Parallel generation of ℓ -sequences

Cédric Lauradoux Belgium

Andrea Röck UCL/INGI INRIA Paris-Rocquencourt France

Dagstuhl Seminar: Symmetric Cryptography published at SEquences and Their Applications (SETA) 2008

Outline

Introduction

- Parallel generation of *m*-sequences (LFSRs)
 - Synthesis of sub-sequences
 - Multiple steps LFSR

Parallel generation of *l*-sequences (FCSRs)

- Synthesis of sub-sequences
- Multiple steps FCSR

Conclusion

Part 1 Introduction

Sub-sequences generator

Single sequence
generator
$$s_0$$
 s_1 s_2 s_3 Sub-sequences
generator s_0 s_2
 s_1 s_3

► Goal: **parallelism**

- better throughput
- reduced power consumption

Notations

► $S = (s_0, s_1, s_2, \cdots)$: Binary sequence with period T.

▶ $S_d^i = (s_i, s_{i+d}, s_{i+2d}, \cdots)$: Decimated sequence, with $0 \le i \le d-1$.

•
$$S_d^0 = (s_0, s_d, \cdots)$$
, \cdots , $S_d^{d-1} = (s_{d-1}, s_{2d-1}, \cdots)$

- ► x_j : Memory cell. ■
- ▶ $(x_j)_t$: Content of the cell x_j .
- > X_t : Entire internal state of the automaton.
- ▶ $next^d(x_j)$: Cell connected to the output of x_j .

LFSRs

- Automaton with linear update function.
- Let $s(x) = \sum_{i=0}^{\infty} s_i x^i$ be the power series of $S = (s_0, s_1, s_2, ...)$. There exists two polynomials p(x), q(x):

$$s(x) = \frac{p(x)}{q(x)}.$$

- ▶ q(x): Connection polynomial of degree m.
- ► $Q(x) = x^m q(1/x)$: Characteristic polynomial.
- ▶ *m*-sequence: *S* has maximal period of $2^m 1$. (*iff* q(x) is a primitive polynomial)
- Linear complexity: Size of smallest LFSR which generates S.

Fibonacci/Galois LFSRs

Fibonacci setup.

FCSRs [Klapper Goresky 93]

Instead of XOR, FCSRs use additions with carry.

- Non-linear update function.
- Additional memory to store the carry.

▶ S is the 2-adic expansion of the rational number: $\frac{h}{q} \leq 0$.

- **Connection integer** q: Determines the feedback positions.
- ▶ ℓ -sequences: S has maximal period $\varphi(q)$. (*iff* q is odd and a prime power and $ord_q(2) = \varphi(q)$.)
- > 2-adic complexity: size of the smallest FCSR which produces S.

Fibonacci/Galois FCSRs [Klapper Goresky 02]

Fibonacci setup.

Galois setup.

Part 2 Parallel generation of *m*-sequences (LFSRs)

Synthesis of Sub-sequences (1)

- Use Berlekamp-Massey algorithm to find the smallest LFSR for each sub-sequence.
- ▶ All sub-sequences are generated using d LFSRs defined by $Q^{\star}(x)$ but initialized with different values.

Synthesis of Sub-sequences (2)

Theorem [Zierler 59]: Let S be produced by an LFSR whose characteristic polynomial Q(x) is irreducible in \mathbf{F}_2 of degree m. Let α be a root of Q(x) and let T be the period of S. For $0 \le i < d$, S_d^i can be generated by an LFSR with the following properties:

• The minimum polynomial of α^d in \mathbf{F}_{2^m} is the characteristic polynomial $Q^{\star}(x)$ of the new LFSR with:

• Period
$$T^{\star} = \frac{T}{gcd(d,T)}$$
.

• Degree m^{\star} is the multiplicative order of 2 in $\mathbf{Z}_{T^{\star}}$.

Multiple steps LFSR [Lempel Eastman 71]

Clock d times the register in one cycle.

Equivalent to partition the register into d sub-registers

 $x_i x_{i+d} \cdots x_{i+kd}$

such that $0 \leq i < d$ and i + kd < m.

Duplication of the feedback:

The sub-registers are linearly interconnected.

Fibonacci LFSR

Comparison

Synthesis of Sub-sequences:

- Larger memory size: $d \times m^{\star}$
- More logic gates: $d \times wt(Q^*)$

Multiple steps LFSR:

- Same memory size: m
- More logic gates: $d \times wt(Q)$

Part 3

Parallel generation of ℓ-sequences (FCSRs)

Synthesis of Sub-sequences (1)

- We use an algorithm based on Euclid's algorithm [Arnault Berger Necer 04] or on lattice approximation [Klapper Goresky 97] to find the smallest FCSR for each subsequence.
- ▶ The sub-sequences do **not** have the same q.

Synthesis of Sub-sequences (2)

▶ A given S_d^i has period T^* and minimal connection integer q^* .

Period: (True for all periodic sequences)

•
$$T^{\star} \left| \frac{T}{\gcd(T,d)} \right|$$

• If $\gcd(T,d) = 1$ then $T^{\star} = T$.

▶ If
$$gcd(T, d) > 1$$
: T^* might depend on *i*!
E.g. for $S = -1/19$ and $d = 3$: $T/gcd(T, d) = 6$.

•
$$S_3^0$$
: The period $T^{\star} = 2$.

•
$$S_3^1$$
: The period $T^* = 6$.

Synthesis of Sub-sequences (3)

- 2-adic complexity [Goresky Klapper 97]:
 - General case: $q^{\star}|2^{T^{\star}}-1.$
 - gcd(T, d) = 1: $q^* | 2^{T/2} + 1$.
- ► Conjecture [Goresky Klapper 97]: Let S be an ℓ-sequence with connection integer q = p^e and period T. Suppose p is prime and q ∉ {5,9,11,13}. For any d₁, d₂ relatively prime to T and incongruent modulo T and any i, j:

 $S_{d_1}^i$ and $S_{d_2}^j$ are cyclically distinct.

Based on Conjecture:

- If q is prime and gcd(T,d) = 1 then $q^* > q$.
- Let q, p be prime and T = q 1 = 2p:

 $1 \leq d < T$, and $d \neq p$ then $q^{\star} > q$.

Multiple steps FCSR

Clock d times the register in one cycle.

Equivalent to partition the register into d sub-registers

 $x_i x_{i+d} \cdots x_{i+kd}$

such that $0 \leq i < d$ and i + kd < m.

Interconnection of the sub-registers.

Propagation of the carry computation.

Fibonacci FCSR

Galois FCSR

1-decimation

$$A = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t] \mod 2$$

$$B = \boxplus [(x_0)_t, (x_1)_t, (c_0)_t]_{\div 2}$$

$$(x_0)_{t+2} = \boxplus [A, B, (x_2)_t] \mod 2$$

$$(c_0)_{t+2} = \boxplus [A, B, (x_2)_t]_{\div 2}$$

$$(x_1)_{t+2} = (x_3)_t$$

$$(x_2)_{t+2} = (x_0)_t$$

$$(x_3)_{t+2} = A$$

Carry Propagation

Efficient implementation by means of n-bit ripple carry adder:

Comparison

Synthesis of Sub-sequences:

- Period: If gcd(T,d) > 1 it might depend on i.
- 2-adic complexity: q^* can be much bigger than q.

Multiple steps FCSR:

- Same memory size.
- Propagation of carry by well-known arithmetic circuits.

Part 4 Conclusion

Conclusion

- ► The decimation of an *l*-sequence can be used to increase the throughput or to reduce the power consumption.
- A separated FCSR for each sub-sequence is not satisfying.
 However, the multiple steps FCSR works fine (even with carry).
- **Efficient software implementation**: 14-bit FCSR with q = 18433.

Implementation	Throughput
classic	2.7 MByte/s
decimated $(d = 8)$	19 MByte/s

Future Work: How to find the best q for hardware/software implementation?

Watermill generator

