ∅ and SM(TR(Q, P )) = ∅.

• We can distinguish two types of counter-examples for equivalence.

• T1: 〈M, M〉 s.t. M ∈ SM(P ) and M 6|= QM .

• T2: 〈M, M ′〉 s.t. M ∈ SM(P ), M |= QM , M ′ ⊂M and

M ′ |= QM .
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The translation TR(P,Q) contains

• all the rules of P without modifications,

• a rule unsat← B,∼(A ∪ C) for each rule A← B,∼C ∈ Q,

• rules a• ← a,∼a◦,∼unsat and a◦ ← a,∼a•,∼unsat for each

atom a ∈ Hb(P ),

• a rule unsat• ← B•,∼(A• ∪ C),∼unsat for each rule

A← B,∼C ∈ Q,

• a rule diff ← a,∼a•,∼unsat for each atom a ∈ Hb(P ) and

• rules ok ← unsat; ok ← diff,∼unsat,∼unsat• and ⊥ ← ∼ok.
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Example

• Programs P = {a | b} and Q = {a← ∼b}. The translation

TR(P, Q) = {a | b. unsat← ∼a,∼b. unsat• ← ∼a•,∼b,∼unsat

a• ← a,∼a◦,∼unsat. a◦ ← a,∼a•,∼unsat

b• ← b,∼b◦,∼unsat. b◦ ← b,∼b•,∼unsat

diff ← a,∼a•,∼unsat. diff ← b,∼b•,∼unsat

ok ← unsat. ok ← diff,∼unsat,∼unsat•. ⊥ ← ∼ok}.

• Consider interpretation N = {b, b◦, diff, ok}:

TR(P, Q)N = {a | b. a• ← a. a◦ ← a. b◦ ← b. diff ← a. diff ← b

ok ← unsat. ok ← diff}.

• MM(TR(P, Q)N) = {{a, a•, a◦, diff, ok}, {b, b◦, diff, ok}}, thus

N ∈ SM(TR(P, Q)), SM(TR(P, Q)) 6= ∅ and therefore P 6≡ Q.
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Two-Phased Translation

• Since there are two types of counter-examples for equivalence,

testing can be performed in two phases.

• Phase 1: SM(TR1(P, Q)) 6= ∅

⇐⇒ ∃M ∈ SM(P ) s.t. M 6|= QM ,

i.e. there exists a counter-example of type T1.

• Phase 2 (if SM(TR1(P, Q)) = ∅): SM(TR2(P, Q)) 6= ∅

⇐⇒ ∃M ∈ SM(P ) s.t. M 6∈MM(QM ),

i.e. there exists a counter-example of type T2.

• TR1(P, Q) and TR2(P, Q) can easily be obtained from TR(P, Q).
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Experiments

• The translation functions have been implemented in C under

Linux and a naive cross-checking approach as a shell script.

• The current implementation dlpeq is available in the web:

http://www.tcs.hut.fi/Software/lpeq/

• The performance of the naive and the two translation-based

approaches was compared in several experiments.

• A two-way search of counter-examples was performed in any case.

• GnT was used for the computation of stable models.
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Disjunctive Random 3-sat

• We use problem of finding a minimal model of a random 3-sat

instance containing specified atoms as our first test problem.

• Encoding as DLPs that solve an instance of a random 3-sat

problem and additional rules for random atoms ci, for

i = 1, . . . , ⌊2v/100⌋, where v is the number of atoms.

• A fixed clauses to variables ratio c/v = 3.5.

• We test the equivalence of each program P against a variant P ′

obtained by dropping a random rule from P .
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Results: Disjunctive Random 3-sat
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Random 2-qbf

• Similarly to the previous experiment, but using DLP encodings of

random 2-qbf instances Φ = ∃X∀Y φ, where φ is a 3-sat

instance in DNF over X ∪ Y .

• |X | = |Y |, v = |X |+ |Y | and c/v = 3.5 = constant.
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Results: Random 2-qbf
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Conclusions

• Two translation-based methods and an implementation for

verifying the equivalence of DLPs have been presented.

• In many cases, the time needed for computations is less than in a

naive approach of cross-checking the stable models.

• If programs have no/few stable models, then the naive approach

can become superior to the translation-based ones.

• Two-phased translation is faster than the one-phased one.

• Future work: experiments using real-life problems, extension to

other classes of logic programs, other notions of equivalence.
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