
Implementing Prioritized Circumscription by
Computing Disjunctive Stable Models?

Emilia Oikarinen?? and Tomi Janhunen

Helsinki University of Technology TKK
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
{Emilia.Oikarinen,Tomi.Janhunen}@tkk.fi

Abstract. The stable model semantics of disjunctive logic programs is based on
minimal models which assign atoms false by default. While this feature is highly
useful and leads to concise problem encodings, it occasionally makes knowledge
representation with disjunctive rules difficult. Lifschitz’ parallel circumscription
provides a remedy by introducing atoms that are allowed to vary or to have fixed
values while others are falsified. Prioritized circumscription further refines this
setting in terms of priority classes for atoms being falsified. In this paper, we
present a linear and faithful transformation to embed prioritized circumscription
into disjunctive logic programming in a systematic fashion. The implementation
of the method enables the use of disjunctive solvers for computing prioritized cir-
cumscription. The results of an experimental evaluation indicate that the method
proposed herein compares favorably with other existing implementations.

Keywords. Prioritized circumscription, disjunctive stable models, linear trans-
formation, answer set programming

1 Introduction

In answer set programming (ASP) a problem at hand is formalized as a logic program
so that its answer sets, or more formally (disjunctive) stable models [2, 3], correspond
to the solutions of the problem—to be computed using a solver for disjunctive logic
programs. Numerous applications of disjunctive logic programs have emerged since ef-
ficient solvers such as, for example, DLV [4], and GNT [5], for computing answer sets
became available. The stable model semantics of disjunctive logic programs is based on
minimal models which makes every atom appearing in a disjunctive logic program false
by default. While this feature is highly useful—leading to concise encodings of prob-
lems as disjunctive programs—it occasionally makes knowledge representation with
disjunctive rules difficult. For instance, the representation of Reiter-style minimal diag-
noses [6] is complicated by the fact that in addition to abnormality atoms, also atoms
describing the state of the system being diagnosed become subject to falsification.
? This research has been partially funded by the Academy of Finland under project #122399. A

preliminary version of this work appeared in [1].
?? The financial support from Helsinki Graduate School in Computer Science and Engineering,

Nokia Foundation, Finnish Foundation for Technology Promotion TES, Emil Aaltonen foun-
dation, and Finnish Cultural Foundation is gratefully acknowledged.

This problem can be alleviated by a more refined control of minimization provided
by parallel circumscription [7] which allows certain atoms to vary or to have fixed
truth values. In particular, varying atoms enhance the knowledge representation capa-
bility over ordinary circumscription [8]. The scheme of prioritized circumscription [7]
generalizes this setting with priority classes for atoms being minimized. Together, these
principles provide an elegant solution to the problem raised in the first paragraph: atoms
describing state should vary and priorities can be specified among those representing
abnormality. We want to bring these enhanced notions of minimality to the realm of
disjunctive logic programming so that they can be advisedly exploited in problem en-
codings. To this end, we have already addressed parallel circumscription and provided
a linear and faithful translation into disjunctive logic programming [9].

The goal of this paper is to cover the prioritized case accordingly, extending the
preliminary version of this work presented in [1]. Our translation-based approach ef-
fectively removes varying and fixed atoms as well as priority classes in terms of a trans-
formation. We have also implemented the method, and give an experimental evaluation
contrasting our tool with others developed for the same purpose [10–12].

The rest of this paper is organized as follows. In Section 2, we review the syntax
and semantics of disjunctive logic programs. Section 3 is devoted to an introduction of
parallel and prioritized circumscription [7] in the propositional case. A linear transfor-
mation from prioritized circumscription to disjunctive logic programs is presented in
Section 4. The results from an experimental evaluation of the tool that implements the
linear transformation are reported in Section 5. We end this paper with a brief discussion
about related work in Section 6.

2 Disjunctive Logic Programs

We review in this section the basic concepts of disjunctive logic programs (DLPs) in
the propositional case. A disjunctive logic program is a finite set of disjunctive rules of
the form

a1 ∨ · · · ∨ an ← b1, . . . , bm,∼c1, . . . ,∼ck (1)

where n,m, k ≥ 0, and a1, . . . , an, b1, . . . , bm, and c1, . . . , ck are propositional atoms.
Since the order of atoms is considered insignificant, we use A ← B,∼C as a short-
hand for rules of form (1), where A, B, and C denote the sets of atoms {a1, . . . , an},
{b1, . . . , bm}, and {c1, . . . , ck}, respectively, and ∼C = {∼c | c ∈ C} for any set of
atoms C.

The basic intuition behind (1) is that if each atom in the positive body B and none
of the atoms in the negative body C can be inferred, then some atom in the head A
can be inferred. If C = ∅, we have a positive rule written A ← B. When both B and
C are empty, we have a disjunctive fact, written A ←. If A is empty, then we have a
constraint, written ⊥ ← B,∼C. Given a DLP Π , we write At(Π) for its signature,
that is, the set of atoms appearing in the rules of Π .

Given any DLP Π , we define an interpretation M for Π as a subset of At(Π).
An atom a ∈ At(Π) is true under M (symbolically M |= a) if and only if a ∈ M ,
otherwise a is false under M . For a negative literal ∼a, we define M |= ∼a if and only
if M 6|= a. A set L of literals is satisfied by M (denoted by M |= L) if and only if

M |= l, for every l ∈ L. We also define M |= ∨
L, providing M |= l for some l ∈ L.

An interpretation M ⊆ At(Π) is a (classical) model of a DLP Π , denoted M |= Π ,
if and only if for every rule A ← B,∼C ∈ Π , it holds that M |= B ∪ ∼C implies
M |= ∨

A. It is typical in logic programming that atoms are assumed false by default.
In case of a positive DLP (PDLP) Π this is formalized in terms of minimal models
M |= Π for which there is no N ⊂ M such that N |= Π . We write MM(Π) for the
set of minimal models associated with a PDLP Π . To extend the semantics for DLPs
involving negation a partial evaluation technique proposed by Gelfond and Lifschitz [2]
is applied.

Definition 1. Given a DLP Π , an interpretation M ⊆ At(Π) is a stable model of Π if
and only if M ∈ MM(ΠM), where

ΠM = {A← B | A← B,∼C ∈ Π and M ∩ C = ∅}
is the reduct of Π with respect to M .

In the sequel, the set of stable models of a DLP Π is denoted by SM(Π).

3 Parallel and Prioritized Circumscription

In this section we introduce parallel and prioritized circumscription [7] in the proposi-
tional case. Parallel circumscription is based on a notion of minimality which partitions
atoms in three disjoint categories.

Definition 2. Let Π be a PDLP and let P, V, F ⊆ At(Π) be disjoint sets of atoms such
that At(Π) = P ∪V ∪F . A model M |= Π is 〈P, V, F 〉-minimal if and only if there is
no N |= Π such that (i) N ∩ P ⊂M ∩ P and (ii) N ∩ F = M ∩ F .

By this definition, atoms in P are subject to minimization, that is, falsified as far as
possible, while the truth values of atoms in V may vary freely and the truth values of
atoms in F are kept fixed. Note that in the notation of 〈P, V, F 〉-minimality one of the
sets P , V , and F is actually redundant, as given any two of the sets, the third one is
implicitly clear from the context. Example 1 illustrates the use of varying atoms in a
concise representation for the model-based diagnosis [6] of digital circuits.

Example 1. Consider a positive DLP1

Πdiag = {a ∨ b ∨ ab1. ab1 ← a, b. b ∨ c ∨ ab2. ab2 ← b, c.

c ∨ d ∨ ab3. ab3 ← c, d. ⊥ ← a. ⊥ ← d}
representing a sequence of three inverters with observations ¬a and ¬d indicating a
fault. By setting P = {ab1, ab2, ab3} and V = {a, b, c, d} we obtain minimal diag-
noses {ab1, c}, {ab2, b, c}, and {ab3, b} as 〈P, V , ∅〉-minimal models. In contrast, the
〈P ∪ V, ∅, ∅〉-minimal models of Πdiag, that is, the stable models of Πdiag, include a
spurious non-minimal diagnosis {ab1, ab2, ab3}. ¥

1 A full stop is used to separate rules in a program and the symbol “←” is omitted in the case of
disjunctive facts, that is, when the body of a rule is empty.

The set of all 〈P, V, F 〉-minimal models of Π is denoted by MMP,V,F (Π). The con-
ventional case that all atoms are subject to minimization is covered by MM(Π) =
MMAt(Π),∅,∅(Π) = SM(Π) for a PDLP Π . We write Circ(Π, P, V, F) to denote the
parallel circumscription of a PDLP Π .

An extended notation Circ(Π, P1 > · · · > Pk, V, F) is introduced to represent the
prioritized circumscription of Π which includes the parallel circumscription of Π as
its special case, that is, when k = 1. The idea is that atoms in P1 are falsified with
the highest priority, those in P2 with the next highest priority, and so on. Lifschitz [7]
shows that Circ(Π, P1 > · · · > Pk, V, F) corresponds to the conjunction

k∧

i=1

Circ(Π, Pi, Pi+1 ∪ . . . ∪ Pk ∪ V, P1 ∪ . . . ∪ Pi−1 ∪ F). (2)

The formula (2) does not have a direct interpretation as a DLP but such a representation
can be obtained using the translation from [9]. A drawback is that 2k copies of Π must
be created which gives a quadratic nature for the overall transformation [10] because
k ≤ |At(Π)| ≤ ‖Π‖, that is, the length of Π in symbols. Therefore, we get better
premises for the development of a linear representation if Definition 2 is generalized to
the case of prioritized circumscription.

Definition 3 ([11]). A model M |= Π for a positive DLP Π is 〈P1 > · · · > Pk, V, F 〉-
minimal if and only if there is no N |= Π such that

(i) N ∩ (P1 ∪ . . . ∪ Pi−1) = M ∩ (P1 ∪ . . . ∪ Pi−1) and N ∩ Pi ⊂M ∩ Pi for some
1 ≤ i ≤ k; and

(ii) N ∩ F = M ∩ F .

Example 2. Recalling Πdiag from Example 1, we note that it has a unique 〈{ab1} >
{ab2} > {ab3}, V, ∅〉-minimal model M = {ab3, b}, that is, ab1 is falsified first, then
ab2, and finally ab3, but the last minimization fails as it holds Πdiag∪{¬ab1,¬ab2} |=
ab3. ¥

Our next objective is to characterize 〈P1 > · · · > Pk, V, F 〉-minimality for a model
M of a PDLP Π in terms of propositional satisfiability. The idea is to check whether
the set of disjunctive rules TrU(Π, P1 > · · · > Pk, F, M) defined as

{(A \ F)← (B \ F) | A← B ∈ Π , M 6|= ∨
(A ∩ F), and M |= B ∩ F} ∪

{e0 ←} ∪ {⊥ ← ek} ∪⋃k
i=1{ei ← (Pi ∩M) ∪ {ei−1}} ∪

⋃k
i=1{⊥ ← a, ei−1 | a ∈ Pi \M},

(3)

is unsatisfiable in the classical sense. The new atoms e1, . . . , ek in TrU(Π, P1 > · · · >
Pk, F, M) correspond to the strata in P1 > · · · > Pk. The intuitive reading of ei is that
the truth values of all atoms in P1 ∪ . . . ∪ Pi coincide with those assigned by M .

Lemma 1. Given a positive DLP Π , a model M ⊆ At(Π) is 〈P1 > · · · > Pk, V, F 〉-
minimal if and only if TrU(Π,P1 > · · · > Pk, F, M) is unsatisfiable.

Proof sketch. (=⇒) Assume that there is N ⊆ (At(Π) \ F) ∪ {ei | 0 ≤ i ≤ k} such
that N |= TrU(Π, P1 > · · · > Pk, F,M), that is, N |= (A \ F) ← (B \ F) for each
A ← B ∈ Π such that M 6|= ∨

(A ∩ F) and M |= B ∩ F ; N |= e0; and N 6|= ek.
Furthermore, there is 1 ≤ i ≤ k such that N |= ej and N |= Pj ∩M for each j < i,
N 6|= a for each a ∈ Pj \ M for j ≤ i, and N 6|= Pi ∩ M . It is easy to see that
M ′ = (N ∩ At(Π)) ∪ (M ∩ F) is a counter-example for the 〈P1 > · · · > Pk, V, F 〉-
minimality of M , as M ′ |= Π , M ′ ∩ (P1 ∪ · · · ∪ Pi−1) = M ∩ (P1 ∪ · · · ∪ Pi−1) and
M ′ ∩ Pi ⊂M ∩ Pi.

(⇐=) Assume that M |= Π and M is not 〈P1 > · · · > Pk, V, F 〉-minimal, that is,
there is N |= Π such that for some 1 ≤ i ≤ k, N ∩ (P1 ∪ · · · ∪ Pi−1) = M ∩ (P1 ∪
· · · ∪ Pi−1) and N ∩ Pi ⊂M ∩ Pi. We define N ′ = (N \ F) ∪ {ej | 0 ≤ j ≤ i− 1}.
It is straightforward to verify that N ′ |= TrU(Π,P1 > · · · > Pk, F, M). ut

4 Translation-Based Approach to Prioritized Circumscription

In [9] we present a translation function which enables the removal of varying atoms
from a PDLP Π in a faithful way, that is , the 〈P, V, F 〉-minimal models M of Π and
the stable models N of its translation are in a bijective relationship such that M =
N ∩ At(Π) holds for each pair of models. In [1] we propose a way to generalize this
method to the case of prioritized circumscription. In this section, we present the details
of the translation and justify the correctness of the method in general.

The translation Trcirc2dlp(Π, P1 > · · · > Pk, V, F) consists of two parts. Instead
of presenting the parts as regular DLPs, we exploit the theory from [13] and describe
the parts as DLP-modules or DLP-functions with input/output interface. Syntactically, a
DLP-module is a triple 〈Π, I, O〉2 where Π is a set of disjunctive rules and I and O are
disjoint sets of atoms such that At(Π) = I∪O, and all occurrences of input atoms a ∈ I
are in the bodies of rules in Π . The idea is to keep the interpretation of input atoms fixed,
that is, an interpretation M ⊆ At(Π) is a stable model of a DLP-module 〈Π, I,O〉 if
and only if M ∈ MMO,∅,I(ΠM). One may notice that for DLP-modules with I = ∅,
this definition results in the standard stable model semantics of DLPs. The composition
or join of two DLP-modules 〈Π1, I1, O1〉 and 〈Π2, I2, O2〉 is defined syntactically as
〈Π1, I1, O1〉 t 〈Π2, I2, O2〉 = 〈Π1 ∪Π2, (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2〉. The over-
all translation Trcirc2dlp(Π,P1 > · · · > Pk, V, F) is a join of two DLP-modules:

Trgen(Π, P1 > · · · > Pk, V, F) t Trmin(Π, P1 > · · · > Pk, V, F). (4)

For the sake of brevity, we omit the sets P1, . . . , Pk, V , and F when they are clear from
the context.

Next, we describe the structure of modules Trgen(Π) and Trmin(Π) in more detail.
They involve a number of atoms which are new to Π:

– An atom a denoting that a is false is introduced for each a ∈ At(Π).

2 In [13] a more general setting is introduced in which a DLP-function may contain hidden
atoms, which are local to the module in question. See [13] for more details, for example, of
the conditions under which the composition of two DLP-modules is defined.

Module : Trgen(Π, P1 > · · · > Pk, V, F)

Input : ∅
Output : At(Π) ∪At(Π)

1 : a← ∼a for each a ∈ V ∪ F

2 : a← ∼a for each a ∈ At(Π)

3 : (A ∩ P)← (B ∩ P),∼(A \ P),∼(B \ P) for each A← B ∈ Π

Fig. 1. Module Trmin(Π, P1 > · · · > Pk, V, F) from Definition 4 with P = P1 ∪ · · · ∪ Pk =
At(Π) \ (V ∪ F).

– For each atom a ∈ At(Π), a renamed copy a∗ of a is created in order to formulate
the test for 〈P1 > · · · > Pk, V, F 〉-minimality. Thus, the meaning of a∗ is that a is
true in a potential counter-model for 〈P1 > · · · > Pk, V, F 〉-minimality.

– An atom ei is introduced for each priority class Pi. The intuitive reading of ei is the
same as in (3), that is, the truth values of all atoms in P1 ∪ . . . ∪ Pi in the potential
counter-example coincide with those assigned by the model candidate.

– A renamed copy ad is introduced for each atom a ∈ P1 ∪ · · · ∪ Pk. The mean-
ing of ad is that the model candidate and the potential counter-example for its
〈P1 > · · · > Pk, V, F 〉-minimality assign different truth values to atom a ∈ Pi.

– Finally, an atom u is introduced to denote the unsatisfiability of (3).

We use shorthands A = {a | a ∈ A} and A∗ = {a∗ | a ∈ A} for any A ⊆ At(Π).
Likewise Ad denotes {ad | a ∈ A} for any A ⊆ P1 ∪ · · · ∪Pk. The modules Trgen(Π)
and Trmin(Π) forming the join (4) are as follows.

Definition 4. Let Π be a PDLP subject to a prioritized circumscription Circ(Π, P1 >
· · · > Pk, V, F). The translation Trcirc2dlp(Π) = 〈Πg ∪Πm, ∅, Og ∪Om〉 is the join
of the DLP-modules Trgen(Π) = 〈Πg, ∅, Og〉 presented in Fig. 1 and Trmin(Π) =
〈Πm, Og, Om〉 presented in Fig. 2.

The module Trgen(Π) takes no input but it produces a model candidate for circum-
scription as its output. The rules in lines 1–2 choose truth values for atoms in V ∪ F
and define the complementary atoms a for all atoms a ∈ At(Π). The rules in the third
line make sure that Π is satisfied. As a matter of optimization, the satisfaction of rules
is focussed on the atoms subject to minimization, that is, those in P = P1 ∪ . . . ∪ Pk.

An actual input for Trmin(Π) is a candidate for a 〈P1 > · · · > Pk, V, F 〉-minimal
model of Π but represented as a set M ∪ (At(Π) \M) instead of M ⊆ At(Π). Rules
in line 4 create a renamed copy of Π to check the 〈P1 > · · · > Pk, V, F 〉-minimality of
M . The atoms in F are not renamed to maintain the semantics of fixed atoms. The rules
in lines 5–7 are activated for each set Pi only if ej is true for all j < i. Each rule in line
5 captures a rule ei ← (Pi ∩M) ∪ {ei−1} from (3). This rule depends dynamically on
M and effectively states, using the disjunction

∨
P d

i , the falsity of at least one atom a
that is both subject to minimization with priority i (a ∈ Pi) and true in M (a ∈ M).
The rules in line 6 cover the case that a is false in M (a ∈ Pi \M). Conforming to (3),

Module : Trmin(Π, P1 > · · · > Pk, V, F)

Input : At(Π) ∪At(Π)

Output : At(Π)∗ ∪ P d
1 ∪ · · · ∪ P d

k ∪ {ei | 0 ≤ i ≤ k} ∪ {u}
4 : (A \ F)∗ ∪ {u} ← (B \ F)∗,∼(A ∩ F),∼(B ∩ F) for each A← B ∈ Π

5 : P d
i ∪ {ei, u} ← ei−1 for each Pi

6 : u← ad,∼a, ei−1 and u← a∗,∼a, ei−1 for each Pi and a ∈ Pi

7 : u← ad, a∗,∼a, ei−1 and u ∨ ad ∨ a∗ ← ∼a, ei−1 for each Pi and a ∈ Pi

8 : a∗ ← u for each a ∈ At(Π)

9 : ad ← u for each a ∈ P1 ∪ · · · ∪ Pk

10 : ei ← u for 0 ≤ i ≤ k

11 : u← ek; e0 ∨ u←; and ⊥ ← ∼u

Fig. 2. Module Trmin(Π, P1 > · · · > Pk, V, F) from Definition 4.

both ad and a∗ are implicitly assigned to false, as they imply u. Otherwise, a is true in
M which activates the rules in line 7, enforcing ad equivalent to the negation of a∗. The
net effect of the rules in lines 5–7 is that any potential counter-model N |= Π for the
〈P1 > · · · > Pk, V , F 〉-minimality of M , expressed in (At(Π) \ F)∗ ∪ (At(Π) ∩ F)
instead of At(Π), must satisfy conditions (i) and (ii) from Definition 3. The rules in
lines 8–11 are directly related to the unsatisfiability check which effectively proves that
counter-models like N above do not exist.

Finally, we need to justify the faithfulness of the translation Trcirc2dlp(Π), that is,
to show that the 〈P1 > · · · > Pk, V , F 〉-minimal models of a PDLP Π are in a bijective
relationship with the stable models of Trcirc2dlp(Π). A key observation is that the stable
model semantics is compositional for the join of DLP-modules, that is, stable models
for Trcirc2dlp(Π) can be computed for one submodule at a time. The following lemma
is a direct consequence of the module theorem [13, Theorem 1].

Lemma 2. Let M ⊆ At(Trgen(Π)) and N ⊆ At(Trmin(Π)) \ (At(Π) ∪ At(Π)).
Then M ∈ SM(Trgen(Π)) and M ∪ N ∈ SM(Trmin(Π)) if and only if M ∪ N ∈
SM(Trcirc2dlp(Π)).

The classical models of Π and the stable models of Trgen(Π) are in bijective cor-
respondence.

Lemma 3. For a PDLP Π subject to a prioritized circumscription Circ(Π, P1 > · · · >
Pk, V, F) and M ⊆ At(Π), M |= Π if and only if M ′ = M ∪ (At(Π) \M) ∈
SM(Trgen(Π)).

Next, we characterize the connection between the existence of stable models for
Trmin(Π) and the unsatisfiability of the translation TrU(Π, P1 > · · · > Pk, F, M)
in (3).

Lemma 4. Let Π be a PDLP subject to a prioritized circumscription Circ(Π, P1 >
· · · > Pk, V, F), M ⊆ At(Π) a model of Π , and M ′ = M ∪ (At(Π) \M).

(i) If Trmin(Π) has a stable model N such that N ∩ (At(Π) ∪ At(Π)) = M ′, then
N = M ′ ∪ P d ∪ E ∪ {u} ∪ At(Π)∗ where P = P1 ∪ . . . ∪ Pk and E = {ei |
0 ≤ i ≤ k}.

(ii) The set of disjunctive rules TrU(Π,P1 > · · · > Pk, F,M) is unsatisfiable if and
only if there is N ∈ SM(Trmin(Π)) such that N ∩ (At(Π) ∪At(Π)) = M ′.

The proof of Lemma 4 is similar to the proof of [9, Proposition 2] as the same
technique is used to encode propositional unsatisfiability check with the primitives of
DLPs [14].

The correctness of the translation Trcirc2dlp(Π) now follows from Lemmas 1–4.

Theorem 1. Given a PDLP Π , M is a 〈P1 > · · · > Pk, V, F 〉-minimal model of Π if
and only if N ∈ SM(Trcirc2dlp(Π)) where N∩(At(Π)∪At(Π)) = M∪(At(Π) \M).

Proof sketch. (=⇒) Assume that M is a 〈P1 > · · · > Pk, V, F 〉-minimal model of Π .
Since M |= Π , we have N = M∪(At(Π) \M) ∈ SM(Trgen(Π)) by Lemma 3. Since
M is 〈P1 > · · · > Pk, V, F 〉-minimal, TrU(Π,P1 > · · · > Pk, F, M) is unsatisfiable
by Lemma 1. By Lemma 4 (ii), there is N ′ ∈ SM(Trmin(Π)) such that N ′ ∩ (At(Π)∪
At(Π)) = N , and by Lemma 4 (i) N ′ = N ∪ P d

1 ∪ · · · ∪ P d
k ∪ {ei | 0 ≤ i ≤ k} ∪

{u} ∪ At(Π)∗. Furthermore, by Lemma 2, N ′ ∈ SM(Trcirc2dlp(Π)). (⇐=) Assume
M ∈ SM(Trcirc2dlp(Π)). By Lemma 2, M ′ = M ∩ At(Trgen(Π)) ∈ SM(Trgen(Π))
and M ∈ SM(Trmin(Π)). By Lemma 3, we have N = M ′ ∩At(Π) |= Π . By Lemma
4 (ii), TrU(Π,P1 > · · · > Pk, F,N) is unsatisfiable, and finally, by Lemma 1, N is a
〈P1 > · · · > Pk, V, F 〉-minimal model of Π . ut

The following example illustrates the use of the translation for computing priori-
tized circumscription.

Example 3. Recall the positive DLP Πdiag in Example 1. In order to compute the
〈{ab1} > {ab2} > {ab3}, {a, b, c, d}, ∅〉-minimal models of Πdiag, we consider the
translation Trcirc2dlp(Πdiag, {ab1} > {ab2} > {ab3}, {a, b, c, d}, ∅) which is the
join of modules Trgen(Πdiag) and Trmin(Πdiag) presented in Figure 3. The translation
Trcirc2dlp(Πdiag) has a unique stable model

N = {a, b, c, d, ab1, ab2, ab3} ∪At(Πdiag)∗ ∪ {abd
1 , abd

2 , abd
3 , e0, e1, e2, e3, u}.

By Theorem 1, N ∩ At(Πdiag) = {ab3, b} = M is the unique 〈{ab1} > {ab2} >
{ab3}, {a, b, c, d}, ∅〉-minimal model of Πdiag as already discussed in Example 2. ¥

5 Experiments

We use the problem of finding Reiter-style minimal diagnoses [6] for digital circuits en-
coded as parallel/prioritized circumscription as a benchmark. The circuits are generated
as follows. First a random tree is generated. The leaves of the tree, that is, the inputs of
the circuit, are assigned random Boolean values. The intermediate nodes are assigned
random logical operations which correspond to the gates of the circuit. The gate at the
root node produces the output for the entire circuit. Its value is calculated and flipped to

Module : Trgen(Πdiag, {ab1} > {ab2} > {ab3}, {a, b, c, d}, ∅)
Input : ∅

Output : At(Πdiag) ∪At(Πdiag)

1 : a← ∼a. b← ∼b. c← ∼c. d← ∼d

2 : a← ∼a. b← ∼b. c← ∼c. d← ∼d. ab1 ← ∼ab1. ab2 ← ∼ab2.

ab3 ← ∼ab3

3 : ab1 ← ∼a,∼b. ab1 ← ∼a,∼b. ab2 ← ∼b,∼c. ab2 ← ∼b,∼c.

ab3 ← ∼c,∼d. ab3 ← ∼c,∼d. ⊥ ← ∼a. ⊥ ← ∼d

Module : Trmin(Πdiag, {ab1} > {ab2} > {ab3}, {a, b, c, d}, ∅)
Input : At(Πdiag) ∪At(Πdiag)

Output : At(Πdiag)
∗ ∪ {abd

1 , abd
2 , abd

3 , e0, e1, e2, e3, u}
4 : a∗ ∨ b∗ ∨ ab∗1 ∨ u. ab∗1 ∨ u← a∗, b∗. b∗ ∨ c∗ ∨ ab∗2 ∨ u. ab∗2 ∨ u← b∗, c∗.

c∗ ∨ d∗ ∨ ab∗3 ∨ u. ab∗3 ∨ u← c∗, d∗. u← a∗. u← d∗

5 : abd
1 ∨ e1 ∨ u← e0. abd

2 ∨ e2 ∨ u← e1. abd
3 ∨ e3 ∨ u← e2

6 : u← abd
1 ,∼ab1, e0. u← ab∗1,∼ab1, e0. u← abd

2 ,∼ab2, e1.

u← ab∗2,∼ab2, e1. u← abd
3 ,∼ab3, e2. u← ab∗3,∼ab3, e2

7 : u← abd
1 , ab∗1,∼ab1, e0. u ∨ abd

1 ∨ ab∗1 ← ∼ab1, e0.

u← abd
2 , ab∗2,∼ab2, e1. u ∨ abd

2 ∨ ab∗2 ← ∼ab2, e1.

u← abd
3 , ab∗3,∼ab3, e2. u ∨ abd

3 ∨ ab∗3 ← ∼ab3, e2

8 : a∗ ← u. b∗ ← u. c∗ ← u. d∗ ← u. ab∗1 ← u. ab∗2 ← u. ab∗3 ← u

9 : abd
1 ← u. abd

2 ← u. abd
3 ← u

10 : e0 ← u. e1 ← u. e2 ← u. e3 ← u

11 : u← e3. e0 ∨ u. ⊥ ← ∼u

Fig. 3. The modules for translation Trcirc2dlp(Πdiag) in Example 3.

obtain faulty behavior for the circuit. The 〈{abi | i ≤ N}, {highi | i ≤ N}, ∅〉-minimal
models of the resulting program correspond to minimal diagnoses, where N is the num-
ber of nodes in the tree forming the circuit. For each value of N we select priorities for
the atoms abj according to the following scheme. An atom abj is given priority i, if
(i− 1) · bN/kc+ 1 ≤ j ≤ i · bN/kc, where k is the number of priority classes.

The tool CIRC2DLP (v. 2.1)3 implements the translation Trcirc2dlp described in
Section 4. We compare the performance of CIRC2DLP with our previous translator
PRIO_CIRC2DLP [10] which implements Lifschitz’ scheme (2). We use GNT (v. 2.1)
and DLV (2006-07-14) for the computation of stable models. We also compare the per-
formance of our translation-based approach with that of CIRCUM2 system [12]. The
measured running time for CIRC2DLP and PRIO_CIRC2DLP is the sum of the transla-

3 See http://www.tcs.hut.fi/Software/circ2dlp/ for binaries and benchmarks.

0

20

40

60

80

100

120

8421

Se
co

nd
s

Number of priority classes

gnt (N=26)
gnt (N=25)
gnt (N=24)
dlv (N=26)
dlv (N=25)
dlv (N=24)
circum2 (N=25)
circum2 (N=24)

Fig. 4. The averages of running times for computing all minimal diagnoses for faulty digital
circuits for N = 24, 25, 26 nodes with the numbers of priority classes k = 1, 2, 4, 8 for mini-
mization.

tion time and the time of finding the stable models using GNT/DLV. The translation
times are negligible, however. For CIRCUM2 the measured running time is the duration
of the search for models of circumscription using the tool with DLV as its back-end. We
report the sum of user and system time of /usr/bin/time. All the tests were run
under Linux on a 1.7GHz AMD Athlon XP 2000+ with a timeout 1800 seconds and a
memory limit 512MB.

First, we compare the performances of CIRC2DLP and PRIO_CIRC2DLP with an
instance with N = 15 nodes in the circuit and use GNT for the computation of sta-
ble models. The running times for k = 1, 2, 3, 4 priorities were 0.29, 0.38, 0.39 and
0.43 seconds for CIRC2DLP, and respectively 0.30, 44.3, 88.8 and 127.25 seconds for
PRIO_CIRC2DLP. The performance of PRIO_CIRC2DLP is poor for k > 1 even with a
very small circuit with N = 15 and CIRC2DLP shows a promising improvement in the
performance.

Next, we use CIRC2DLP with GNT and DLV as back-ends to see whether the choice
of a solver has an effect on the running times. We also compare the performance of
CIRC2DLP to that of CIRCUM2. To see how different approaches scale on the number
of priority classes k = 1, 2, 4, 8 we generate randomly 20 circuits for each of the values
N = 24, 25, 26. The average running times from this experiment are shown in Fig-
ure 4.4 First, observe that in contrast to the experimental results in [10] computing mod-
els with DLV is faster than with GNT. This illustrates the flexibility of the translation-
based method compared to developing a specialized solver as one can directly ben-
efit from solver development. For values k = 1, 2 CIRCUM2 is slightly faster than

4 The average running times for N = 26 cannot be reported for CIRCUM2, since it was not able
to solve all instances within the memory limit.

1

10

100

18 20 22 24 26 28

Se
co

nd
s

Number of nodes in the circuit

circum2 (k=4)
circum2 (k=1)
dlv (k=4)
dlv (k=1)

Fig. 5. The averages of running times for computing all minimal diagnoses for faulty digital
circuits for N = 18, . . . , 28 nodes with k = 1, 4 priorities for minimization.

CIRC2DLP, but CIRCUM2 consumed over 512MB of memory with some rather moder-
ately sized instances with N = 26. For k = 4, 8, CIRC2DLP+DLV becomes faster than
CIRCUM2. Also, we note that the average running times of CIRC2DLP+DLV decrease
when the number of priorities k increases. This reflects the fact that eventually, that is,
when k = |At(Π) \ (V ∪ F)|, it becomes easier to decide 〈{a1} > · · · > {ak}, V, F 〉-
minimality using a total order of atoms a1, . . . , ak under minimization [15].

Finally, we study how the performances of CIRC2DLP+DLV5 and CIRCUM2 scale
up when the number of nodes N grows. We consider k = 1 and k = 4 priorities
for minimization, and generate randomly 20 circuits with N = 18, . . . , 28 nodes. The
average running times are presented in Figure 5. Again, CIRCUM2 could not solve all
instances for N ≥ 26 without exceeding the memory limit. Both systems performed
similarly for values N = 18, . . . , 25, but using CIRC2DLP we could easily compute
models for the respective circumscriptions up to N = 28.

6 Discussion

We present a transformation from prioritized circumscription to DLPs. The translation
function Trcirc2dlp generalizes the one designed for parallel circumscription [9] and it
has a distinctive combination of features: (i) arbitrary propositional theories Π subject
to prioritized circumscription are covered, (ii) the translation Trcirc2dlp(Π, P1 > · · · >

5 As computing stable models with DLV is faster than with GNT, the choice of DLV as the
back-end reflects the best performance of our approach. Notice, however, that the results of
the previous experiment show that even with GNT as back-end, CIRC2DLP can handle circuits
with at least N = 26 nodes.

Pk, V, F) can be produced in linear time and space before computing any models for it,
(iii) the models of Circ(Π,P1 > · · · > Pk, V, F) and the stable models of its translation
are in a bijective relationship, (iv) the signature At(Π) is preserved under Trcirc2dlp,
and (v) there is no need for incremental updating.

In contrast, all previous approaches lack some of these features. De Kleer and Kono-
lige [16] present the basic technique for eliminating fixed predicates. The case of vary-
ing predicates is addressed by Cadoli et al. [17] but a query-based equivalence rather
than an exact correspondence of models is of their interest. In addition to these general
results, a number of attempts to reduce parallel/prioritized circumscription into logic
programming have been made. Gelfond and Lifschitz [18] address prioritized circum-
scription but their translation scheme is amenable to stratified circumscriptive theories
only. The translation of parallel circumscription presented by Sakama and Inoue [19]
is based on characteristic clauses resulting in exponential space and time complex-
ity in the worst case. In [20], the same authors embed prioritized circumscription into
prioritized logic programming based on a different semantics. Lee and Lin [21] char-
acterize parallel circumscription in terms of loop formulas and exploit them to obtain
an embedding in disjunctive logic programming. However, the number of loops can be
exponential in the worst case. Thus, it remains open whether an efficient translation is
feasible in general using their approach. Wakaki and Inoue [11] concentrate on priori-
tized circumscription and design a two-phase procedure for the computation of minimal
models. The first phase generates model candidates which are then tested for minimal-
ity in the sense of prioritized circumscription. Both the model generator and the tester
are represented as separate disjunctive logic programs. There is an implementation of
the procedure, named CIRCUM1, but it is rather inefficient since all model candidates
are computed first. Wakaki and Tomita [12] improve the procedure by Wakaki and In-
oue [11] and integrate the generating and testing programs into one in analogy to our
approach [9]. However, this is not a one-shot transformation because the answer sets
of the generating program have to be computed and counted before the testing part can
be created. The resulting implementation, CIRCUM2 was used as one of the reference
systems in our experiments.

The experiments reported in Section 5 suggest that our translation-based approach
compares favorably with CIRCUM2. Due to linearity of the transformation, CIRC2DLP
with a disjunctive solver as its back-end needs far less memory than CIRCUM2 and thus
it eventually scales up better as demonstrated in our experiments. The performance of
CIRC2DLP with disjunctive solvers is encouraging—suggesting that there is no need to
develop dedicated solvers for prioritized circumscription. Furthermore, we can take full
advantage of the ongoing development of disjunctive solvers.

Our results enable the use of prioritized circumscription as a primitive in disjunc-
tive logic programming. Consequently, we expect that more concise encodings can be
devised in applications like model-based diagnosis [6] formalized in the experiments of
Section 5. In fact, we can now view prioritized circumscription as syntactic sugar as it
can be translated away using Trcirc2dlp. However, it may be wise to store the original
representation, rather than the translation, for easier maintainability. A further goal is
the generalization of stable models with prioritized minimization of models. In fact,
the design of CIRC2DLP already includes support for negative body literals in rules.

This readily enables the computation of 〈P1 > · · · > Pk, V, F 〉-stable models M of an
arbitrary (not just positive) DLP Π based on the reduct ΠM .

References

1. Oikarinen, E., Janhunen, T.: A linear transformation from prioritized circumscription to dis-
junctive logic programming. In Dahl, V., Niemelä, I., eds.: Logic Programming, 23rd Con-
ference ICLP 2007, Porto, Portugal, September 2007, Proceedings. Volume 4670 of Lecture
Notes in Computer Science., Springer (2007) 440–441

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3/4) (1991) 365–385

3. Przymusinski, T.: Stable semantics for disjunctive programs. New Generation Computing
9(3/4) (1991) 401–424

4. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

5. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunc-
tions in stable model semantics. ACM Transactions on Computational Logic 7(1) (2006)
1–37

6. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1) (1987)
57–95

7. Lifschitz, V.: Computing circumscription. In Joshi, A.K., ed.: Proceedings of the 9th In-
ternational Joint Conference on Artificial Intelligence, 18–23 August 1985, Los Angeles,
California, Morgan Kaufmann (1985) 121–127

8. McCarthy, J.: Circumscription — A form of non-monotonic reasoning. Artificial Intelligence
13(1–2) (1980) 27–39

9. Janhunen, T., Oikarinen, E.: Capturing parallel circumscription with disjunctive logic pro-
grams. In Alferes, J., Leite, J., eds.: Logics in Artificial Intelligence, 9th European Confer-
ence, JELIA 2004, Lisbon, Portugal, September 2004, Proceedings. Volume 3229 of Lecture
Notes in Artificial Intelligence., Springer (2004) 134–146

10. Oikarinen, E., Janhunen, T.: CIRC2DLP — translating circumscription into disjunctive logic
programming. In Baral, C., Greco, G., Leone, N., Terracina, G., eds.: Logic Programming
and Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005, Diamante, Italy,
September 5–8, 2005, Proceedings. Volume 3662 of Lecture Notes in Artificial Intelligence.,
Springer (2005) 405–409

11. Wakaki, T., Inoue, K.: Compiling prioritized circumscription into answer set programming.
In Demoen, B., Lifschitz, V., eds.: Logic Programming, 20th International Conference, ICLP
2004, Saint-Malo, France, September 2004, Proceedings. Volume 3132 of Lecture Notes in
Computer Science., Springer (2004) 356–370

12. Wakaki, T., Tomita, K.: Compiling prioritized circumscription into general disjunctive pro-
grams. In Provetti, A., Son, T.C., eds.: PREFS 2006: Preferences and their Applications in
Logic Programming Systems, August 16th, 2006, Proceedings. (2006) 1–15

13. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive
stable models. In Baral, C., Brewka, G., Schlipf, J.S., eds.: Logic Programming and Non-
monotonic Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA, May
2007, Proceedings. Volume 4483 of Lecture Notes in Artificial Intelligence., Springer (2007)
175–187

14. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence 15(3–4) (1995) 289–323

15. Gottlob, G.: The complexity of default reasoning under the stationary fixed point semantics.
Information and Computation 121(1) (1995) 81–92

16. de Kleer, J., Konolige, K.: Eliminating the fixed predicates from a circumscription. Artificial
Intelligence 39(3) (1989) 391–398

17. Cadoli, M., Eiter, T., Gottlob, G.: An efficient method for eliminating varying predicates
from a circumscription. Artificial Intelligence 54(2) (1992) 397–410

18. Gelfond, M., Lifschitz, V.: Compiling circumscriptive theories into logic programs. In
Reinfrank, M., de Kleer, J., Ginsberg, M.L., Sandewall, E., eds.: Non-Monotonic Reasoning:
2nd International Workshop Grassau, FRG, June 1988, Proceedings. Volume 346 of Lecture
Notes in Artificial Intelligence., Springer (1989) 74–99

19. Sakama, C., Inoue, K.: Embedding circumscriptive theories in general disjunctive programs.
In Marek, V.W., Nerode, A., Truszczyński, M., eds.: Logic Programming and Nonmonotonic
Reasoning, Third International Conference, LPNMR’95, Lexington, KY, USA, June 1995,
Proceedings. Volume 928 of Lecture Notes in Artificial Intelligence., Springer (1995) 344–
357

20. Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense
reasoning. Artificial Intelligence 123(1–2) (2000) 185–222

21. Lee, J., Lin, F.: Loop formulas for circumscription. Artificial Intelligence 170(2) (2006)
160–185

