A Translation-based Approach to
the Verification of Modular Equivalence*

Emilia Oikarinert* and Tomi Janhunen

Helsinki University of Technology
Department of Computer Science and Engineering
P.O.Box 5400, FI-02015 TKK, Finland
{Emilia.Oikarinen, Tomi.Janhunen}@tkk.fi

Abstract. In this paper, a method for verifying the equivalence of logic program
modules under a Gaifman-Shapiro-style module architecture is proposed. The
idea is to adapt a translation-based verification technique, which was originally
devised for complete programs only, for program modules. In addition, optimiza-
tion strategies are addressed in order to exploit the modular structure of programs
in verification tasks. A number of experiments on verification strategies are also
conducted usingPEQ which implements the verification method for theoD-

ELS system. Preliminary results indicate that at least in certain cases the overall
time spent on verification tasks can be reduced through modularization.

1 Introduction

Answer set programming (ASP) [16, 18] provides the rule-based syntax of logic pro-
grams with a fully declarative nonmonotonic semantics based on stable models [7].
Stable models have a global nature in the sense that they are defined for entire logic pro-
grams rather than individual rules. For this reason, logic programs are typically treated
as integral entities in ASP and relatively little attention has been paid to modular pro-
gram development so far. Our motivation is to bring good software engineering practise
to the realm of ASP and, in particular, to exploit modules and module architectures in
order to ease the development of logic programs. The expected benefits from modular
program development are manifold. First, it is conceptually much easier to develop a
large logic program in smaller units using modules with a well-defined input/output
interface. Thus a module system provides a way to govern complexity as the sizes of
program instances grow—a clear trend in the applications of ASP. Second, a fully in-
tegrated module system enforces a good programming style for programmers, helps
to delegate programming tasks among them, and enables the re-use of code, e.g., orga-
nized as libraries. Third, modularity plays also a role in the implementation of inference
engines for ASP and exploiting modules in the search for answer sets is also becoming
increasingly important as the demands of applications appear to be interminable.

* The research reported in this paper is partially funded by the Academy of Finland (project
#211025 ‘Advanced Constraint Programming Techniques for Large Structured Problems
** The financial support from Helsinki Graduate School in Computer Science and Engineering,
Nokia Foundation, Finnish Foundation of Technology (TES), Emil Aaltonen Foundation, and
Finnish Cultural Foundation is gratefully acknowledged.



Modularity has been studied quite extensively in the aremo¥entionalogic pro-
gramming (see [2] for a study) before ASP really emerged. Two mainstream disciplines,
viz. programming-in-the-largevhere programs are composed with algebraic operators
[6] and programming-in-the-smallith abstraction mechanisms [17], are identified. In
ASP, however, only few approaches describe a real module system with a clearly de-
fined interface for module interaction. The approaches basgémeralized quantifiers
[4], templated8], import rules[23], andmacros[1] fall all in the programming-in-the-
small category. On the other hand, those in the programming-in-the-large discipline are
mostly based on Lifschitz and Turner’s splitting set theorem [15] and its variants [3, 5].

Our interest in the modularity aspects of ASP emerged from the expressiveness
analysis of normal logic programs and propositional theories [9] where the existence of
modularandfaithful translations is used as a criterion for comparisons. Further inter-
est sparked from our previous research on verifying the equivalence of logic programs
[10, 20, 11] and, in particular, from the study of equivalence relations better amenable
to modularization. To this end, we have based our approach on Gaifman and Shapiro’s
module architecture [6] in which logic program modules interact through a well-defined
input/output interfaceln [21, 12, 19], we put forward analogous architectures in the
context of ASP. The key observation is that the stable model semantics [7] becomes
fully compatible with the module system if positively interdependent rules are enforced
inside modules. The main result isreodule theorerwhich interconnects module-level
stability with program-level stability. This indicates that the global nature of stable mod-
els as discussed above is much illusory. Moreover, module-level equivalence gives rise
to the notion omodular equivalencerhich is a propecongruence relatiofor program
composition, i.e., it is preserved under substitutions of equivalent modules.

In the current paper, we are interested in the problem of verifying whether logic
program modules are equivalent or not. In view of methods for solving this problem, the
idea is to adopt our translation-based verification technique [11]. In this approach, the
idea is to translate progranid and@ under consideration into another logic program
EQT(P, Q) which has no stable models if every stable mode? i also a stable model
of . Our main objective is to generalize this method for the verification of modular
equivalence. Moreover, we aim at exploiting program modules in the presentation of the
method itself. In analogy to [11], the syntax of programs is thandDELSprograms.

We proceed according to the following plan for the rest of this paper. In Section 2,
we give a more technical account of logic program modules in the context sftbe-
ELS system. In addition to the Gaifman-Shapiro-style module architecture, the stable
model semantics of program modules is defined and shown to be compatible with the
architecture. As the final outcome, the notion of modular equivalence is formalized
and the computational complexity of the respective verification problem is briefly ad-
dressed. Next, we concentrate on the translation-based verification technique proposed
for sMoDELSprograms [11] in Section 3. The method is revised to to the case of modu-
lar equivalence and represented in a modular fashion using program modules as natural
building blocks. In addition, we address optimization strategies which try to exploit pro-
gram modules in the verification task. Then, the integration of program modules in our
verification tool, namely PEQ, is described in Section 4. A number of experiments on
verification strategies are also conducted and reported. Section 5 concludes the paper.



2 SMoODELSProgram Modules

In what follows, we provide a brief introduction to a Gaifman-Shapiro-style module ar-
chitecture [6] that is presented feMoDELSprograms in [19]. Analogous module sys-
tems have already been utilized within ASP, e.g., in the contextermfialanddisjunc-

tive logic programg21, 12]. In the rest of section, we address four aspects/afDELS
program modules, viz. their syntax, composition, semantics, and equivalence.

To keep the presentation of the module architecture compatible with an actual im-
plementation, we cover the input language of §MODELS system—excludingp-
timization statementBasic constraint ruleg22] are eitherbasic rulesof the form
a «— B,~C, weight rulesof the forma — w < {B = Wp,~C = W¢}, or choice
rulesof the form{A} «— B, ~C wherea is an atom and! # ), B, andC are sets of
atoms, and- denotesnegation as failureln addition, a weight rule involves a weight
limit w € N and the sets of weightd’z, W C N which associate the respective
weightsw, € Wg andw, € W with each atomb € B andc € C. We may dis-
tinguish two parts for each basic constraint rular A is theheadof the rule and the
rest is called théodywhich gives the conditions on which the head is activated. E.g., in
case of a choice rulgA} — B, ~C, this means that any atom froshcan be inferred if
all atoms inB and none of the atoms @@l can be inferred. In the sequel, we view a basic
rulea «— B, ~C as a shorthand for aweightrule— |B| + |C| < {B=1,~C = 1}!
and omit similar definitions otonstraint rulesand compute statementbat can be
found in [11]. The exact model-theoretic semantics is deferred until Section 2.2.

Given a sef? of basic constraint rules, we writ€h(R) for its signature, i.e., the set
of atoms occurring irR, andHead(R) for the respective subset Hb(R) havinghead
occurrencesn R. An individual sMODELS program module is structured as follows.

Definition 1. AnsMODELSprogram modulé? is a quadruple(R, I, O, H) where

1. Ris afinite set of basic constraint rules;

2. 1,0, and H are pairwise disjoint sets of input, output, and hidden atoms;
3. Hb(R) C Hb(P) which is defined b#Ib(P) = I UO U H; and

4. Head(R)N I = 0.

The atoms irHHb, (P) = I U O are considered to bésibleand hence accessible to
other modules conjoined with; either to produce input faP or to utilize the output
of P. We use notation&lb; () andHb, (P) for referring tol andO, respectively. The
hiddenatoms inHby, (P) = H = Hb(P) \ Hb, (IP) are used to formalize some auxiliary
concepts of? which may not be sensible for other modules but may save space sub-
stantially, cf. [11, Example 4.5]. The conditidfead(R) N I = () ensures that a module
may not interfere with its own input by defining input atoms/ah terms of its rules.
Thus the rules o may be conditioned by input atoms appearing in rule bodies only.

Example 1.Consider the classical pigeon hole principle in the case tbles and
n + 1 pigeons. This can be formalized using t&®ODELS program module®,, =
(Rp,0,0p,0) andH,, = (Rg,Op,0,{e, f}) as follows. Letp(i, ) be an atom de-
noting that the*" pigeon is in thejt" hole whered < i < n+ 1 and0 < j < n. The

! Here the set of weights associates the weigltwith every atom in the set in question.



signatureb, (P,,) = Op = Hbi(H,,) = {p(i,7) |0<i<n+1, 0<j<n}. The

set of rulesRp contains a choice rulép(i, 1), ...,p(i,n)} for each0 < i < n + 1.
Thus, roughly speaking, the purposel®f is to choose holes far + 1 pigeons. The

role of H,, is to check that every pigeon is placed in at least one hole and no two
pigeons share a hole. The first condition is captured with a weighterule n <
{~p(i,1) =1,...,~p(i,n) = 1} for each0 < ¢ < n+1. For the second, we introduce

e — 2 <{p(i,k) =1, p(j,k) =1} foreach0 < i < j < n+1and0 < k < n.
Finally, we express the need discardingany assignment of pigeons that does not sat-
isfy the two conditions above using a basic rifile- e, ~f. In particular, we note that

e andf are auxiliary atoms that are hidden from other modules conjoinediiyjth B

2.1 Syntactic Conditions for Combining Modules

The stable model semantics of normal logic programs [7] does not lend itself directly
for program composition. The problem is that in general, stable models associated with
modules do not determine stable models assigned to toaiposition As demon-
strated in [21], the stable models assigned®{o= ({a < b}, {b}, {a},0) andP, =

({b — a},{a},{b},0) ared and{a, b} by symmetry, bu{a, b} is not a stable model of

P = ({a < b,b— a},0,{a,b}, ) that represents the composition®f andP, (see
below). Gaifman and Shapiro [6] address positive normal programs under logical conse-
quence. For their purposes, it is sufficient to assume that whenever two midled

Py are put together, their output signatures have to be disjoint and they heasptct

each other’s hidden atomse., Hb,, (P1) N Hb(P3) = § andHby, (P2) N Hb(P;) = 0.

Definition 2. Thecompositionof P; = (R, I1,01, H1) andPy = (Ra, I3, Oz, Ho) is
PPy = <R1 U Ry, (Il \ 02) U (12 \ 01),01 U 02,H1 U H2>
if Hb,(P;) N Hb,(P3) = () andP; andP, respect each other’s hidden atoms.

Recalling the example above, the conditions givendfoare not enough to guar-
antee compositionality in the case of stable models and further restrictions for pro-
gram composition become necessary. Gites (R, 1,0, H) anda,b € Hb(P), we
say thata depends directlyon b, denoted byb <; «q, iff R contains a weight rule
a—w < {B=Wg,~C =Wc} withb € B, or a choice rulgA} — B, ~C with
a € Aandb € B. Thepositive dependency grami P, denoted byDep™(P), is the
graph(Hb(P), <;). The reflexive and transitive closure gf gives rise to the depen-
dency relation< overHb(P). A strongly connected compond®CC)S of Dep ™ (P) is
a maximal ses C Hb(P) such thab < a holds for everyu, b € S. Given that?; & P
is defined, we say th@, andP, aremutually dependeritf Dept(P; & Py) has a SCC
S shared byP; andP; such thatS N Hb,(P;) # () andS N Hb,(Py) # (0 [21, 19].

Definition 3. Thejoin, P; LI P;, of twoSMODELSprogram module®; andP5 isP; &
Py, providingP, & Py is defined and, andP, are mutually independent.

Example 2.Recall module®,, andH,, from Example 1. The compositidh, © H,, =
(RpURg,D,0p,{e, f}) is clearly defined becaugtb, (P,,) N Hb, (H,,) = # andP,,
does not use the hidden atomsHf. Moreover, we note that modul@s, andH,, are
mutually independent since the strongly connected componeBkspi(P,, © H,, ) are
all singletons. Hence the joih, LI H,, is also defined. [ |



2.2 Stable Model Semantics fosMODELS Program Modules

The stable model semantics of normal logic programs [7] can be generalizeddar-

ELS programs in an analogous way using the notions mddactand theleast model

of a negation-free program. In order to cover modules as well, we must explicate the
semantical role of input atoms. To this end, we will follow an apprédim [12] and

take input atoms into account in the definition of the reduct adopted from [11]. It should
be stressed that all negative literals and literals involving input atoms get evaluated in
the reduction. Moreover, our definitions become equivalent with those proposed for
normal programs [7] andMODELS programs [11] if an empty input signatufe= §)

is additionally assumed. Using the same idea, a convent®amabeLSprogram, i.e., a

set ofsMODELSrulesR, can be viewed as a modul&, 0, Hb(R), ).

An interpretation M is a subset oHb(PP) defining which atoms € Hb(P) are
true (a € M) andfalse(a ¢ M). Aweight rulea — w < {B=Wpg,~C =We}is
satisfied inM iff a € M whenever the sum of weighds . 5, W + >-con s We IS
at leastw. A choice rule{ A} — B, ~C'is always satisfied id/.

Definition 4. Given a modulé® = (R, 1,0, H), thereductof R with respect to an
interpretationM C Hb(P), denoted by, contains

1. the basic rulez — (B\ I) iff there is a choice rul§ A} — B,~C'in R such that
a€ ANM,BNICM,andM N C = 0; and

2. the reduced weight rule — v’ < {B’ = Wp. } iff there is a weight rules — w <
{B=Wpg,~C =Wc}in R, Wg is the restriction oz on B’ = B\ I, and
the limitw’ = max (0, }",c prrrn Wo + X cecmr We)-

An interpretationV/ C Hb(P) is a stable model of asMODELS program module
P = (R,1,0,H), denoted byM € SM(P), iff M \ I = LM(RM).

The generalized redudt" is a positive program in the sense of [11] and thus it has
a unique least modélM(R). Having the semantics afMODELS program modules
defined, we may characterize its properties under program composition using the notion
of compatibility Given module$; andP,, we say that interpretation®; C Hb(P;)
and My C Hb(Ps) arecompatibleiff A, N Hb, (Py) = M N Hb,(P;). For sets of
interpretationsd; C 2HP(®1) andA, C 2HP(P2) | thenatural joinof A; and A, denoted
by A; w As,is{M; UM, | My € A1, My € Ay, andM; and M, are compatiblg.

Theorem 1 (Module theorem [19]).If P; and P, are SMODELS program modules
such that?; LI Ps is defined, theSM(P; LI Po) = SM(Py) x SM(Py).

It is worth noting that classical propositional theories have an analogous property
obtained by substituting for LI and replacing stable models by classical models. More-
over, Theorem 1 is not applicable to modulgsandP, addressed in the beginning of
Section 2.1 a®; U P, is not defined. However, consid@r= ({a « ~b}, {b}, {a}, D)
in the context ofP; = ({b < a}, {a},{b},0). SinceQ U P, is defined,SM(Q) =
{{a},{b}}, andSM(Py) = {0, {a,b}}, we haveSM(Q L Py) = () by Theorem 1.

2 There are also alternative ways to handle input atoms: One possibility is to combine a module
with a set of facts (or a database) over its input signature [21, 19]. Yet another approach is to
interpret input atoms a#&ed atomsn the sense of parallel circumscription [13].



Example 3.In view of our pigeon hole example, the modilite has plenty of stable
models. In fact, any subsét/ of Op is stable forP,,. On the hand, the modul€,,
has no stable models which implies by Theorem 1 that theljginl H,, has no stable
models. This is in accordance with the pigeon hole principle capturéy, byH,,. B

2.3 Visible and Modular Equivalence

The notion ofvisible equivalenc§9] was introduced in order to neglect hidden atoms
when logic programs, or other theories of interest, are compared on the basis of their
models. The compositionality property from Theorem 1 enables us to bring the same
idea to the level of program modules—giving risetodular equivalencef logic pro-

grams [21F Visible and modular equivalence, denoted by the respective infix relation
symbols=, and=,,, are formulated fosMODELSprogram modules as follows.

Definition 5. For two SMODELSprogram module® andQ,

- P =, Qiff Hb,(P) = Hb,(Q) and there is a bijectiorf : SM(PP) — SM(Q) such
that for all M € SM(P), M N Hb,(P) = f(M) N Hb,(Q); and
— P =, Qiff Hb;(P) = Hb;(Q) andP =, Q.

It is worth noting that the conditioflb, (P) = Hb,(Q), as insisted by=,, implies
Hb,(P) = Hb,(Q) in the presence dfib;(P) = Hb;(Q), as required by=,,. More-
over, the two relations coincide faompletely specifiedMODELS programsP which
satisfy Hb;(P) = () and hence require the presence of no further modules defining
atoms. Modular equivalence lends itself for program substitutions in analagjyotty
equivalencgl14], i.e., the relation=,, is a propercongruenceor L.

Corollary 1 (Congruence).LetP, Q andRR be sMODELS program modules such that
PUR andQ U R are defined. I =, Q, thenPUR =, QUR.

Example 4.The choice regarding the placement of pigeons in holes can be reformu-
lated as an alternative module, = (Rq,0,Op, Hg) where R, contains two basic
rulesp(i, k) « ~q(i, k) andq(i, k) «— ~p(i, k) foreach0 < i <n+1land0 < k < n.

The idea is to hiddg = {q(i,k) | 0<i<n+1, 0<k <n}. NowP, =, Q,
which impliesP,, UH,, =, Q,, LH,, by Corollary 1 a),, LIH,, is defined by the same
arguments as fdP,, U H,,. ThusSM(Q,, L H,,) = ( on the basis of Example 3. H

Due to the close relationship ef, and=,,, the respective verification problems
have the same computational complexity. As analyzed in [11], the verificatiBreqf
Q involves a counting problem in general but a reduction of computational time com-
plexity can be achieved for modules that hamough visible atomsd.e., the EVA
property. In order to formalize this property, we define Hiéden partof a module
P = (R,I,0,H) asP, = (Ry,IUO, H,D) where Ry, contains all rules ofR in-
volving atoms ofH in their heads. For such a choice ryld} — B,~C, we take
{AN H} « B,~C'in R;,. Now P has the EVA property if and only 8M(PP,,) con-
tains a unique stable modél for each interpretatiodv C Hb,(P) = I U O such
thatM N (I UO) = N. As established in [19], the verification &f,, forms acoNP-
complete decision problem f@MODELS program modules with the EVA property.
Such a level of computational complexity enables the usavaiDELSfor verification.

3 The reader is referred to [21, 12, 19] for other notions of equivalence as well as comparisons.



3 Verification of Modular Equivalence

Since modular equivalence can be reduced to visible equivalence [21], the translation-

based technique from [11, Corollary 5.9] can be used to vérify,,, Q given that

SMODELS program module® andQ have enough visible atoms. More specifically,

using thetranslation functiorEQT in [11], the task is to show th&MODELSprograms

EQT(PUG;,QUG,) andEQT(QU G, PUG/) have no stable models, whekg =

{{1} <},0,1,0) is a module generating all possible inputs for an input signature
However, there is still room for improvement since the common coriigxs han-

dled separately for the modules involved. To adjust the translation-based method for the

verification of modular equivalence we define a modified, modular versiai)af.

Definition 6. LetP = (Rp,I,0,Hp) andQ = (Rq,I,0, Hg) be SMODELS pro-
gram modules having enough visible atoms. The translation

EQT(P,Q) = PU Hidden’(Q) U Least®*(Q) U UnStable(Q)

combinesP with modulesHidden®(Q), Least®(Q), and UnStable(Q) presented in
detail in Figure 1.

Now, the translation o§MODELSprogram module® andQ is the module
EQT(P,Q) = (R,I,0U0" UHg UHY, Hp U{d, f}),

where R is the set of rules introduced by lines 1-8 in Figure 1 @together with
the rules inRp. The translatiofEQT introduces new atoms not appearingih(PP) U
Hb(Q): d, f, a® for eacha € Hby,(Q), anda® for eacha € Hb,(Q) U Hby, (Q).
Intuitively, the modules in the translation work as follows. (i) The modRileat-
urally captures a stable modéf € SM(P). (ii) The moduleHidden’(Q) includes
rules that provide a representation for the hidden pafp avaluated with respect to
the visible part ofM. This is achieved by taking the visible atoms frafib, (Q) =
Hb,(P) = I U O to be in the input oflidden®(Q) and leaving their occurrences
untouched in the rules. The hidden parts of rules are renamed systematically using
atoms fromHby, (Q)°. This is to capture the unique stable modélfor Q such that
N NHb,(Q) = M N Hb,(Q) expressed ifflb, (Q) U Hb,(Q)° rather tharb(Q).
Note that the existence and uniqueness of sNdls guaranteed by the EVA property.
(iii) The rules inLeast®(Q) catch the least modéJM((RQ)N). ThusLeast® (Q) gets
an interpretation fof) expressed ifb, (Q) U Hby, (Q)° as input. In the rules we re-
name systematically the positive occurrences of atonishis(Q) U Hby, (Q) in order
to capture the least model expressedMhu H¢, rather tharO U Hy,. (iv) The purpose
of UnStable(Q) is to disqualify N as a stable model @}, i.e., to show thafV \ I and
LM((RQ)N), respectively expressed @MU Hg, andO® U Hp,), differ. Atomd is used

to indicate that there is a difference betweén I andLM((RQ)N). Itis then insisted
by the last rule thatl is true in each stable model &nStable(Q). A more detailed
discussion on the ideas behind the translaB@)il’ can be found in [11].

Note that the rules in modul@fidden®(Q), Least®(Q), andUnStable(Q) are very
similar to rules in [11, Definitions 5.2-5.4]. The modifications are as follows. In the



Module : Hidden®(Q)

Input : TUO
Output : H°
Hidden : 0

1 : {A}} < Bg, By, ~Cy,~C, foreach{A} — B,~C € Rwith A, # 0
2 :a°—w<{By,UB, =Wg,~(ChUCy) =Wc}
foreacha — w < {B = Wp,~C =Wc} € Rwitha € H
Module : Least®(Q)
Input : TUOUH?®
Output : O*UH*®
Hidden : 0
3 :a® <« a,Bi B, By, ~C,,~Cf foreach{A} — B,~C € Randa € A,
4 : a®—a° BB, B, ~C,,~Cy foreach{A} — B,~C € Randa € Ay,
5:a*—w<{BiUBSUB} =Wg,~(C,y UCY) =Wc}
foreacha — w < {B=Wpg,~C =W¢c} € R
Module : UnStable(Q)
Input : OUO*UH®*UH"®
Output : 0
Hidden : {d, f}
6 : d+« a,~a® andd < a°*, ~a for eacha € O
7 : d+« a°,~a®andd < a®, ~a° foreacha € H
8 ! fe—n~f,~d

Fig. 1. Submodules for translatiddQT (P, Q) = PUHidden®(Q) U Least® (Q) L UnStable(Q)
for modulesP andQ = (R, I,0, H). We use shorthandd, = ANO, A, = ANI, A, =
A; U A, andA, = AN H, for any set of atomsl C Hb(Q). Eacha® anda® is a new atom not
appearing irHb(P) U Hb(Q), andA® = {a® | a € A} andA° = {a° | a € A} for any set of
atomsA. Also d and f are new atoms not appearingtith () U Hb(Q).

rules ofLeast®(Q) andUnStable(Q) atoms inI are not renamed, i.e., atomris used
instead ofa® for eacha € I; and inUnStable(Q) the difference rules are introduced
only for atoms inO U Hg. Furthermorecompute statemengse seen as a special case
of weight rules. Note that for modules with a completely specified inputi.andQ
with Hb;(P) = Hb;(Q) = 0, the translatiorEQT given here results in basically the
same set of rules as the one presented in [11]. An example of the BggIofollows.

Example 5.ConsidersmoDELS program module®s = ({p < p, ¢}, {q}, {p}, D) and
Py, = {p — ~p,q},{q}, {p}, 0). From a stable model of translati®QT (Ps,P,) =
P3 UHidden® (P4) ULeast® (P4) LU UnStable(IP4) we get a counter-example fBg =,
P4. Here,Hidden® (P4) has no rulesLeast®(Py) = ({p® < ~p,q},{p,q}, {p*},0),
UnStable(Py) = {({d « p,~p®. d « p®,~p. f «— ~f,~d}, {p,p*},0,{d, f}), and
itis easy to see that/ = {p°®, q,d} € SM(EQT(P3,P4)). Now,{¢} = MNHb(P3) €
SM(P3) and{q} = M N Hb(P,) & SM(P,) sinceLM((P,)'}) = {p}. [ ]



Given module® andQ, we say thal is compatiblewith Q, if Hb;(P) = Hb;(Q)
and Hb,(P) = Hb,(Q). Theorem 2 shows the correctness of the translation-based
method for verification of modular equivalence.

Theorem 2. Let P and Q be compatiblesMODELS program modules having enough
visible atoms. Thelt =,, Q iff SM(EQT(P, Q)) = SM(EQT(Q, P)) = 0.

The proof of Theorem 2 is similar to the correctness proof of the translBtGpHin [11,
Theorem 5.8], and it will be presented in detail in an extended version of this paper.

When verifying modular equivalence sfMoDELSprogram modules sharing a sub-
module, e.g., modules of the forrfts 1 C andQ U C, it is possible to streamline further
the translations involved in the verification task.

Theorem 3. Let P and Q be compatiblesSMODELS program modules with the EVA
property, andC an SMODELSprogram module such th& LI C andQ U C are defined.
ThenP U C =, QU Ciff SM(EQT(P,Q) UC) = SM(EQT(Q,P) U C) = (.

Notice that the context can be an arbitrargMODELS program module, i.e., it is not
necessary fo€ to have the EVA property, as long B3 C andQ LI C are defined. To
prove Theorem 3 notice that due to the structure of the translB@H(P, Q) L C is
defined whenevdP LI C is defined, and apply Theorems 1 and 2.

If a moduleQ is obtained from a modul through local modifications, it is likely
that their components are pairwise compatible, and there is a partitionifigaiod Q
such thatP = P, U --- U P, andQ = Qq U --- U Q,, whereP; is compatible with
Q; for all 7. Notice thatP; = Q; might even hold for a number afs. Also, several
possible compatible module structures can be obtainet fond Q, for example, by
regrouping or taking compositions of submodules. Verifyihg=,, Q; for everyi is
not of interest as such, sin€e #,,, Q; does not necessarily impB #,, Q. Of course,
if P, = Q; holds and their equivalence can be verified efficiently, then Corollary 1
implies thatP; andQ; are modularly equivalent in every possible context. However,
if this is not the case, it is still possible to organize the verificatiof® of,, Q as a
sequence ofi module-level tests as follows:

i—1 n i—1 n
(UQ)UP;U( U Pj)=n (UQ)UQ;uU( U Py (1)
J=1 J=itt Jj=1 j=i+1

wherel < i < n. The resulting chain of equivalences convéys=,, Q. In each test
(1) modules differ inP; and@Q; for which the other modules form a common context

ci=(0Q)u( P
j=1 Jj=i+1

Theorem 3 gives us the means to modularize the task of equivalence verification to-
gether with (1). We expect computational advantage from the strategy described above,
especially when the contekt; is clearly larger than the modul&s andQ;, and focus-
ing EQT solely toPP; andQ; reduces the length of programs involved in verification
steps. Note that if there aresubmodules, there aré possible different orders in which
to verify the chain of equivalences. It seems likely that the order has an effect on the
efficiency of the approach, e.qg., if the test for (1) fails for only one value of



4 Experiments

The translation functio®QT for verifying modular equivalence presented in Section
3 has been incorporated into a translator calledq (v. 1.18). The translation for
verifying modular equivalence is obtained using option fiag Furthermore, to make
the translator compatible with current solvers, an input generator can be augmented to
the translation using flag . Together with a tool calledPCAT (v. 1.6) used to compose
two modules together, the new versionL@EQ allows us to examine the feasibility of
verification of modular equivalence, compared to the approach where programs are seen
as integral entities. It is worth noticing that even thougteQ andLPCAT give us the
means to evaluate the modular approach to equivalence verification, current versions
of LPARSE and SMODELS are not yet fully compatible with our module architecture,
which brings us certain difficulties when simulating modular answer set programming.
For examples of use, we refer to theEQ homepage.

In our experiments we useMODELS (v. 2.32) for the computation of stable mod-
els with flag-nolookahead  (for our benchmarks this option gives the best running
times) for programs instantiated witlPARSE (v. 1.0.17). The total running time for
the equivalence verification in one direction is the time neededrizg to produce the
translationEQT plus the running time needed sy oDELSfor trying to computeone
stable model for the translation. However, the translation time is negligible. We con-
sidermodularly equivalensMODELS program modules. Therefore one always has to
count running times in both directions. Since the running timesnbdDELS depend
on the order of rules in programs and literals in rules, we shuffle them randomly. All
the tests reported were run under the Linux 2.6.8 operating system on a 1.7GHz AMD
Athlon XP 2000+ CPU with 1 GB of main memory. As regards timing, we report the
sum of user and system times as measurefsrbin/time command in UNIX.

First, we consider two modular encodings solving thgueens problem, i.e., how
to placen queens on am x n chess board so that they do not threaten each other.
The program&)? and Q% are composed of two modules each, i@}, = G U C?,
Q5 = G} U Cy. BasicallyG} generates a placement ofqueens row-by-row. The
generator modul&? has an empty input signature, and its output signature consists
of ground instances of the predicaiéX,Y) denoting the placement of a queen in
squargX,Y) .ModulesC} andC% are used to check that the placement induced by the
generator module is legal aritl} is an optimized version of} obtained by reducing
symmetric rules. The checking modules expect a placement of queens, expressed using
ground instances aj(X,Y) , as their input and have an empty output signature. We
compare the times needed to verify @& =,, C3, (b) C} 1 G =, C; UGZ, and
(c) @ =+ Q4. Notice that in (b) and (c) exactly the same equivalence is verified, the
difference being that in (c) the knowledge about modular structure is not taken into
account and the translation-based method is applied to complete programs. In (b) we
use the approach described in Theorem 3 Withas the common context fd@?} and
C%. In (a) we verify the equivalence @} andC% in every possible context. This is a
stronger result than what is obtained in the cases (b) and (c). By Corollary 1 it is clear
that (a) implies (b) and (c), but not vice versa.

4 Available athttp://www.tcs.hut.fi/Software/lpeq/



10000 le+08

1000 le+07

le+06
100

100000

Time (s)

10000

1000

Number of choice points

0.1 100 £

10 T I I I I I
4 5 6 7 8 9 10 11
Number of queens Number of queens

0.01

Fig. 2. The averages for running times (left) and numbers of choice points (right) for verifying
(@) CT =m C3, (b)CT UGE =m C3 UGE, and (c)QT =, Q3 in then-queens experiment.

We vary the number of queensfrom 4 to 11 and repeat the verification task 10
times for each number of queens generating each time new randomly shuffled versions
of the modules involved. The average running times and the average numbers of choice
points, i.e., the number of choices madedwobELS during the search, for each ap-
proach are presented in Figure 2. We see that taking into account the common context
improves the efficiency of the translation-based method, as regards both time and the
number of choice points. Checking modular equivalence without a specific context can
be time consuming if the number of possible inputs is high, as is the case with the
gueens encodings (there arésquares in the chess board and as a queen can either be
placed or not in each of them, there are possible inputs for module8} andC%).
However, it should be kept in mind that on€& =,, C has been verified, one knows
thatC} andC% are modularly equivalent in any possible context.

We use the problem of finding a Hamiltonian cycle for directed graphsvefitices
as our second benchmark problem. Again we consider modularly equivalent encod-
ings. The first encoding consists of three mod@és. HY U R™, and is similar to the
Hamiltonian cycle encoding used by Simons et al. [22]. We, however, consider directed
graphs instead of undirected ones. Mod@fgis used to generate all possible directed
graphs ofn vertices represented as a set of edges. Given a set of edgevdaices
as an input, modul®} selects the edges to be taken into a cycle by insisting that each
vertex is incident to exactly two edges in the cycle. Finally, given a cycle candidate
as an input, modul®™ checks that each vertex is reachable from the starting vertex
along the edges in the cycle. We also use an optimized variant of migul®odule
HY% takes into account that the input graph is directed and each vertex must then have
exactly one incoming and exactly one outgoing edge in the cycle. The second encoding
Gt LU HR" is based on the alternative encoding presented in [22]. In this encoding we
cannot separate the selection of the edges to be taken into the cycle and the checking
of reached vertices into two modules as their definitions are mutually dependent. Thus
moduleHR" solves the Hamiltonian cycle problem given a graph wértices as input.

In addition to the modul&7} generating all directed graphs, we consider also other
graph generator modules. Each mod@léfor i = 1,...,5 generates a family of di-
rected graphs with vertices with the following properties: all (directed) graphs-(1),
irreflexive graphsi(= 2), symmetric and irreflexive graphs£ 3), asymmetric graphs



1000 T T

le+07

NS
N
®X
\\\\

le+06

N
O
*X
(RN
-\
o
e
AN
N

100000

Time (s)

\\
N
XX
AN

10000

Number of choice points

1000

1 1 1 1 100 L L 1 L I I
6 7 8 9 10 3 4 5 6 7 8 9 10

Number of vertices Number of vertices

Fig. 3. The average running times (left) and the average numbers of choice points (right) for
verifying (d)Hf U(R"UGT) =m Hy U(R*UGT), (e) HT LR™) UGT =m (Hy UR™)UGT,
and (HT UR"™ UGT = Hy UR™ U GY in the Hamiltonian cycle experiment.

(i = 4), and graphs with Euclidean edge relation< 5). We vary the number of ver-
ticesn from 3 to 10 and repeat the verification task 10 times for each number of vertices
generating each time new randomly shuffled versions of the modules involved.

We start by comparing the times needed to verify

(d) Hf U (R” UGY) =, HE U (R* LUG?),
(e) (H? UR™) UG? =,, (Hf UR")UGY, and
() Hy UR" UG? =, H} UR" UGY.

In this experiment we want to study the impact of varying the size of the common con-
text on the time complexity of verifyingl? U R" U G} =, Hj UR"™ U GY. Thus the
equivalence verified in each item is the same and the difference is that the common con-
text is varied fromiR™ U G¥ in (d) to empty (module) in (f). The average running times
and the average numbers of choice points for the approaches are presented in Figure 3.
We see that the approach in (f) becomes infeasible for graphs with only six vertices (a
timeout of 6000 seconds was used). The difference in running times for equivalences in
(d) and (e) is smaller, but best results are achieved when the maximal common context
is used in (d). The average number of choices mads\NyDELS behave similarly to
the average running times. For comparison, the time needed to find all stable models for
HYUR™UGY is approximately 1.5 seconds fer= 4 and 2000 seconds far= 5. This
shows the effectiveness of the modular translation-based method as a naive approach of
cross-checking stable models [10] is likely to be infeasible even fer5, because the
number of stable models becomes very high.

Next we compare the times needed to verify

(9) equivalence in (d) an@Hy UR"™) UG} =, HR™ U G}, and
(h) (HY UR™) UG} =, HR™ UG?Y.

Notice that the equivalence verified in (g) is the same as verified in (h). The motivation
is to see whether it is more efficient to verify the equivalenc&lpfLl R” L G} and

HR"™ U G} directly or havingH3 LI R™ LI G} as an intermediate step. Furthermore,
we want to see the effect of hiding predicagached(X) in the encodings on the
efficiency. Recall that this increases the size of the translation. Thus, we verify the



10000

T 1000

T T
all avg —X— , P
ir avg — k-~ S ez
100 L sym-ir avg--o-- S yy 4
asym avg  —-+4-— g Y,

eucl avg  ———-- 7

h)+hi‘dden avg‘+
g)+hidden avg -—%--
1000 h) avg --o--
)

g) avg —t+-—

(
(i
£
(

100

10

Time (s)
Time (s)

I
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Number of vertices Number of vertices

Fig. 4. The average running times for verifying (g) equivalence in (d) pli$ LI R") Ll G} =m
HR"UGT, and (h)(HF UR™)UGT =m HR™UGT with predicateeached(X) hidden/visible
(left); and the average running times for verifyifigs LI R™) UG} =, HR" U G; for different
graph familiesG{, ¢ = 1,...,5 (right).

equivalences (g) and (h) also with predicatached(X) hidden and compare the
time needed when predicateached(X) is visible.

The average running times for this experiment are presented in Figure 4 (left). Hid-
ing predicatereached(X) in approach (g) increases the average running time by
approximately one third. The effect of hiding is more significant in approach (h) in
which the average running time is doubled when predicsdehed(X) is hidden. In
practice it seems to be a good idea to hide as few predicates as necessary. The differ-
ence in the average numbers of choice points is marginal. The average running times
of approach (g) are less than those of approach (h) regardless the visibility of predicate
reached(X) , and thus it seems to be a good idea to do the optimization step first.

Finally, we want to see how the choice of the graph family, i.e., the choice of the
graph generator modute? fori = 1,2, ..., 5 affects the time needed to verify

(Hf UR™) UG} =, HR™ UG

AsGY generates all directed graphs, verifying the equivalence#ot actually verifies
HY UR™ =,, HR"™ and modular equivalence for the other generator modules follows
from Corollary 1. The motivation, however, is to see whether it is faster to verify a
weaker result, i.e., to verify the equivalence for certain subclasses of directed graphs.
The average running times for this experiment are presented in Figure 4 (right).
Using symmetric and irreflexive graphs as context turned out to be especially time con-
suming. We used a timeout of 6000 seconds in this experiment and were not able to
verify the equivalence for the values= 9 andn = 10 with this limit. For the sake of
clarity, we also drop the average time for= 8 (4048 seconds) from Figure 4 (right).
The average numbers of choice points behave similarly to the average running times.
The somewhat surprising implication of this experiment is that restricting the number of
possible inputs by applying a graph generator having less stable modelSthdmes
not necessarily make the equivalence verification task more efficient as opposed to our
n-queens experiment. The reason for this might be that it can be more difficult to find
stable models for a more specific generator module.



5 Conclusions

In this paper, we continue our work with modular program development within answer
set programming [21, 12, 19]. In particular, we are interested in the problem of verify-
ing themodular equivalencef sSMODELSprogram modules. We show how an existing
translation-based approach to verifying visible equivalence [11] can be adjusted to the
task of verifying modular equivalence. The current translaii@yil' (P, Q) and its im-
plementation.PEQ cover the types of rules supported by #i@ODELS search engine
which provide the basic knowledge representation primitives. We also show that in a
case where modules in question share a submodulePe=gP’ LI C andQ = Q' U C,

the method can be further streamlined and it is not necessary to translate the common
contextC. If the contextC is large, then the size of the translation involved in the
equivalence verification task is potentially reduced notably.

We evaluate experimentally the efficiency of the translation-based method in the
verification of modular equivalence. The results indicate that it depends on the specific
problem domain and encodings used whether checking modular equivalence without a
specific context is more time consuming than with a context module. However, if two
modules share a submodule, taking the shared context into account has the potential
of speeding up the translation-based method significantly. Furthermore, in practice it
seems to be a good idea to hide as few atoms as necessary when using the translation-
based method. Based on the experimental evaluation, modularization of the verification
of modular equivalence seems to be a good idea in many cases, especially if the common
context shared by the modules is large and the number of submodules stays reasonable.

Even though.PEQ andLPCAT give us the means to evaluate the modular approach
to equivalence verification, current ASP solvers do not directly utilize the module ar-
chitecture described in this paper. This is an issue to taken into account in the design of
future solvers. Another direction for our research is to extend the translation-based ver-
ification method for disjunctive programs [20] to the case of modular equivalence [12].

References

1. C. Baral, J. Dzifcak, and H. Takahashi. Macros, Macro Calls and Use of Ensembles in
Modular Answer Set Programming. Rroc. of the 22nd International Conference on Logic
Programming(ICLP 2006, volume 4079 oLNCS pages 376—390. Springer, 2006.

2. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programmidgurnal of Logic
Programming 19/20:443-502, 1994.

3. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalo)CM Transactions on Database
Systems22(3):364—-418, 1997.

4. T. Eiter, G. Gottlob, and H. Veith. Modular logic programming and generalized quantifiers.
In Proc. of the 4th International Conference on Logic Programming and Nonmonotonic Rea-
soning volume 1265 of NCS pages 290-309. Springer, 1997.

5. W. Faber, G. Greco, and N. Leone. Magic sets and their application to data integration.
In Proc. of the 10th International Conference on Database Thealume 3363 oLNCS
pages 306—-320, Edinburgh, UK, January 2005. Springer.

6. H. Gaifman and E.Y. Shapiro. Fully abstract compositional semantics for logic programs. In
Proc. of the 16th Annual ACM Symposium on Principles of Programming Languaagss
134-142, Austin, Texas, USA, January 1989. ACM Press.



7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programmingtda. of
the 5th International Conference on Logic Programmipgges 1070-1080. MIT Press,
1988.

. G. lanni, G. lelpa, A. Pietramala, M.C. Santoro, and F. Calimeri. Enhancing answer set

programming with templates. ItOth International Workshop on Non-Monotonic Reasoning
(NMR 2004), Whistler, Canada, June 6-8, 2004, Proceedipages 233-239, 2004.

. T. Janhunen. Some (in)translatability results for normal logic programs and propositional

theories.Journal of Applied Non-Classical Logic$6(1-2):35—-86, 2006.

T. Janhunen and E. Oikarinen. Testing the equivalence of logic programs under stable model
semantics. IrProc. of the 8th European Conference on Logics in Atrtificial Intelligence
volume 2424 oL.NAI, pages 493-504, Cosenza, Italy, September 2002. Springer.

T. Janhunen and E. Oikarinen. Automated verification of weak equivalence witlsir e

ELS system.Theory and Practice of Logic Programmintp appear.

T. Janhunen, E. Oikarinen, H. Tompits, and S. Woltran. Modularity aspects of disjunctive
stable models. IfProc. 9th International Conference on Logic Programming and Nonmono-
tonic Reasoning LPNMR 200¥olume 4483 ofLNAI, pages 175-187, Tempe, Arizona,
USA, May 2007. Springer.

V. Lifschitz. Computing Circumscription. IRroc. of the 9th International Joint Conference

on Artificial Intelligence(lIJCAI'85), pages 121-127, Los Angeles, California, USA, August
1985. Morgan Kaufmann.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic prograk@V Trans-
actions on Computational Logi2(4):526-541, 2001.

V. Lifschitz and H. Turner. Splitting a logic program. Broc. of the 11th International
Conference on Logic Programmingages 23—-37, Santa Margherita Ligure, Italy, June 1994.
MIT Press.

V.W. Marek and M. Truszchski. Stable models and an alternative logic programming
paradigm. InThe Logic Programming Paradigm: a 25-Year Perspectppages 375-398.
Springer, 1999.

D. Miller. A theory of modules for logic programming. Rroc. of 1986 Symposium on
Logic Programmingpages 106—114, Salt Lake City, USA, September 1986. IEEE Computer
Society Press.

I. Niemela. Logic programming with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligencb(3-4):241-273, 1999.

E. Oikarinen. Modularity in smodels programs. Rroc. 9th International Conference on
Logic Programming and Nonmonotonic Reasoning LPNMR 206lume 4483 ofLNAI,
pages 321-326, Tempe, Arizona, USA, May 2007. Springer-Verlag.

E. Oikarinen and T. Janhunen. Verifying the equivalence of logic programs in the disjunctive
case. IrProc. of the 7th International Conference on Logic Programming and Nonmonotonic
Reasoningvolume 2923 ofLNAI, pages 180-193, Fort Lauderdale, USA, January 2004.
Springer.

E. Oikarinen and T. Janhunen. Modular equivalence for normal logic prograrRsodnof

the 17th European Conference on Artificial Intelligenpages 412-416, Riva del Garda,
Italy, August 2006. IOS Press.

P. Simons, I. Niemel&, and T. Soininen. Extending and implementing the stable model se-
mantics.Artificial Intelligence 138(1-2):181-234, 2002.

L. Tari, C. Baral, and S. Anwar. A language for modular answer set programming: Applica-
tion to ACC tournament scheduling. Rroc. of the 3rd International Workshop on Answer
Set Programmingvolume 142 offEUR Workshop Proceedind3ath, UK, September 2005.



