Modularity in SMODELSPrograms

Emilia Oikarinen

Laboratory for Theoretical Computer Science
P.O.Box 5400, FI-02015 Helsinki University of Technology, Finland
Emilia.Oikarinen@tkk.fi

Abstract. A recently proposed module system for answer set programming is
generalized for the input language of tB®O0DELS system. To show that the
stable model semantics is compositional and modular equivalence is a congru-
ence for composition adMODELSprogram modules, a general translation-based
scheme for introducing syntactic extensions of the module system is presented. A
characterization of the compositionality of the semantics is used as an alternative
condition for module composition, which allows compositions of modules even
in certain cases with positive recursion between the modules to be composed.

1 Introduction

There is a number of approaches within answer set programming (ASP) [1] involving
modularity in some sense, based on generalized quantifierR?], templateg3], im-
port rules[4], the splitting set theorenfb] or its variants [6, 7]. However, only few of
these approaches describe a flexible module system with a clearly defined interface for
module interaction, and a very typical restriction is thatrecursion between modules
is allowed In [8] we accommodate Gaifman and Shapiro’s program modules [9] to the
context of ASP resulting in a simple and intuitive notionfi@rmal logic program mod-
ulesunder thestable model semanti¢s0]. A module interacts through anput/output
interface and full compatibility of the module system and the stable model semantics
is achieved by allowingpositive recursion inside modules onlfowever, the use of
negative recursion is not limited in any way, and positive recursion is allowed inside
modules. One of the main results isrmdule theorenshowing that module-level sta-
bility implies program-level stability, and vice versa, as long as the stable models of the
submodules areompatible We also introduce aotion of modular equivalenaghich
is a propercongruence relation for composition of modyles., modular equivalence
is preserved if a submodule is substituted with a modularly equivalent one.

In this article we extend the module system in [8] ®MODELS programs[11]
by proposing a general translation-based scheme for introducing syntactical extensions
of the module system. Furthermore, we present a semantical reformulation of mod-
ule composition and modular equivalence, which occasionally allows compositions of
modules even if there is positive recursion between modules to be composed.

2 sSMODELSPrograms and Equivalence Relations

We consider the class of programs in the input language ofth@>ELS system [11]
excludingoptimization statement&n SMODELSprogramP is a finite set obasic con-

straint rulesandcompute statementsombined with eHerbrand basdib(P), which

is a fixed finite set of atoms containing all atoms appearing.iA basic constraint rule
is either aweight ruleof the formh — w < {B = Wg,~C = W} or achoice rule
of the form{H} — B, ~C and compute statements are of the fasmpute{ B, ~C},
whereh is an atom,B, C, and H are sets of atomsil # (), Wi, We C N, and
w € N. In a weight rule each € B (¢ € C) is associated with a weight, € Wg
(w. € W¢). A basic rule denoted byh «— B, ~C, is a special case of a weight rule
with all weights equal td andw = |B| + |C|. An SMODELS program consisting only
of basic rules is called aormal logic program(NLP). Basic constraint rules consist
of two parts:h or H is theheadof the rule, and the rest is called thedy Head(P)
denotes the set of atoms appearing in the heads of basic constraint rulesvin@aLs
program P. An interpretationM of a programP is a subset oflb(P) defining which
atomsa € Hb(P) aretrue (e« € M) and which ardalse(a ¢ M). A choice rule inP

is satisfied in all interpretation’/ C Hb(P); a weight rule inP is satisfied inM iff

W < D e pnm Wh T Dcecym We iMpliesh € M; and a compute statement inis
satisfied inM iff B C M andM NC = (. An interpretationV/ is amodelof a program
P, denoted by = P, iff all the rules inP are satisfied in\/.

Definition 1. The reductP™ of ansMoDELSprogram P w.r.t. M C Hb(P) contains

1. ruleh < Biff there is a choice rul§ H} — B,~C in P such that, € H N M,
andM N C = 0;

2. ruleh — w' < {B= Wg} iff there is a weight rule
h—w<{B=Wp,~C=Wc}inPandw =max(0, .o\ We)-

An SMODELS programP is positiveif each rule inP is a weight rule withC' = 0.

Given theleast model semantider positive programs the stable model semantics [10]
straightforwardly generalizes f@mODELS programs [11, 16]. In analogy to the case

of NLPs the reduct from Definition 1 is used, but the effect of compute statements must
also be taken into account. LEbmpS(P) denote the union of literals appearing in the
compute statements &f.

Definition 2. An interpretationVM C Hb(P) is a stable model of asMODELS pro-
gram P, denoted by\/ € SM(P), iff M = LM(PM) and M |= CompS(P).

Givena,b € Hb(P), we say thath depends directlyn a, denoted bya <; b, iff
there is a basic constraint rule iAsuch thab is in the head of the rule andappears
in the positive bodyB of the rule. Thepositive dependency grapf P, denoted by
Dep™(P), is a graph withHb(P) and {(b,a) | a <; b} as the sets of vertices and
edges, respectively. Atrongly connected componegf8CC) of a graph is a maximal
subsetD of vertices such that there is a path betweemdb for all a,b € D.

There are several notions of equivalence proposed for logic programs. $3ineem
ELS programsP and @, they areweakly equivalen{l2], denoted byP = Q, iff
SM(P) = SM(Q), andstrongly equivalenl2], denoted byP =, Q, iff PUR = QUR
for all sMoDELS programsR. Visible equivalence relatiofi3] takes the interfaces of
programs into account; the Herbrand base’dk partitioned into two part$ib, (P)
andHby, (P) determining thevisible and thehiddenparts ofHb(P), respectively. Pro-
gramsP and(@ are visibly equivalent, denoted by =, Q, iff Hb,(P) = Hb,(Q)

and there is a bijectiori : SM(P) — SM(Q) such that for allM/ € SM(P), it holds

M NnHb,(P) = f(M) N Hb,(Q). The verification of=/=; is acoNP-complete de-

cision problem forsMODELS programs [14, 15]. Deciding:, can be hard in general,

but the computational complexity can be governed by limiting the use of hidden atoms
by the property of havingnough visible atoms.e. the EVA property. Intuitively, if a
program has the EVA property, then its stable models can be distinguished on the basis
of their visible parts. FOsMODELS programs with the EVA property, the verification

of visible equivalence is aoNP-complete decision problem [16].

3 Modular sMODELSPrograms

We definesMODELS program modulesn analogy tonormal logic program modules
(NLP modules) in [8] anghrogram modulesy Gaifman and Shapiro [9].

Definition 3. AtripleP = (P, I, O) is asMODELSprogram module, if (i)P is a finite
set of basic constraint rules and compute statements,/aaad O are sets of atoms;
(i) INO = 0; and (iii) Head(P) N I = (.

The Herbrand base of @MODELSprogram modulé is the set of atoms appearing in

P combined with! U O, Hb,(P) = I U O, andHb,, (P) = Hb(PP) \ Hb, (P). As noted

in [9, 8] module compositioneeds to be restricted in order to achieeenpositionality

for the semantics. In [9] module composition is restricted to cases in which the output
sets of the modules are disjoint and the hidden part of each module remains local.

Definition 4. LetP; = (P1,11,01) and Py = (Ps, 12, 02) be SMODELS program
modules such that ({p; NO2 = 0, and (ii) Hby, (P1) NHb(Py) = Hby, (P2)NHb(P;) =
(. Then theGS-compositiorof P; andPs is defined as

P, Py = (P1 U P, (Il \ 02) U (12 \ 01),01 U 02)

As shown in [8, Example 3] the conditions f@r are not enough to guarantee compo-
sitionality under the stable model semantics. We say that ther@adsitive recursion
betweerP; = (P1, I;,0;1) andPy = (P, I, 05), if there is a SCC iDep (P, U Py)
containing atoms from bot®y, andO,. We deny positive recursion between modules
as a further restriction for module composition.

Definition 5. LetP; = (P1,1;,0;1) and Py = (Ps, 12, 02) be SMODELS program
modules. IfP; @& P, is defined and there is no positive recursion betw@emand P,
thejoin of P; andPy, denoted byP; LI 5, is defined a®, @ P5.

The stable model semantics of amoDELS program module is defined with respect

to a given input, i.e., a subset of the input atoms of the module. Input is seen as a set
of facts (or a database) to be combined with the module.ifi$tantiation of a module

P = (P, 1,0)withrespecttoaninpu C I isP(A) =PUF4 = (PUF4,0,IU0),
whereF 4 = {a. | a € A}. In the sequelP(A) is identified with the progran? UF 4.
Definition 6. An interpretation)/ C Hb(P) is a stable model of a@BMODELSprogram
moduleP = (P, I,0), denoted byM € SM(P), iff M = LM(P™ U Fynr) and

M = CompS(P).

We generalize the notions weisible and modular equivalencdenoted by=, and=,,,
respectively, fosmoDELSprogram modules as follows.

Definition 7. For sMoDELSprogram module® = (P, Ip,Op) andQ=(Q, I, Og),

- P =, Qiff Hb,(P) = Hb,(Q) and there is a bijectiorf : SM(PP) — SM(Q) such
that for all M € SM(P), M N Hb,(P) = f(M) N Hb,(Q); and
- P=, Qiff Ip =Ig andP =, Q.

The definition of=,, above is a reformulation of the one given in [8] and results in
exactly the same relation. Note that the conditibin, (P) = Hb, (Q) insisted by=,
together with/p = Ig impliesOp = Og for =,,. Visible equivalence relates more
modules than modular equivalence, e.g., conditler ({a «— b.},{b}, {a}) andQ =
({b < a.},{a},{b}). Now,P =, Q asSM(P) = SM(Q) = {0, {a,b}}, butP #,, Q
because input interfacesBfindQ differ. This indicates that visibly equivalent modules
cannot necessarily act as substitutes for each other.

A concept ofcompatibilityis used to describe when interpretations of modules can
be combined together. Given modulesandP, we say that\/; C Hb(P;) and M, C
Hb(P,) arecompatibleiff A, N Hb, (Py) = My N Hb, (Py). Furthermore, given sets
of interpretationsd; C 2HP(®1) and A, C 2HP(P2) for modulesP; andP,, thenatural
join of A; andAs, denoted byd; x A,, is defined as

{Ml U M, | M, € Al,Mg € Ay andM1 N HbV(IF)Q) =MsN Hbv(Pl)}

If a program (module) consists of several submodules, its stable models are lo-
cally stable for the respective submodules; and on the other hand, local stability implies
global stability for compatible stable models of the submodules.

Theorem 1. (Module theorem) Le®; andP; be sSMODELSprogram modules such that
Py LIP, is defined. TheSM(IE”l [Pz) = SM(]PH) X SM(PQ)

Theorem 1 is a generalization of [8, Theorem 1] $srODELS program modules. In-
stead of proving Theorem 1 directly from scratch we propose a general translation-
based scheme for introducing syntactical extensions for the module theorem.

Proposition 1. LetC; andC, be two classes of logic program modules such that
Cy, and consider a translation functidhr : C; — C, such that for any program modules
P= (P7170)7Q Gcli

1. ifPUQ is defined, thefr (P) U Tr(Q) is defined,
2. Tr(P) UTr(Q) =, Tr(PUQ), and
3. (P,I,0 UHby(P)) =, (Tr(P),I,0 U Hby(P)).

Now, if the module theorem holds for moduleginthen it holds for modules i .

The proof is omitted due to space limitations. Intuitively, the conditions for the transla-
tion function serve the following purposes: first, possible compositions of modules are
not limited by the translation; second, the translatiom@&lular, and third, it has to be
faithful in the sense that it preserves the roles to the atoms in the original module.

Now, to prove Theorem 1 it suffices to provide a translation fEam@DELSprogram
modules to NLP modules satisfying the conditions of Proposition 1. For instance, it
suffices to take a (possibly exponential) translation similarly to [11]. Furthermore, the
congruence propertpf =, directly generalizes fosMODELS program modules, as
Theorem 1 can be used instead of [8, Theorem 1] in the proof of [8, Theorem 2].

Corollary 1. LetP, Q andR besmMoDELSprogram modules such th&t/R andQUR
are defined. I =, Q, thenPUR =, QUR.

To analyze the computational complexity of verifyiag, for SMODELSprogram mod-
ules, note first thaP =, Q iff (P,0,Hb,(P)) = (Q, 0, Hb,(Q)) for any SMODELS
programsP and@. Furthermore, givesMODELSprogram module® = (P, I, 0) and
Q=(Q,1,0),P =, Qiff PUG; =, QU Gy, whereG; = ({{I}.},0,1) a context
generator module fof. Thus the problem of verifying=,, has the same computa-
tional complexity as verification of, . We say that asMODELSprogram modulé =
(P, I,0) has the EVA property iffP has the EVA property foHb, (P) = I U O [16].
Verification of=,, is acoNP-complete decision problem femoDELSprogram mod-
ules with the EVA property, sinc&; has the EVA property trivially.

4 Semantical Reformulation of Modular Equivalence

Even though [8, Example 3] shows that conditionsdoare not enough to guarantee
that the module theorem holds, there are cases wher® is not defined an@M (P @
Q) = SM(P) x SM(Q). Consider, e.gP = ({a « b. a «— ~c.},{b},{a,c}) and
Q={b+a},{a},{b}).-Now,P®Q = ({a < b. a « ~c. b a.},0,{a,b,c})is
defined as outputs and hidden atoms differ. SBIEP) = {{a}, {a,b}} andSM(Q) =
{0,{a,b}}, we getSM(P® Q) = SM(P) x SM(Q) = {{a,b}}. This suggests that the
denial of positive recursion between modules can be relaxed in certain cases.

We define a semantical characterization for module composition that maintains the
compositionality of the semantics.

Definition 8. LetP; = (P,1;,01) and Py = (Ps, 12, 02) be SMODELS program
modules such that; & P, is defined andM(P; ¢ P2) = SM(P;) x SM(PPy). Then
the semantical join dP; andPy, denoted by, LIP,, is defined a®; @ P5.

The module theorem holds by definition feMODELS program modules composed
with LI. We present an alternative formulation for modular equivalence taking features
from strong equivalence [12P = (P, Ip,Op) andQ = (Q, Io, Og) aresemantically
modularly equivalentdenoted by =..., Q, iff Ip = Io andPUR =, QUR for all
modulesR such thatfPLIR andQUR are defined. It is straightforward to see tkat,,

is a congruence far and reduces tes,, for modules with a completely specified input.

Theorem 2. P =, Q iff P =, Q for anysmoDELSprogram module® andQ.

Theorem 2 implies that,, is a congruence forl, too, and it is possible to replace

P with modularly equivalenfQ in contexts allowed byl. The syntactical restriction
denying positive recursion between modules is easy to check, since SCCs can be found
in a linear time with respect to the size of the dependency graph [17]. Checking whether
SM(P; & P3) = SM(P;) x SM(P2) holds can be a computationally much harder.

Theorem 3. For SMODELS program module®; andP, such thatP; & P, is defined,
deciding whetheSM(P; & P2) = SM(P;) x SM(PP;) holds is acoNP-complete
decision problem.

Theorem 3 shows that there is a tradeoff for allowing positive recursion between mod-
ules, as more effort is needed to check that composition of such modules does not
compromise the compositionality of the semantics.

Acknowledgements The author is grateful to Tomi Janhunen for his helpful com-
ments and suggestions. The research is partially funded by Academy of Finland (project
#211025). The financial support from Helsinki Graduate School in Computer Science
and Engineering, Nokia Foundation, Finnish Foundation of Technology, and Finnish
Cultural Foundation is gratefully acknowledged.

References

1. Niemeh, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell25(3-4) (1999) 241-273

2. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quantifiers. In:
LPNMR, Volume 1265 of LNCS, Springer (1997) 290-309

3. lanni, G, lelpa, G., Pietramala, A., Santoro, M.C., Calimeri, F.: Enhancing answer set pro
gramming with templates. In: NMR (2004) 233-239

4. Tari, L., Baral, C., Anwar, S.: A language for modular answer set programming: Application
to ACC tournament scheduling. In: ASP, CEUR-WS.org (2005) 277-292

5. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, MIT Press (1994) 23-37
6. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM TORZ3) (1997) 364-418

7. Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. In:
ICDT, Volume 3363 of LNCS, Springer (2005) 306—320
8. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: ECAI, I0S
Press (2006) 412-416
9. Gaifman, H., Shapiro, E.Y.: Fully abstract compositional semantics for logic programs. In:
POPL, ACM Press (1989) 134-142
10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP,
MIT Press (1988) 1070-1080
11. Simons, P., Niema] I., Soininen, T.. Extending and implementing the stable model seman-
tics. Artificial Intelligencel3§1-2) (2002) 181-234
12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM TOCL
2(4) (2001) 526-541
13. Janhunen, T.: Some (In)translatability Results for Normal Logic Programs and Propositional
Theories. JANCL16(1-2) (2006) 35-86
14. Marek, V.W., TruszcZyski, M.: Autoepistemic logic. J. ACN38(3) (1991) 588—-619
15. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs
with nested expressions. In: EPIA, Volume 2258 of LNCS, Springer (2001) 306—320
16. Janhunen, T., Oikarinen, E.: Automated verification of weak equivalence withgmbe-
ELS system. TPLF/(4) (2007) 1-48
17. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Ca(@p.(1972)
146-160

