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Abstract. In this paper, a method for verifying the equivalence of logic program
modules under a Gaifman-Shapiro-style module architecture is proposed. The
idea is to adapt a translation-based verification technique, which was originally
devised for complete programs only, for program modules. In addition, optimiza-
tion strategies are addressed in order to exploit the modular structure of programs
in verification tasks. A number of experiments on verification strategies are also
conducted usingLPEQ which implements the verification method for theSMOD-
ELS system. Preliminary results indicate that at least in certain cases the overall
time spent on verification tasks can be reduced through modularization.

1 Introduction

Answer set programming (ASP) [16, 18] provides the rule-based syntax of logic pro-
grams with a fully declarative nonmonotonic semantics based on stable models [7].
Stable models have a global nature in the sense that they are defined for entire logic pro-
grams rather than individual rules. For this reason, logic programs are typically treated
as integral entities in ASP and relatively little attention has been paid to modular pro-
gram development so far. Our motivation is to bring good software engineering practise
to the realm of ASP and, in particular, to exploit modules and module architectures in
order to ease the development of logic programs. The expected benefits from modular
program development are manifold. First, it is conceptually much easier to develop a
large logic program in smaller units using modules with a well-defined input/output
interface. Thus a module system provides a way to govern complexity as the sizes of
program instances grow—a clear trend in the applications of ASP. Second, a fully in-
tegrated module system enforces a good programming style for programmers, helps
to delegate programming tasks among them, and enables the re-use of code, e.g., orga-
nized as libraries. Third, modularity plays also a role in the implementation of inference
engines for ASP and exploiting modules in the search for answer sets is also becoming
increasingly important as the demands of applications appear to be interminable.
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Modularity has been studied quite extensively in the area ofconventionallogic pro-
gramming (see [2] for a study) before ASP really emerged. Two mainstream disciplines,
viz. programming-in-the-largewhere programs are composed with algebraic operators
[6] andprogramming-in-the-smallwith abstraction mechanisms [17], are identified. In
ASP, however, only few approaches describe a real module system with a clearly de-
fined interface for module interaction. The approaches based ongeneralized quantifiers
[4], templates[8], import rules[23], andmacros[1] fall all in the programming-in-the-
small category. On the other hand, those in the programming-in-the-large discipline are
mostly based on Lifschitz and Turner’s splitting set theorem [15] and its variants [3, 5].

Our interest in the modularity aspects of ASP emerged from the expressiveness
analysis of normal logic programs and propositional theories [9] where the existence of
modularandfaithful translations is used as a criterion for comparisons. Further inter-
est sparked from our previous research on verifying the equivalence of logic programs
[10, 20, 11] and, in particular, from the study of equivalence relations better amenable
to modularization. To this end, we have based our approach on Gaifman and Shapiro’s
module architecture [6] in which logic program modules interact through a well-defined
input/output interface. In [21, 12, 19], we put forward analogous architectures in the
context of ASP. The key observation is that the stable model semantics [7] becomes
fully compatible with the module system if positively interdependent rules are enforced
inside modules. The main result is amodule theoremwhich interconnects module-level
stability with program-level stability. This indicates that the global nature of stable mod-
els as discussed above is much illusory. Moreover, module-level equivalence gives rise
to the notion ofmodular equivalencewhich is a propercongruence relationfor program
composition, i.e., it is preserved under substitutions of equivalent modules.

In the current paper, we are interested in the problem of verifying whether logic
program modules are equivalent or not. In view of methods for solving this problem, the
idea is to adopt our translation-based verification technique [11]. In this approach, the
idea is to translate programsP andQ under consideration into another logic program
EQT(P, Q) which has no stable models if every stable model ofP is also a stable model
of Q. Our main objective is to generalize this method for the verification of modular
equivalence. Moreover, we aim at exploiting program modules in the presentation of the
method itself. In analogy to [11], the syntax of programs is that ofSMODELSprograms.

We proceed according to the following plan for the rest of this paper. In Section 2,
we give a more technical account of logic program modules in the context of theSMOD-
ELS system. In addition to the Gaifman-Shapiro-style module architecture, the stable
model semantics of program modules is defined and shown to be compatible with the
architecture. As the final outcome, the notion of modular equivalence is formalized
and the computational complexity of the respective verification problem is briefly ad-
dressed. Next, we concentrate on the translation-based verification technique proposed
for SMODELSprograms [11] in Section 3. The method is revised to to the case of modu-
lar equivalence and represented in a modular fashion using program modules as natural
building blocks. In addition, we address optimization strategies which try to exploit pro-
gram modules in the verification task. Then, the integration of program modules in our
verification tool, namelyLPEQ, is described in Section 4. A number of experiments on
verification strategies are also conducted and reported. Section 5 concludes the paper.



2 SMODELSProgram Modules

In what follows, we provide a brief introduction to a Gaifman-Shapiro-style module ar-
chitecture [6] that is presented forSMODELSprograms in [19]. Analogous module sys-
tems have already been utilized within ASP, e.g., in the contexts ofnormalanddisjunc-
tive logic programs[21, 12]. In the rest of section, we address four aspects ofSMODELS

program modules, viz. their syntax, composition, semantics, and equivalence.
To keep the presentation of the module architecture compatible with an actual im-

plementation, we cover the input language of theSMODELS system—excludingop-
timization statements. Basic constraint rules[22] are eitherbasic rulesof the form
a ← B,∼C, weight rulesof the forma ← w ≤ {B = WB ,∼C = WC}, or choice
rulesof the form{A} ← B,∼C wherea is an atom andA 6= ∅, B, andC are sets of
atoms, and∼ denotesnegation as failure. In addition, a weight rule involves a weight
limit w ∈ N and the sets of weightsWB ,WC ⊆ N which associate the respective
weightswb ∈ WB andwc ∈ WC with each atomb ∈ B andc ∈ C. We may dis-
tinguish two parts for each basic constraint rule:a or A is theheadof the rule and the
rest is called thebodywhich gives the conditions on which the head is activated. E.g., in
case of a choice rule{A} ← B,∼C, this means that any atom fromA can be inferred if
all atoms inB and none of the atoms inC can be inferred. In the sequel, we view a basic
rulea← B,∼C as a shorthand for a weight rulea← |B|+ |C| ≤ {B = 1,∼C = 1}1

and omit similar definitions ofconstraint rulesand compute statementsthat can be
found in [11]. The exact model-theoretic semantics is deferred until Section 2.2.

Given a setR of basic constraint rules, we writeHb(R) for its signature, i.e., the set
of atoms occurring inR, andHead(R) for the respective subset ofHb(R) havinghead
occurrencesin R. An individual SMODELSprogram module is structured as follows.

Definition 1. An SMODELSprogram moduleP is a quadruple〈R, I, O,H〉 where

1. R is a finite set of basic constraint rules;
2. I, O, andH are pairwise disjoint sets of input, output, and hidden atoms;
3. Hb(R) ⊆ Hb(P) which is defined byHb(P) = I ∪O ∪H; and
4. Head(R) ∩ I = ∅.

The atoms inHbv(P) = I ∪O are considered to bevisibleand hence accessible to
other modules conjoined withP; either to produce input forP or to utilize the output
of P. We use notationsHbi(P) andHbo(P) for referring toI andO, respectively. The
hiddenatoms inHbh(P) = H = Hb(P)\Hbv(P) are used to formalize some auxiliary
concepts ofP which may not be sensible for other modules but may save space sub-
stantially, cf. [11, Example 4.5]. The conditionHead(R)∩ I = ∅ ensures that a module
may not interfere with its own input by defining input atoms ofI in terms of its rules.
Thus the rules ofPmay be conditioned by input atoms appearing in rule bodies only.

Example 1.Consider the classical pigeon hole principle in the case ofn holes and
n + 1 pigeons. This can be formalized using twoSMODELS program modulesPn =
〈RP , ∅, OP , ∅〉 andHn = 〈RH , OP , ∅, {e, f}〉 as follows. Letp(i, j) be an atom de-
noting that theith pigeon is in thejth hole where0 < i ≤ n + 1 and0 < j ≤ n. The

1 Here the set of weights1 associates the weight1 with every atom in the set in question.



signatureHbo(Pn) = OP = Hbi(Hn) = {p(i, j) | 0 < i ≤ n + 1, 0 < j ≤ n}. The
set of rulesRP contains a choice rule{p(i, 1), . . . ,p(i, n)} for each0 < i ≤ n + 1.
Thus, roughly speaking, the purpose ofPn is to choose holes forn + 1 pigeons. The
role of Hn is to check that every pigeon is placed in at least one hole and no two
pigeons share a hole. The first condition is captured with a weight rulee ← n ≤
{∼p(i, 1) = 1, . . . ,∼p(i, n) = 1} for each0 < i ≤ n+1. For the second, we introduce
e ← 2 ≤ {p(i, k) = 1, p(j, k) = 1} for each0 < i < j ≤ n + 1 and0 < k ≤ n.
Finally, we express the need ofdiscardingany assignment of pigeons that does not sat-
isfy the two conditions above using a basic rulef ← e,∼f . In particular, we note that
e andf are auxiliary atoms that are hidden from other modules conjoined withHn. ¥

2.1 Syntactic Conditions for Combining Modules

The stable model semantics of normal logic programs [7] does not lend itself directly
for program composition. The problem is that in general, stable models associated with
modules do not determine stable models assigned to theircomposition. As demon-
strated in [21], the stable models assigned toP1 = 〈{a← b}, {b}, {a}, ∅〉 andP2 =
〈{b← a}, {a}, {b}, ∅〉 are∅ and{a, b} by symmetry, but{a, b} is not a stable model of
P = 〈{a← b, b← a}, ∅, {a, b}, ∅〉 that represents the composition ofP1 andP2 (see
below). Gaifman and Shapiro [6] address positive normal programs under logical conse-
quence. For their purposes, it is sufficient to assume that whenever two modulesP1 and
P2 are put together, their output signatures have to be disjoint and they have torespect
each other’s hidden atoms, i.e.,Hbh(P1) ∩Hb(P2) = ∅ andHbh(P2) ∩Hb(P1) = ∅.
Definition 2. ThecompositionofP1 = 〈R1, I1, O1, H1〉 andP2 = 〈R2, I2, O2,H2〉 is

P1 ⊕ P2 = 〈R1 ∪R2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2,H1 ∪H2〉
if Hbo(P1) ∩Hbo(P2) = ∅ andP1 andP2 respect each other’s hidden atoms.

Recalling the example above, the conditions given for⊕ are not enough to guar-
antee compositionality in the case of stable models and further restrictions for pro-
gram composition become necessary. GivenP = 〈R, I, O, H〉 anda, b ∈ Hb(P), we
say thata depends directlyon b, denoted byb ≤1 a, iff R contains a weight rule
a ← w ≤ {B = WB ,∼C = WC} with b ∈ B, or a choice rule{A} ← B,∼C with
a ∈ A andb ∈ B. Thepositive dependency graphof P, denoted byDep+(P), is the
graph〈Hb(P),≤1〉. The reflexive and transitive closure of≤1 gives rise to the depen-
dency relation≤ overHb(P). A strongly connected component(SCC)S of Dep+(P) is
a maximal setS ⊆ Hb(P) such thatb ≤ a holds for everya, b ∈ S. Given thatP1⊕P2

is defined, we say thatP1 andP2 aremutually dependentiff Dep+(P1⊕P2) has a SCC
S shared byP1 andP2 such thatS ∩Hbo(P1) 6= ∅ andS ∩Hbo(P2) 6= ∅ [21, 19].

Definition 3. Thejoin, P1 t P2, of twoSMODELSprogram modulesP1 andP2 is P1 ⊕
P2, providingP1 ⊕ P2 is defined andP1 andP2 are mutually independent.

Example 2.Recall modulesPn andHn from Example 1. The compositionPn ⊕Hn =
〈RP ∪RH , ∅, OP , {e, f}〉 is clearly defined becauseHbo(Pn)∩Hbo(Hn) = ∅ andPn

does not use the hidden atoms ofHn. Moreover, we note that modulesPn andHn are
mutually independent since the strongly connected components inDep+(Pn ⊕Hn) are
all singletons. Hence the joinPn tHn is also defined. ¥



2.2 Stable Model Semantics forSMODELS Program Modules

The stable model semantics of normal logic programs [7] can be generalized forSMOD-
ELS programs in an analogous way using the notions of areductand theleast model
of a negation-free program. In order to cover modules as well, we must explicate the
semantical role of input atoms. To this end, we will follow an approach2 from [12] and
take input atoms into account in the definition of the reduct adopted from [11]. It should
be stressed that all negative literals and literals involving input atoms get evaluated in
the reduction. Moreover, our definitions become equivalent with those proposed for
normal programs [7] andSMODELS programs [11] if an empty input signatureI = ∅
is additionally assumed. Using the same idea, a conventionalSMODELSprogram, i.e., a
set ofSMODELSrulesR, can be viewed as a module〈R, ∅, Hb(R), ∅〉.

An interpretationM is a subset ofHb(P) defining which atomsa ∈ Hb(P) are
true (a ∈ M ) andfalse(a 6∈ M ). A weight rulea ← w ≤ {B = WB ,∼C = WC} is
satisfied inM iff a ∈M whenever the sum of weights

∑
b∈B∩M wb +

∑
c∈C\M wc is

at leastw. A choice rule{A} ← B,∼C is always satisfied inM .

Definition 4. Given a moduleP = 〈R, I, O, H〉, the reductof R with respect to an
interpretationM ⊆ Hb(P), denoted byRM , contains

1. the basic rulea← (B \ I) iff there is a choice rule{A} ← B,∼C in R such that
a ∈ A ∩M , B ∩ I ⊆M , andM ∩ C = ∅; and

2. the reduced weight rulea← w′ ≤ {B′ = WB′} iff there is a weight rulea← w ≤
{B = WB ,∼C = WC} in R, WB′ is the restriction ofWB on B′ = B \ I, and
the limitw′ = max(0,

∑
b∈B∩I∩M wb +

∑
c∈C\M wc).

An interpretationM ⊆ Hb(P) is a stable model of anSMODELS program module
P = 〈R, I, O, H〉, denoted byM ∈ SM(P), iff M \ I = LM(RM ).

The generalized reductRM is a positive program in the sense of [11] and thus it has
a unique least modelLM(RM ). Having the semantics ofSMODELS program modules
defined, we may characterize its properties under program composition using the notion
of compatibility. Given modulesP1 andP2, we say that interpretationsM1 ⊆ Hb(P1)
andM2 ⊆ Hb(P2) arecompatibleiff M1 ∩ Hbv(P2) = M2 ∩ Hbv(P1). For sets of
interpretationsA1 ⊆ 2Hb(P1) andA2 ⊆ 2Hb(P2), thenatural joinof A1 andA2, denoted
by A1 on A2, is {M1 ∪M2 |M1 ∈ A1,M2 ∈ A2, andM1 andM2 are compatible}.
Theorem 1 (Module theorem [19]).If P1 and P2 are SMODELS program modules
such thatP1 t P2 is defined, thenSM(P1 t P2) = SM(P1) on SM(P2).

It is worth noting that classical propositional theories have an analogous property
obtained by substituting∪ for t and replacing stable models by classical models. More-
over, Theorem 1 is not applicable to modulesP1 andP2 addressed in the beginning of
Section 2.1 asP1 t P2 is not defined. However, considerQ = 〈{a← ∼b}, {b}, {a}, ∅〉
in the context ofP2 = 〈{b← a}, {a}, {b}, ∅〉. SinceQ t P2 is defined,SM(Q) =
{{a}, {b}}, andSM(P2) = {∅, {a, b}}, we haveSM(Q t P2) = ∅ by Theorem 1.

2 There are also alternative ways to handle input atoms: One possibility is to combine a module
with a set of facts (or a database) over its input signature [21, 19]. Yet another approach is to
interpret input atoms asfixed atomsin the sense of parallel circumscription [13].



Example 3.In view of our pigeon hole example, the modulePn has plenty of stable
models. In fact, any subsetM of OP is stable forPn. On the hand, the moduleHn

has no stable models which implies by Theorem 1 that the joinPn t Hn has no stable
models. This is in accordance with the pigeon hole principle captured byPn tHn. ¥

2.3 Visible and Modular Equivalence

The notion ofvisible equivalence[9] was introduced in order to neglect hidden atoms
when logic programs, or other theories of interest, are compared on the basis of their
models. The compositionality property from Theorem 1 enables us to bring the same
idea to the level of program modules—giving rise tomodular equivalenceof logic pro-
grams [21].3 Visible and modular equivalence, denoted by the respective infix relation
symbols≡v and≡m, are formulated forSMODELSprogram modules as follows.

Definition 5. For two SMODELSprogram modulesP andQ,

– P ≡v Q iff Hbv(P) = Hbv(Q) and there is a bijectionf : SM(P)→ SM(Q) such
that for all M ∈ SM(P), M ∩Hbv(P) = f(M) ∩Hbv(Q); and

– P ≡m Q iff Hbi(P) = Hbi(Q) andP ≡v Q.

It is worth noting that the conditionHbv(P) = Hbv(Q), as insisted by≡v, implies
Hbo(P) = Hbo(Q) in the presence ofHbi(P) = Hbi(Q), as required by≡m. More-
over, the two relations coincide forcompletely specifiedSMODELS programsP which
satisfy Hbi(P) = ∅ and hence require the presence of no further modules defining
atoms. Modular equivalence lends itself for program substitutions in analogy tostrong
equivalence[14], i.e., the relation≡m is a propercongruencefor t.

Corollary 1 (Congruence).LetP,Q andR be SMODELSprogram modules such that
P t R andQ t R are defined. IfP ≡m Q, thenP t R ≡m Q t R.

Example 4.The choice regarding the placement of pigeons in holes can be reformu-
lated as an alternative moduleQn = 〈RQ, ∅, OP , HQ〉 whereRQ contains two basic
rulesp(i, k)← ∼q(i, k) andq(i, k)← ∼p(i, k) for each0 < i ≤ n+1 and0 < k ≤ n.
The idea is to hideHQ = {q(i, k) | 0 < i ≤ n + 1, 0 < k ≤ n}. Now Pn ≡m Qn

which impliesPntHn ≡m QntHn by Corollary 1 asQntHn is defined by the same
arguments as forPn tHn. ThusSM(Qn tHn) = ∅ on the basis of Example 3. ¥

Due to the close relationship of≡v and≡m, the respective verification problems
have the same computational complexity. As analyzed in [11], the verification ofP ≡v

Q involves a counting problem in general but a reduction of computational time com-
plexity can be achieved for modules that haveenough visible atoms, i.e., the EVA
property. In order to formalize this property, we define thehidden partof a module
P = 〈R, I,O, H〉 asPh = 〈Rh, I ∪O, H, ∅〉 whereRh contains all rules ofR in-
volving atoms ofH in their heads. For such a choice rule{A} ← B,∼C, we take
{A ∩ H} ← B,∼C in Rh. Now P has the EVA property if and only ifSM(Ph) con-
tains a unique stable modelM for each interpretationN ⊆ Hbv(P) = I ∪ O such
thatM ∩ (I ∪O) = N . As established in [19], the verification of≡m forms acoNP-
complete decision problem forSMODELS program modules with the EVA property.
Such a level of computational complexity enables the use ofSMODELS for verification.

3 The reader is referred to [21, 12, 19] for other notions of equivalence as well as comparisons.



3 Verification of Modular Equivalence

Since modular equivalence can be reduced to visible equivalence [21], the translation-
based technique from [11, Corollary 5.9] can be used to verifyP ≡m Q given that
SMODELS program modulesP andQ have enough visible atoms. More specifically,
using thetranslation functionEQT in [11], the task is to show thatSMODELSprograms
EQT(PtGI ,QtGI) andEQT(QtGI ,PtGI) have no stable models, whereGI =
〈{{I} ←}, ∅, I, ∅〉 is a module generating all possible inputs for an input signatureI.

However, there is still room for improvement since the common contextGI is han-
dled separately for the modules involved. To adjust the translation-based method for the
verification of modular equivalence we define a modified, modular version ofEQT.

Definition 6. Let P = 〈RP , I, O, HP 〉 andQ = 〈RQ, I, O, HQ〉 be SMODELS pro-
gram modules having enough visible atoms. The translation

EQT(P,Q) = P tHidden◦(Q) t Least•(Q) tUnStable(Q)

combinesP with modulesHidden◦(Q), Least•(Q), and UnStable(Q) presented in
detail in Figure 1.

Now, the translation ofSMODELSprogram modulesP andQ is the module

EQT(P,Q) = 〈R, I, O ∪O• ∪H•
Q ∪H◦

Q, HP ∪ {d, f}〉,

whereR is the set of rules introduced by lines 1–8 in Figure 1 forQ together with
the rules inRP . The translationEQT introduces new atoms not appearing inHb(P) ∪
Hb(Q): d, f , a◦ for eacha ∈ Hbh(Q), anda• for eacha ∈ Hbo(Q) ∪ Hbh(Q).

Intuitively, the modules in the translation work as follows. (i) The moduleP nat-
urally captures a stable modelM ∈ SM(P). (ii) The moduleHidden◦(Q) includes
rules that provide a representation for the hidden part ofQ evaluated with respect to
the visible part ofM . This is achieved by taking the visible atoms fromHbv(Q) =
Hbv(P) = I ∪ O to be in the input ofHidden◦(Q) and leaving their occurrences
untouched in the rules. The hidden parts of rules are renamed systematically using
atoms fromHbh(Q)◦. This is to capture the unique stable modelN for Q such that
N ∩ Hbv(Q) = M ∩ Hbv(Q) expressed inHbv(Q) ∪ Hbh(Q)◦ rather thanHb(Q).
Note that the existence and uniqueness of suchN is guaranteed by the EVA property.
(iii) The rules inLeast•(Q) catch the least modelLM((RQ)N ). ThusLeast•(Q) gets
an interpretation forQ expressed inHbv(Q) ∪ Hbh(Q)◦ as input. In the rules we re-
name systematically the positive occurrences of atoms inHbo(Q) ∪ Hbh(Q) in order
to capture the least model expressed inO• ∪H•

Q rather thanO ∪HQ. (iv) The purpose
of UnStable(Q) is to disqualifyN as a stable model ofQ, i.e., to show thatN \ I and
LM((RQ)N ), respectively expressed inO ∪H◦

Q andO• ∪H•
Q, differ. Atom d is used

to indicate that there is a difference betweenN \ I andLM((RQ)N ). It is then insisted
by the last rule thatd is true in each stable model ofUnStable(Q). A more detailed
discussion on the ideas behind the translationEQT can be found in [11].

Note that the rules in modulesHidden◦(Q), Least•(Q), andUnStable(Q) are very
similar to rules in [11, Definitions 5.2–5.4]. The modifications are as follows. In the



Module : Hidden◦(Q)

Input : I ∪O

Output : H◦

Hidden : ∅
1 : {A◦h} ← B◦

h, Bv,∼C◦h ,∼Cv for each{A} ← B,∼C ∈ R with Ah 6= ∅
2 : a◦ ← w ≤ {B◦

h ∪Bv = WB ,∼(C◦h ∪ Cv) = WC}
for eacha← w ≤ {B = WB ,∼C = WC} ∈ R with a ∈ H

Module : Least•(Q)

Input : I ∪O ∪H◦

Output : O• ∪H•

Hidden : ∅
3 : a• ← a, Bi, B

•
o , B•

h,∼Cv,∼C◦h for each{A} ← B,∼C ∈ R anda ∈ Av

4 : a• ← a◦, Bi, B
•
o , B•

h,∼Cv,∼C◦h for each{A} ← B,∼C ∈ R anda ∈ Ah

5 : a• ← w ≤ {Bi ∪B•
o ∪B•

h = WB ,∼(Cv ∪ C◦h) = WC}
for eacha← w ≤ {B = WB ,∼C = WC} ∈ R

Module : UnStable(Q)

Input : O ∪O• ∪H• ∪H◦

Output : ∅
Hidden : {d, f}

6 : d← a,∼a• andd← a•,∼a for eacha ∈ O

7 : d← a◦,∼a• andd← a•,∼a◦ for eacha ∈ H

8 : f ← ∼f,∼d

Fig. 1.Submodules for translationEQT(P,Q) = PtHidden◦(Q)tLeast•(Q)tUnStable(Q)
for modulesP andQ = 〈R, I, O, H〉. We use shorthandsAo = A ∩ O, Ai = A ∩ I, Av =
Ai ∪Ao, andAh = A∩H, for any set of atomsA ⊆ Hb(Q). Eacha• anda◦ is a new atom not
appearing inHb(P) ∪ Hb(Q), andA• = {a• | a ∈ A} andA◦ = {a◦ | a ∈ A} for any set of
atomsA. Also d andf are new atoms not appearing inHb(P) ∪Hb(Q).

rules ofLeast•(Q) andUnStable(Q) atoms inI are not renamed, i.e., atoma is used
instead ofa• for eacha ∈ I; and inUnStable(Q) the difference rules are introduced
only for atoms inO ∪HQ. Furthermore,compute statementsare seen as a special case
of weight rules. Note that for modules with a completely specified input, i.e.,P andQ
with Hbi(P) = Hbi(Q) = ∅, the translationEQT given here results in basically the
same set of rules as the one presented in [11]. An example of the use ofEQT follows.

Example 5.ConsiderSMODELSprogram modulesP3 = 〈{p← p, q}, {q}, {p}, ∅〉 and
P4 = 〈{p← ∼p, q}, {q}, {p}, ∅〉. From a stable model of translationEQT(P3,P4) =
P3tHidden◦(P4)tLeast•(P4)tUnStable(P4) we get a counter-example forP3 ≡m

P4. Here,Hidden◦(P4) has no rules,Least•(P4) = 〈{p• ← ∼p, q}, {p, q}, {p•}, ∅〉,
UnStable(P4) = 〈{d← p,∼p•. d← p•,∼p. f ← ∼f,∼d}, {p, p•}, ∅, {d, f}〉, and
it is easy to see thatM = {p•, q, d} ∈ SM(EQT(P3,P4)). Now,{q} = M∩Hb(P3) ∈
SM(P3) and{q} = M ∩Hb(P4) 6∈ SM(P4) sinceLM((P4)

{q}) = {p}. ¥



Given modulesP andQ, we say thatP is compatiblewith Q, if Hbi(P) = Hbi(Q)
and Hbo(P) = Hbo(Q). Theorem 2 shows the correctness of the translation-based
method for verification of modular equivalence.

Theorem 2. Let P andQ be compatibleSMODELS program modules having enough
visible atoms. ThenP ≡m Q iff SM(EQT(P,Q)) = SM(EQT(Q,P)) = ∅.
The proof of Theorem 2 is similar to the correctness proof of the translationEQT in [11,
Theorem 5.8], and it will be presented in detail in an extended version of this paper.

When verifying modular equivalence ofSMODELSprogram modules sharing a sub-
module, e.g., modules of the formsPtC andQtC, it is possible to streamline further
the translations involved in the verification task.

Theorem 3. Let P andQ be compatibleSMODELS program modules with the EVA
property, andC an SMODELSprogram module such thatP tC andQ tC are defined.
ThenP t C ≡m Q t C iff SM(EQT(P,Q) t C) = SM(EQT(Q,P) t C) = ∅.
Notice that the contextC can be an arbitrarySMODELS program module, i.e., it is not
necessary forC to have the EVA property, as long asP t C andQ t C are defined. To
prove Theorem 3 notice that due to the structure of the translationEQT(P,Q) t C is
defined wheneverP t C is defined, and apply Theorems 1 and 2.

If a moduleQ is obtained from a moduleP through local modifications, it is likely
that their components are pairwise compatible, and there is a partitioning forP andQ
such thatP = P1 t · · · t Pn andQ = Q1 t · · · t Qn wherePi is compatible with
Qi for all i. Notice thatPi = Qi might even hold for a number ofi’s. Also, several
possible compatible module structures can be obtained forP andQ, for example, by
regrouping or taking compositions of submodules. VerifyingPi ≡m Qi for everyi is
not of interest as such, sincePi 6≡m Qi does not necessarily implyP 6≡m Q. Of course,
if Pi ≡m Qi holds and their equivalence can be verified efficiently, then Corollary 1
implies thatPi andQi are modularly equivalent in every possible context. However,
if this is not the case, it is still possible to organize the verification ofP ≡m Q as a
sequence ofn module-level tests as follows:

(
i−1t
j=1
Qj) t Pi t (

nt
j=i+i

Pj) ≡m (
i−1t
j=1
Qj) tQi t (

nt
j=i+1

Pj) (1)

where1 ≤ i ≤ n. The resulting chain of equivalences conveysP ≡m Q. In each test
(1) modules differ inPi andQi for which the other modules form a common context

Ci = (
i−1t
j=1
Qj) t (

nt
j=i+i

Pj).

Theorem 3 gives us the means to modularize the task of equivalence verification to-
gether with (1). We expect computational advantage from the strategy described above,
especially when the contextCi is clearly larger than the modulesPi andQi, and focus-
ing EQT solely toPi andQi reduces the length of programs involved in verification
steps. Note that if there aren submodules, there aren! possible different orders in which
to verify the chain of equivalences. It seems likely that the order has an effect on the
efficiency of the approach, e.g., if the test for (1) fails for only one value ofi.



4 Experiments

The translation functionEQT for verifying modular equivalence presented in Section
3 has been incorporated into a translator calledLPEQ (v. 1.18)4. The translation for
verifying modular equivalence is obtained using option flag-m. Furthermore, to make
the translator compatible with current solvers, an input generator can be augmented to
the translation using flag-i . Together with a tool calledLPCAT (v. 1.6) used to compose
two modules together, the new version ofLPEQ allows us to examine the feasibility of
verification of modular equivalence, compared to the approach where programs are seen
as integral entities. It is worth noticing that even thoughLPEQ andLPCAT give us the
means to evaluate the modular approach to equivalence verification, current versions
of LPARSE and SMODELS are not yet fully compatible with our module architecture,
which brings us certain difficulties when simulating modular answer set programming.
For examples of use, we refer to theLPEQ homepage.

In our experiments we useSMODELS (v. 2.32) for the computation of stable mod-
els with flag-nolookahead (for our benchmarks this option gives the best running
times) for programs instantiated withLPARSE (v. 1.0.17). The total running time for
the equivalence verification in one direction is the time needed byLPEQ to produce the
translationEQT plus the running time needed bySMODELS for trying to computeone
stable model for the translation. However, the translation time is negligible. We con-
sidermodularly equivalentSMODELS program modules. Therefore one always has to
count running times in both directions. Since the running times ofSMODELS depend
on the order of rules in programs and literals in rules, we shuffle them randomly. All
the tests reported were run under the Linux 2.6.8 operating system on a 1.7GHz AMD
Athlon XP 2000+ CPU with 1 GB of main memory. As regards timing, we report the
sum of user and system times as measured by/usr/bin/time command in UNIX.

First, we consider two modular encodings solving then-queens problem, i.e., how
to placen queens on ann × n chess board so that they do not threaten each other.
The programsQn

1 andQn
2 are composed of two modules each, i.e.,Qn

1 = Gn
x t Cn

1 ,
Qn

2 = Gn
x t Cn

2 . BasicallyGn
x generates a placement ofn queens row-by-row. The

generator moduleGn
x has an empty input signature, and its output signature consists

of ground instances of the predicateq(X,Y) denoting the placement of a queen in
square(X,Y) . ModulesCn

1 andCn
2 are used to check that the placement induced by the

generator module is legal andCn
2 is an optimized version ofCn

1 obtained by reducing
symmetric rules. The checking modules expect a placement of queens, expressed using
ground instances ofq(X,Y) , as their input and have an empty output signature. We
compare the times needed to verify (a)Cn

1 ≡m Cn
2 , (b) Cn

1 t Gn
x ≡m Cn

2 t Gn
x , and

(c) Qn
1 ≡v Qn

2 . Notice that in (b) and (c) exactly the same equivalence is verified, the
difference being that in (c) the knowledge about modular structure is not taken into
account and the translation-based method is applied to complete programs. In (b) we
use the approach described in Theorem 3 withGn

x as the common context forCn
1 and

Cn
2 . In (a) we verify the equivalence ofCn

1 andCn
2 in every possible context. This is a

stronger result than what is obtained in the cases (b) and (c). By Corollary 1 it is clear
that (a) implies (b) and (c), but not vice versa.

4 Available athttp://www.tcs.hut.fi/Software/lpeq/ .
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Fig. 2. The averages for running times (left) and numbers of choice points (right) for verifying
(a)Cn

1 ≡m Cn
2 , (b)Cn

1 tGn
x ≡m Cn

2 tGn
x , and (c)Qn

1 ≡v Qn
2 in then-queens experiment.

We vary the number of queensn from 4 to 11 and repeat the verification task 10
times for each number of queens generating each time new randomly shuffled versions
of the modules involved. The average running times and the average numbers of choice
points, i.e., the number of choices made bySMODELS during the search, for each ap-
proach are presented in Figure 2. We see that taking into account the common context
improves the efficiency of the translation-based method, as regards both time and the
number of choice points. Checking modular equivalence without a specific context can
be time consuming if the number of possible inputs is high, as is the case with the
queens encodings (there aren2 squares in the chess board and as a queen can either be
placed or not in each of them, there are2n2

possible inputs for modulesCn
1 andCn

2 ).
However, it should be kept in mind that onceCn

1 ≡m Cn
2 has been verified, one knows

thatCn
1 andCn

2 are modularly equivalent in any possible context.
We use the problem of finding a Hamiltonian cycle for directed graphs ofn vertices

as our second benchmark problem. Again we consider modularly equivalent encod-
ings. The first encoding consists of three modulesGn

1 tHn
1 t Rn, and is similar to the

Hamiltonian cycle encoding used by Simons et al. [22]. We, however, consider directed
graphs instead of undirected ones. ModuleGn

1 is used to generate all possible directed
graphs ofn vertices represented as a set of edges. Given a set of edges forn vertices
as an input, moduleHn

1 selects the edges to be taken into a cycle by insisting that each
vertex is incident to exactly two edges in the cycle. Finally, given a cycle candidate
as an input, moduleRn checks that each vertex is reachable from the starting vertex
along the edges in the cycle. We also use an optimized variant of moduleHn

1 . Module
Hn

2 takes into account that the input graph is directed and each vertex must then have
exactly one incoming and exactly one outgoing edge in the cycle. The second encoding
Gn

1 t HRn is based on the alternative encoding presented in [22]. In this encoding we
cannot separate the selection of the edges to be taken into the cycle and the checking
of reached vertices into two modules as their definitions are mutually dependent. Thus
moduleHRn solves the Hamiltonian cycle problem given a graph ofn vertices as input.

In addition to the moduleGn
1 generating all directed graphs, we consider also other

graph generator modules. Each moduleGn
i for i = 1, . . . , 5 generates a family of di-

rected graphs withn vertices with the following properties: all (directed) graphs (i = 1),
irreflexive graphs (i = 2), symmetric and irreflexive graphs (i = 3), asymmetric graphs
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Fig. 3. The average running times (left) and the average numbers of choice points (right) for
verifying (d)Hn

1 t (Rn tGn
1 ) ≡m Hn

2 t (Rn tGn
1 ), (e)(Hn

1 tRn)tGn
1 ≡m (Hn

2 tRn)tGn
1 ,

and (f)Hn
1 t Rn tGn

1 ≡m Hn
2 t Rn tGn

1 in the Hamiltonian cycle experiment.

(i = 4), and graphs with Euclidean edge relation (i = 5). We vary the number of ver-
ticesn from 3 to 10 and repeat the verification task 10 times for each number of vertices
generating each time new randomly shuffled versions of the modules involved.

We start by comparing the times needed to verify

(d) Hn
1 t (Rn tGn

1 ) ≡m Hn
2 t (Rn tGn

1 ),
(e) (Hn

1 t Rn) tGn
1 ≡m (Hn

2 t Rn) tGn
1 , and

(f) Hn
1 t Rn tGn

1 ≡m Hn
2 t Rn tGn

1 .

In this experiment we want to study the impact of varying the size of the common con-
text on the time complexity of verifyingHn

1 t Rn tGn
1 ≡m Hn

2 t Rn tGn
1 . Thus the

equivalence verified in each item is the same and the difference is that the common con-
text is varied fromRn tGn

1 in (d) to empty (module) in (f). The average running times
and the average numbers of choice points for the approaches are presented in Figure 3.
We see that the approach in (f) becomes infeasible for graphs with only six vertices (a
timeout of 6000 seconds was used). The difference in running times for equivalences in
(d) and (e) is smaller, but best results are achieved when the maximal common context
is used in (d). The average number of choices made bySMODELS behave similarly to
the average running times. For comparison, the time needed to find all stable models for
Hn

2 tRntGn
1 is approximately 1.5 seconds forn = 4 and 2000 seconds forn = 5. This

shows the effectiveness of the modular translation-based method as a naive approach of
cross-checking stable models [10] is likely to be infeasible even forn = 5, because the
number of stable models becomes very high.

Next we compare the times needed to verify

(g) equivalence in (d) and(Hn
2 t Rn) tGn

1 ≡m HRn tGn
1 , and

(h) (Hn
1 t Rn) tGn

1 ≡m HRn tGn
1 .

Notice that the equivalence verified in (g) is the same as verified in (h). The motivation
is to see whether it is more efficient to verify the equivalence ofHn

1 t Rn t Gn
1 and

HRn t Gn
1 directly or havingHn

2 t Rn t Gn
1 as an intermediate step. Furthermore,

we want to see the effect of hiding predicatereached(X) in the encodings on the
efficiency. Recall that this increases the size of the translation. Thus, we verify the
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Fig. 4.The average running times for verifying (g) equivalence in (d) plus(Hn
2 t Rn) tGn

1 ≡m

HRntGn
1 , and (h)(Hn

1 tRn)tGn
1 ≡m HRntGn

1 with predicatereached(X) hidden/visible
(left); and the average running times for verifying(Hn

2 tRn)tGn
i ≡m HRn tGn

i for different
graph familiesGn

i , i = 1, . . . , 5 (right).

equivalences (g) and (h) also with predicatereached(X) hidden and compare the
time needed when predicatereached(X) is visible.

The average running times for this experiment are presented in Figure 4 (left). Hid-
ing predicatereached(X) in approach (g) increases the average running time by
approximately one third. The effect of hiding is more significant in approach (h) in
which the average running time is doubled when predicatereached(X) is hidden. In
practice it seems to be a good idea to hide as few predicates as necessary. The differ-
ence in the average numbers of choice points is marginal. The average running times
of approach (g) are less than those of approach (h) regardless the visibility of predicate
reached(X) , and thus it seems to be a good idea to do the optimization step first.

Finally, we want to see how the choice of the graph family, i.e., the choice of the
graph generator moduleGn

i for i = 1, 2, . . . , 5 affects the time needed to verify

(Hn
2 t Rn) tGn

i ≡m HRn tGn
i .

AsGn
1 generates all directed graphs, verifying the equivalence fori = 1 actually verifies

Hn
2 t Rn ≡m HRn and modular equivalence for the other generator modules follows

from Corollary 1. The motivation, however, is to see whether it is faster to verify a
weaker result, i.e., to verify the equivalence for certain subclasses of directed graphs.

The average running times for this experiment are presented in Figure 4 (right).
Using symmetric and irreflexive graphs as context turned out to be especially time con-
suming. We used a timeout of 6000 seconds in this experiment and were not able to
verify the equivalence for the valuesn = 9 andn = 10 with this limit. For the sake of
clarity, we also drop the average time forn = 8 (4048 seconds) from Figure 4 (right).
The average numbers of choice points behave similarly to the average running times.
The somewhat surprising implication of this experiment is that restricting the number of
possible inputs by applying a graph generator having less stable models thanGn

1 does
not necessarily make the equivalence verification task more efficient as opposed to our
n-queens experiment. The reason for this might be that it can be more difficult to find
stable models for a more specific generator module.



5 Conclusions

In this paper, we continue our work with modular program development within answer
set programming [21, 12, 19]. In particular, we are interested in the problem of verify-
ing themodular equivalenceof SMODELSprogram modules. We show how an existing
translation-based approach to verifying visible equivalence [11] can be adjusted to the
task of verifying modular equivalence. The current translationEQT(P,Q) and its im-
plementationLPEQ cover the types of rules supported by theSMODELS search engine
which provide the basic knowledge representation primitives. We also show that in a
case where modules in question share a submodule, e.g.,P = P′ t C andQ = Q′ t C,
the method can be further streamlined and it is not necessary to translate the common
contextC. If the contextC is large, then the size of the translation involved in the
equivalence verification task is potentially reduced notably.

We evaluate experimentally the efficiency of the translation-based method in the
verification of modular equivalence. The results indicate that it depends on the specific
problem domain and encodings used whether checking modular equivalence without a
specific context is more time consuming than with a context module. However, if two
modules share a submodule, taking the shared context into account has the potential
of speeding up the translation-based method significantly. Furthermore, in practice it
seems to be a good idea to hide as few atoms as necessary when using the translation-
based method. Based on the experimental evaluation, modularization of the verification
of modular equivalence seems to be a good idea in many cases, especially if the common
context shared by the modules is large and the number of submodules stays reasonable.

Even thoughLPEQ andLPCAT give us the means to evaluate the modular approach
to equivalence verification, current ASP solvers do not directly utilize the module ar-
chitecture described in this paper. This is an issue to taken into account in the design of
future solvers. Another direction for our research is to extend the translation-based ver-
ification method for disjunctive programs [20] to the case of modular equivalence [12].
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