
Modularity in SMODELSPrograms

Emilia Oikarinen

Laboratory for Theoretical Computer Science
P.O.Box 5400, FI-02015 Helsinki University of Technology, Finland

Emilia.Oikarinen@tkk.fi

Abstract. A recently proposed module system for answer set programming is
generalized for the input language of theSMODELS system. To show that the
stable model semantics is compositional and modular equivalence is a congru-
ence for composition ofSMODELSprogram modules, a general translation-based
scheme for introducing syntactic extensions of the module system is presented. A
characterization of the compositionality of the semantics is used as an alternative
condition for module composition, which allows compositions of modules even
in certain cases with positive recursion between the modules to be composed.

1 Introduction

There is a number of approaches within answer set programming (ASP) [1] involving
modularity in some sense, based on e.g.generalized quantifiers[2], templates[3], im-
port rules[4], the splitting set theorem[5] or its variants [6, 7]. However, only few of
these approaches describe a flexible module system with a clearly defined interface for
module interaction, and a very typical restriction is thatno recursion between modules
is allowed. In [8] we accommodate Gaifman and Shapiro’s program modules [9] to the
context of ASP resulting in a simple and intuitive notion fornormal logic program mod-
ulesunder thestable model semantics[10]. A module interacts through aninput/output
interface, and full compatibility of the module system and the stable model semantics
is achieved by allowingpositive recursion inside modules only. However, the use of
negative recursion is not limited in any way, and positive recursion is allowed inside
modules. One of the main results is amodule theoremshowing that module-level sta-
bility implies program-level stability, and vice versa, as long as the stable models of the
submodules arecompatible. We also introduce anotion of modular equivalencewhich
is a propercongruence relation for composition of modules, i.e., modular equivalence
is preserved if a submodule is substituted with a modularly equivalent one.

In this article we extend the module system in [8] forSMODELS programs[11]
by proposing a general translation-based scheme for introducing syntactical extensions
of the module system. Furthermore, we present a semantical reformulation of mod-
ule composition and modular equivalence, which occasionally allows compositions of
modules even if there is positive recursion between modules to be composed.

2 SMODELSPrograms and Equivalence Relations

We consider the class of programs in the input language of theSMODELS system [11]
excludingoptimization statements. An SMODELSprogramP is a finite set ofbasic con-

straint rulesandcompute statements, combined with aHerbrand baseHb(P), which
is a fixed finite set of atoms containing all atoms appearing inP . A basic constraint rule
is either aweight ruleof the formh ← w ≤ {B = WB ,∼C = WC} or achoice rule
of the form{H} ← B,∼C and compute statements are of the formcompute{B,∼C},
whereh is an atom,B, C, andH are sets of atoms,H 6= ∅, WB ,WC ⊆ N, and
w ∈ N. In a weight rule eachb ∈ B (c ∈ C) is associated with a weightwb ∈ WB

(wc ∈ WC). A basic rule, denoted byh ← B,∼C, is a special case of a weight rule
with all weights equal to1 andw = |B|+ |C|. An SMODELSprogram consisting only
of basic rules is called anormal logic program(NLP). Basic constraint rules consist
of two parts:h or H is theheadof the rule, and the rest is called thebody. Head(P)
denotes the set of atoms appearing in the heads of basic constraint rules in anSMODELS

program P . An interpretationM of a programP is a subset ofHb(P) defining which
atomsa ∈ Hb(P) aretrue (a ∈ M) and which arefalse(a 6∈ M). A choice rule inP
is satisfied in all interpretationsM ⊆ Hb(P); a weight rule inP is satisfied inM iff
w ≤ ∑

b∈B∩M wb +
∑

c∈C\M wc impliesh ∈ M ; and a compute statement inP is
satisfied inM iff B ⊆M andM ∩C = ∅. An interpretationM is amodelof a program
P , denoted byM |= P , iff all the rules inP are satisfied inM .

Definition 1. The reductPM of anSMODELSprogramP w.r.t. M ⊆ Hb(P) contains

1. ruleh ← B iff there is a choice rule{H} ← B,∼C in P such thath ∈ H ∩M ,
andM ∩ C = ∅;

2. ruleh← w′ ≤ {B= WB} iff there is a weight rule
h← w ≤ {B = WB ,∼C = WC} in P andw′ = max(0,

∑
c∈C\M wc).

An SMODELS programP is positive if each rule inP is a weight rule withC = ∅.
Given theleast model semanticsfor positive programs the stable model semantics [10]
straightforwardly generalizes forSMODELS programs [11, 16]. In analogy to the case
of NLPs the reduct from Definition 1 is used, but the effect of compute statements must
also be taken into account. LetCompS(P) denote the union of literals appearing in the
compute statements ofP .

Definition 2. An interpretationM ⊆ Hb(P) is a stable model of anSMODELS pro-
gramP , denoted byM ∈ SM(P), iff M = LM(PM) andM |= CompS(P).

Given a, b ∈ Hb(P), we say thatb depends directlyon a, denoted bya ≤1 b, iff
there is a basic constraint rule inP such thatb is in the head of the rule anda appears
in the positive bodyB of the rule. Thepositive dependency graphof P , denoted by
Dep+(P), is a graph withHb(P) and{〈b, a〉 | a ≤1 b} as the sets of vertices and
edges, respectively. Astrongly connected component(SCC) of a graph is a maximal
subsetD of vertices such that there is a path betweena andb for all a, b ∈ D.

There are several notions of equivalence proposed for logic programs. GivenSMOD-
ELS programsP and Q, they areweakly equivalent[12], denoted byP ≡ Q, iff
SM(P) = SM(Q), andstrongly equivalent[12], denoted byP ≡s Q, iff P∪R ≡ Q∪R
for all SMODELS programsR. Visible equivalence relation[13] takes the interfaces of
programs into account; the Herbrand base ofP is partitioned into two parts,Hbv(P)
andHbh(P) determining thevisibleand thehiddenparts ofHb(P), respectively. Pro-
gramsP andQ are visibly equivalent, denoted byP ≡v Q, iff Hbv(P) = Hbv(Q)

and there is a bijectionf : SM(P) → SM(Q) such that for allM ∈ SM(P), it holds
M ∩ Hbv(P) = f(M) ∩ Hbv(Q). The verification of≡/≡s is acoNP-complete de-
cision problem forSMODELS programs [14, 15]. Deciding≡v can be hard in general,
but the computational complexity can be governed by limiting the use of hidden atoms
by the property of havingenough visible atoms, i.e. the EVA property. Intuitively, if a
program has the EVA property, then its stable models can be distinguished on the basis
of their visible parts. ForSMODELS programs with the EVA property, the verification
of visible equivalence is acoNP-complete decision problem [16].

3 Modular SMODELSPrograms

We defineSMODELS program modulesin analogy tonormal logic program modules
(NLP modules) in [8] andprogram modulesby Gaifman and Shapiro [9].

Definition 3. A triple P = (P, I,O) is a SMODELSprogram module, if (i)P is a finite
set of basic constraint rules and compute statements, andI andO are sets of atoms;
(ii) I ∩O = ∅; and (iii) Head(P) ∩ I = ∅.
The Herbrand base of anSMODELSprogram moduleP is the set of atoms appearing in
P combined withI ∪O, Hbv(P) = I ∪O, andHbh(P) = Hb(P) \Hbv(P). As noted
in [9, 8] module compositionneeds to be restricted in order to achievecompositionality
for the semantics. In [9] module composition is restricted to cases in which the output
sets of the modules are disjoint and the hidden part of each module remains local.

Definition 4. Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be SMODELS program
modules such that (i)O1∩O2 = ∅, and (ii)Hbh(P1)∩Hb(P2) = Hbh(P2)∩Hb(P1) =
∅. Then theGS-compositionof P1 andP2 is defined as

P1 ⊕ P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2).

As shown in [8, Example 3] the conditions for⊕ are not enough to guarantee compo-
sitionality under the stable model semantics. We say that there is apositive recursion
betweenP1 = (P1, I1, O1) andP2 = (P2, I2, O2), if there is a SCC inDep+(P1 ∪ P2)
containing atoms from bothO1 andO2. We deny positive recursion between modules
as a further restriction for module composition.

Definition 5. Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be SMODELS program
modules. IfP1 ⊕ P2 is defined and there is no positive recursion betweenP1 andP2,
the join of P1 andP2, denoted byP1 t P2, is defined asP1 ⊕ P2.

The stable model semantics of anSMODELS program module is defined with respect
to a given input, i.e., a subset of the input atoms of the module. Input is seen as a set
of facts (or a database) to be combined with the module. Theinstantiation of a module
P = (P, I, O) with respect to an inputA ⊆ I isP(A) = PtFA = (P ∪FA, ∅, I ∪O),
whereFA = {a. | a ∈ A}. In the sequelP(A) is identified with the programP ∪ FA.

Definition 6. An interpretationM ⊆ Hb(P) is a stable model of anSMODELSprogram
moduleP = (P, I, O), denoted byM ∈ SM(P), iff M = LM(PM ∪ FM∩I) and
M |= CompS(P).

We generalize the notions ofvisible and modular equivalence, denoted by≡v and≡m,
respectively, forSMODELSprogram modules as follows.

Definition 7. For SMODELSprogram modulesP=(P, IP , OP) andQ=(Q, IQ, OQ),

– P ≡v Q iff Hbv(P) = Hbv(Q) and there is a bijectionf : SM(P)→ SM(Q) such
that for all M ∈ SM(P), M ∩Hbv(P) = f(M) ∩Hbv(Q); and

– P ≡m Q iff IP = IQ andP ≡v Q.

The definition of≡m above is a reformulation of the one given in [8] and results in
exactly the same relation. Note that the conditionHbv(P) = Hbv(Q) insisted by≡v

together withIP = IQ implies OP = OQ for ≡m. Visible equivalence relates more
modules than modular equivalence, e.g., considerP = ({a ← b.}, {b}, {a}) andQ =
({b ← a.}, {a}, {b}). Now,P ≡v Q asSM(P) = SM(Q) = {∅, {a, b}}, butP 6≡m Q
because input interfaces ofP andQ differ. This indicates that visibly equivalent modules
cannot necessarily act as substitutes for each other.

A concept ofcompatibilityis used to describe when interpretations of modules can
be combined together. Given modulesP1 andP2 we say thatM1 ⊆ Hb(P1) andM2 ⊆
Hb(P2) arecompatibleiff M1 ∩ Hbv(P2) = M2 ∩ Hbv(P1). Furthermore, given sets
of interpretationsA1 ⊆ 2Hb(P1) andA2 ⊆ 2Hb(P2) for modulesP1 andP2, thenatural
join of A1 andA2, denoted byA1 on A2, is defined as

{M1 ∪M2 |M1 ∈ A1,M2 ∈ A2 andM1 ∩Hbv(P2) = M2 ∩Hbv(P1)}.

If a program (module) consists of several submodules, its stable models are lo-
cally stable for the respective submodules; and on the other hand, local stability implies
global stability for compatible stable models of the submodules.

Theorem 1. (Module theorem) LetP1 andP2 beSMODELSprogram modules such that
P1 t P2 is defined. ThenSM(P1 t P2) = SM(P1) on SM(P2).

Theorem 1 is a generalization of [8, Theorem 1] forSMODELS program modules. In-
stead of proving Theorem 1 directly from scratch we propose a general translation-
based scheme for introducing syntactical extensions for the module theorem.

Proposition 1. LetC1 andC2 be two classes of logic program modules such thatC2 ⊆
C1, and consider a translation functionTr : C1 → C2 such that for any program modules
P = (P, I, O),Q ∈ C1,

1. if P tQ is defined, thenTr(P) t Tr(Q) is defined,
2. Tr(P) t Tr(Q) ≡m Tr(P tQ), and
3. (P, I,O ∪Hbh(P)) ≡m (Tr(P), I, O ∪Hbh(P)).

Now, if the module theorem holds for modules inC2, then it holds for modules inC1.

The proof is omitted due to space limitations. Intuitively, the conditions for the transla-
tion function serve the following purposes: first, possible compositions of modules are
not limited by the translation; second, the translation ismodular; and third, it has to be
faithful in the sense that it preserves the roles to the atoms in the original module.

Now, to prove Theorem 1 it suffices to provide a translation fromSMODELSprogram
modules to NLP modules satisfying the conditions of Proposition 1. For instance, it
suffices to take a (possibly exponential) translation similarly to [11]. Furthermore, the
congruence propertyof ≡m directly generalizes forSMODELS program modules, as
Theorem 1 can be used instead of [8, Theorem 1] in the proof of [8, Theorem 2].

Corollary 1. LetP,Q andR beSMODELSprogram modules such thatPtR andQtR
are defined. IfP ≡m Q, thenP t R ≡m Q t R.

To analyze the computational complexity of verifying≡m for SMODELSprogram mod-
ules, note first thatP ≡v Q iff (P, ∅,Hbv(P)) ≡m (Q, ∅,Hbv(Q)) for anySMODELS

programsP andQ. Furthermore, givenSMODELSprogram modulesP = (P, I, O) and
Q = (Q, I,O), P ≡m Q iff P t GI ≡v Q t GI , whereGI = ({{I}.}, ∅, I) a context
generator module forI. Thus the problem of verifying≡m has the same computa-
tional complexity as verification of≡v. We say that anSMODELSprogram moduleP =
(P, I, O) has the EVA property iffP has the EVA property forHbv(P) = I ∪ O [16].
Verification of≡m is acoNP-complete decision problem forSMODELSprogram mod-
ules with the EVA property, sinceGI has the EVA property trivially.

4 Semantical Reformulation of Modular Equivalence

Even though [8, Example 3] shows that conditions for⊕ are not enough to guarantee
that the module theorem holds, there are cases wherePtQ is not defined andSM(P⊕
Q) = SM(P) on SM(Q). Consider, e.g.,P = ({a ← b. a ← ∼c.}, {b}, {a, c}) and
Q = ({b← a.}, {a}, {b}). Now,P⊕Q = ({a← b. a← ∼c. b← a.}, ∅, {a, b, c}) is
defined as outputs and hidden atoms differ. SinceSM(P)={{a}, {a, b}} andSM(Q) =
{∅, {a, b}}, we getSM(P⊕Q) = SM(P) on SM(Q) = {{a, b}}. This suggests that the
denial of positive recursion between modules can be relaxed in certain cases.

We define a semantical characterization for module composition that maintains the
compositionality of the semantics.

Definition 8. Let P1 = (P1, I1, O1) and P2 = (P2, I2, O2) be SMODELS program
modules such thatP1 ⊕ P2 is defined andSM(P1 ⊕ P2) = SM(P1) on SM(P2). Then
the semantical join ofP1 andP2, denoted byP1tP2, is defined asP1 ⊕ P2.

The module theorem holds by definition forSMODELS program modules composed
with t. We present an alternative formulation for modular equivalence taking features
from strong equivalence [12]:P = (P, IP , OP) andQ = (Q, IQ, OQ) aresemantically
modularly equivalent, denoted byP ≡sem Q, iff IP = IQ andPtR ≡v QtR for all
modulesR such thatPtR andQtR are defined. It is straightforward to see that≡sem

is a congruence fort and reduces to≡v for modules with a completely specified input.

Theorem 2. P ≡m Q iff P ≡sem Q for anySMODELSprogram modulesP andQ.

Theorem 2 implies that≡m is a congruence fort, too, and it is possible to replace
P with modularly equivalentQ in contexts allowed byt. The syntactical restriction
denying positive recursion between modules is easy to check, since SCCs can be found
in a linear time with respect to the size of the dependency graph [17]. Checking whether
SM(P1 ⊕ P2) = SM(P1) on SM(P2) holds can be a computationally much harder.

Theorem 3. For SMODELSprogram modulesP1 andP2 such thatP1 ⊕ P2 is defined,
deciding whetherSM(P1 ⊕ P2) = SM(P1) on SM(P2) holds is acoNP-complete
decision problem.

Theorem 3 shows that there is a tradeoff for allowing positive recursion between mod-
ules, as more effort is needed to check that composition of such modules does not
compromise the compositionality of the semantics.

Acknowledgements The author is grateful to Tomi Janhunen for his helpful com-
ments and suggestions. The research is partially funded by Academy of Finland (project
#211025). The financial support from Helsinki Graduate School in Computer Science
and Engineering, Nokia Foundation, Finnish Foundation of Technology, and Finnish
Cultural Foundation is gratefully acknowledged.

References

1. Niemel̈a, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell.25(3-4) (1999) 241–273

2. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quantifiers. In:
LPNMR, Volume 1265 of LNCS, Springer (1997) 290–309

3. Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C., Calimeri, F.: Enhancing answer set pro-
gramming with templates. In: NMR (2004) 233–239

4. Tari, L., Baral, C., Anwar, S.: A language for modular answer set programming: Application
to ACC tournament scheduling. In: ASP, CEUR-WS.org (2005) 277–292

5. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP, MIT Press (1994) 23–37
6. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM TODS22(3) (1997) 364–418
7. Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. In:

ICDT, Volume 3363 of LNCS, Springer (2005) 306–320
8. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: ECAI, IOS

Press (2006) 412–416
9. Gaifman, H., Shapiro, E.Y.: Fully abstract compositional semantics for logic programs. In:

POPL, ACM Press (1989) 134–142
10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP,

MIT Press (1988) 1070–1080
11. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence138(1-2) (2002) 181–234
12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM TOCL

2(4) (2001) 526–541
13. Janhunen, T.: Some (In)translatability Results for Normal Logic Programs and Propositional

Theories. JANCL16(1-2) (2006) 35–86
14. Marek, V.W., Truszczýnski, M.: Autoepistemic logic. J. ACM38(3) (1991) 588–619
15. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs

with nested expressions. In: EPIA, Volume 2258 of LNCS, Springer (2001) 306–320
16. Janhunen, T., Oikarinen, E.: Automated verification of weak equivalence within theSMOD-

ELS system. TPLP7(4) (2007) 1–48
17. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comp.1(2) (1972)

146–160

