Cryptanalysis of the ESSENCE Hash Function

M. Naya-Plasencia¹ <u>A. Röck</u>² J-P. Aumasson³ Y. Laigle-Chapuy¹ G. Leurent⁴ W. Meier³ T. Peyrin⁵

¹INRIA project-team SECRET, France
 ²Helsinki University of Technology (TKK), Finland
 ³FHNW, Windisch, Switzerland
 ⁴École Normale Supérieure, Paris, France
 ⁵Ingenico, France

Darmstadt - November 26, 2009

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Andrea Röck

Cryptanalysis of ESSENCE

• • • • • • • • • • • • •

Outline

Hash Functions

The ESSENCE Hash Function

Attack on Essence

Conclusion

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

・ロ と ・ 一日 と ・ 日 と ・ 日 と

ъ

Hash Functions

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Andrea Röck

Cryptanalysis of ESSENCE

イロン 不同 とくほ とくほ とう

ъ

Hash Functions

Symmetric cryptography:

Stream ciphers, Block ciphers, Hash functions

- Hash functions:
 - Given a message *M* of arbitrary length, a value *H*(*M*) of fixed length *l_h* is returned
 - Many applications: MAC's (authentification), digital signatures...

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

ヘロト ヘワト ヘビト ヘビト

• Collision resistance:

- Finding two messages ${\cal M}$ and ${\cal M}'$ so that ${\cal H}({\cal M})={\cal H}({\cal M}')$ must be "hard"
- Second preimage resistance:
 - Given a message \mathcal{M} and $\mathcal{H}(\mathcal{M})$, finding another message \mathcal{M}' so that $\mathcal{H}(\mathcal{M}) = \mathcal{H}(\mathcal{M}')$ must be "hard"
- Preimage resistance:
 - Given a hash ${\cal H},$ finding a message ${\cal M}$ so that ${\cal H}({\cal M})={\cal H}$ must be "hard"

Remark: We never say impossible

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

・ロット (四) ・ (日) ・ (日)

- Collision resistance:
 - Finding two messages ${\cal M}$ and ${\cal M}'$ so that ${\cal H}({\cal M})={\cal H}({\cal M}')$ must be "hard"
- Second preimage resistance:
 - Given a message \mathcal{M} and $\mathcal{H}(\mathcal{M})$, finding another message \mathcal{M}' so that $\mathcal{H}(\mathcal{M}) = \mathcal{H}(\mathcal{M}')$ must be "hard"
- Preimage resistance:
 - Given a hash ${\cal H},$ finding a message ${\cal M}$ so that ${\cal H}({\cal M})={\cal H}$ must be "hard"

Remark: We never say impossible

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

・ロット (雪) () () () ()

- Collision resistance:
 - Finding two messages ${\cal M}$ and ${\cal M}'$ so that ${\cal H}({\cal M})={\cal H}({\cal M}')$ must be "hard"
- Second preimage resistance:
 - Given a message \mathcal{M} and $\mathcal{H}(\mathcal{M})$, finding another message \mathcal{M}' so that $\mathcal{H}(\mathcal{M}) = \mathcal{H}(\mathcal{M}')$ must be "hard"
- Preimage resistance:
 - Given a hash ${\cal H},$ finding a message ${\cal M}$ so that ${\cal H}({\cal M})={\cal H}$ must be "hard"

Remark: We never say impossible

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

ヘロト ヘワト ヘビト ヘビト

- Collision resistance:
 - Finding two messages ${\cal M}$ and ${\cal M}'$ so that ${\cal H}({\cal M})={\cal H}({\cal M}')$ must be "hard"
- Second preimage resistance:
 - Given a message \mathcal{M} and $\mathcal{H}(\mathcal{M})$, finding another message \mathcal{M}' so that $\mathcal{H}(\mathcal{M}) = \mathcal{H}(\mathcal{M}')$ must be "hard"
- Preimage resistance:
 - Given a hash $\mathcal{H},$ finding a message \mathcal{M} so that $\mathcal{H}(\mathcal{M})=\mathcal{H}$ must be "hard"
- Remark: We never say impossible

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

ヘロト ヘワト ヘビト ヘビト

Security Requirements of Hash Functions

A strict definition of "hard":

- Collision resistance
 - Generic attack needs 2^{ℓ_h/2} hash function calls
 ⇒ any attack requires at least as many hash function calls as the generic attack.
- Second preimage resistance and preimage resistance
 - Generic attack needs 2^{ℓ_h} hash function calls
 ⇒ any attack requires at least as many hash function calls as the generic attack.

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

A D N A B N A B N

SHA-3 Competition [NIST]

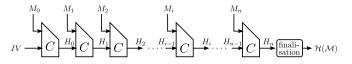
- Attacks against MD5, SHA-1,...
- Confidence in SHA-2 (standard) undermined
- Need of SHA-3: NIST has launched a public competition

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

< ロト < 同ト < ヨト < ヨト

SHA-3 Competition - Candidates

- 64 submissions (October 2008)
- 51 first round candidates
 - ESSENCE
- 14 second round candidates (July 2009)



HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

< ロト < 同ト < ヨト < ヨト

Merkle-Damgård

- Merkle-Damgård is an often used construction
 - Split message \mathcal{M} into message blocks M_0, M_1, \dots, M_n of fixed size m
 - If *M_n* is not bit enough extend it to *m* bits: padding
 - *H_i* are the intermediate chaining values
 - If the one-way compression function *C* is collision resistant, then so is the hash function

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

A (10) > (10)

Davies-Meyer

- Davies-Meyer is a method to construct a secure one-way function from a block cipher *E*
 - Secure under the "black-box" model (the block cipher has the required randomness properties and the attacker cannot use any special properties or internal details of *E*)

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

The ESSENCE Hash Functions

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Andrea Röck

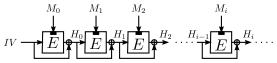
Cryptanalysis of ESSENCE

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э

ESSENCE [Jason W. Martin]

- First round candidate of the SHA-3 competition
- Bases on feedback shift registers
 - over 32-bit words for ESSENCE-256/224
 - over 64-bit words for ESSENCE-512/384
- Message block: 8 words
- Chaining value: 8 words

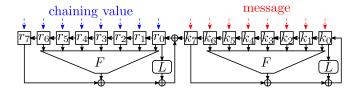

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

Structure

Merkle-Damgård tree

- A leaf hashes a fixed number of message blocks using MD
- The inner nodes are combined again by MD
- The height of the trees depends on a changeable parameter
- The roots are combined with a final block containing the message length
- Davies-Meyer construction for the compression function



HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

< 🗇 🕨

Block Cipher of the Compression Function

 $32 \times$ clocked

- F: bitwise non-linear function
- L: linear function on the whole word
- 32 reversible steps

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

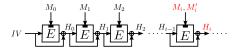
ヘロト ヘワト ヘビト ヘビト

Attack on ESSENCE

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Andrea Röck

Cryptanalysis of ESSENCE


イロン 不同 とくほ とくほ とう

ъ

Collision in compression function

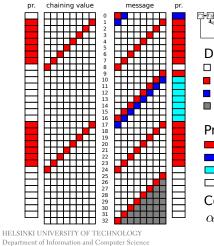
Using a differential path

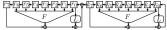
HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

ヘロト ヘワト ヘビト ヘビト

ъ

Differential Path - General


- For iterative structures
- Let Z_i, Z'_i denote the states after i (out of N) iterations starting from Z₀, Z'₀
 - Consider differences $\Delta_i = Z_i \oplus Z'_i$ for $0 \le i \le N$
 - Transition from Δ_i to Δ_{i+1} with certain probability
- Finally we want no difference in the chaining value



HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

イロト イポト イヨト イヨト

Differential Path

Differences: □ no difference

$$\overset{\alpha}{\beta} = L(\alpha$$

I unknown

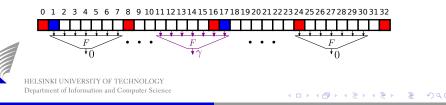
Probabilities:

 $\overset{2}{=} \overset{\alpha}{\overset{2}{=}} \overset{\alpha}{\overset{\beta}{=}} \overset{\beta}{=} \overset{\beta}{=} \overset{\beta}{=} \overset{\alpha}{\overset{\beta}{=}} \overset{\beta}{=} \overset$

Condition: $\alpha \lor \beta \lor L(\beta) = \alpha \lor \beta$

Andrea Röck

・ロ と ・ 「 日 と ・ 「 日 と ・ 「 日 と ・ 」


э

Exact Complexities

- Probabilities based on Hamming weight (HW) underestimates the real complexity of the attack:
 - e.g. a 1 bit difference has probability 2^{-8.4} to pass the 7 steps of F, and not 2⁻⁷ as we would guess from the HW

For accurate estimates consider the whole path bitwise

- Possible differences: $(\alpha_i, \beta_i, \gamma_i)$ with $0 \le i \le 32/64$ and $\beta = L(\alpha)$ and $\gamma = L(\beta)$
- Have to test 2^{30} values for each each $(\alpha_i, \beta_i, \gamma_i)$

Probability of Complete Path - Bitwise

• Bitwise probability, independent of α

$(lpha_i,eta_i,\gamma_i)$ probability	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)
	1	<mark>0</mark>	2 ^{-9.5}	2 ^{-9.1}
$(\alpha_i, \beta_i, \gamma_i)$	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
probability	2 ^{-24.4}	<mark>0</mark>	2 ⁻²³	2 ⁻²⁶

- Gives two conditions for α:
 - $\neg \alpha \land \neg \beta \land \gamma = \mathbf{0}$
 - $\alpha \wedge \neg \beta \wedge \gamma = \mathbf{0}$

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

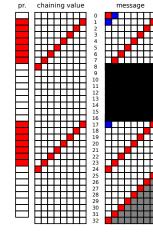
イロト イヨト イヨト

Complexity of Complete Path

• Complexity for the α 's used in our attack:

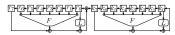
	differer left	ntial path <mark>right</mark>	generic method			
ESSENCE-256	2 ^{67.4}	2 ^{240.6}	2 ¹²⁸			
ESSENCE-512	2 ^{134.7}	2 ^{478.9}	2 ²⁵⁶			

 About 2^{15.4} pairs pass the whole path for ESSENCE-256 (2^{37.1} for ESSENCE-512)



HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

ヘロト ヘワト ヘビト ヘビト


pr.

Idea: Computing the Middle Part

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Differences:

$$\beta = L(\alpha)$$

unknown

Probabilities: $= 2^{-|\alpha|}_{2^{-|\beta|}}$

 $\begin{array}{c} \tilde{2}^{-|\beta|} \\ 2^{-|\alpha \lor \beta|} \\ 1 \end{array}$

Conditions:

$$\neg \alpha \land \neg \beta \land \gamma = 0$$
$$\alpha \land \neg \beta \land \gamma = 0$$

ヘロト ヘワト ヘビト ヘビト

э

Strategy of the Attack

- Compute many pairs that fulfill the middle part (step 8-17)
- Search among those one message pair that passes the rest of the path (step 0-8 and step 17-32)
- Try different chaining values (random starting messages) with our message pair to find a collision

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

< ロト < 同ト < ヨト < ヨト

Computing the Middle Part

8	$\mathbf{X}_{0} \oplus \alpha$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> ₆	<i>X</i> 7
9	<i>x</i> ₁	x ₂	<i>X</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7	$\mathbf{X}_{8} \oplus \alpha$
10	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7	$\mathbf{X_8} \oplus \alpha$	$X_9\opluseta$
11	<i>X</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7	$\mathbf{X}_{8} \oplus \alpha$	$X_9\opluseta$	<i>x</i> ₁₀
12	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	X 7	$\mathbf{X}_{8} \oplus \alpha$	$X_9 \oplus eta$	<i>x</i> ₁₀	<i>x</i> ₁₁
13	<i>x</i> 5	<i>x</i> ₆	<i>X</i> 7	$\mathbf{X_8} \oplus \alpha$	$X_9 \oplus eta$	<i>x</i> ₁₀	<i>X</i> 11	<i>x</i> ₁₂
14	<i>x</i> ₆	x ₇	$\mathbf{X_8} \oplus \alpha$	$X_9\opluseta$	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>X</i> ₁₂	<i>x</i> ₁₃
15	<i>x</i> ₇	$X_8 \oplus \alpha$	$X_9\opluseta$	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>X</i> 13	<i>x</i> ₁₄
16	$\mathbf{X_8} \oplus \alpha$	$X_9 \oplus \beta$	<i>x</i> ₁₀	<i>x</i> ₁₁	x ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
17	$X_9 \oplus \beta$	x ₁₀	<i>x</i> ₁₁	x ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	$x_{16} \oplus \alpha$

Let *ℓ* be the word size (32 or 64), *β* = *L*(*α*), *γ* = *L*(*β*),
 s = |*α* ∨ *β*| and *S* = {*i* : *α_i* ∨ *β_i* = 1}

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

・ロン ・雪 と ・ ヨ と

Computing the Middle Part - Bit Level

• For all bit-difference $(\alpha_i, \beta_i, \gamma_i)$, $0 \le i < 32/64$:

• Store bit-tuples $(x_1, \ldots, x_{15})_i$ passing *F* in the middle part:

 $e.g.: F(x_2, x_3, x_4, x_5, x_6, x_7, x_8)_i = F(x_2, x_3, x_4, x_5, x_6, x_7, x_8 \oplus \alpha)_i$

- Better: Store only those tuples which have a possibility to pass the rest of the path
- Number of tuples depending having the bit-differences:

(0, 0, 1)	(0, 1, 0)	(0, 1, 1)	(1, 0, 0)	(1, 0, 1)	(1, 1, 0)	(1, 1, 1)
		128		120		176
		128	2		4	2

Number of possibilities to choose $(x_1, \ldots, x_{15})_i$, $i \in S$:

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

イロト 不得 とくほ とくほとう

Computing the Middle Part - Bit Level

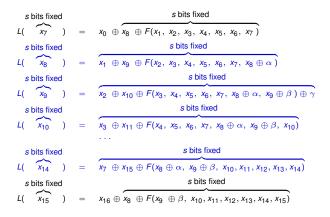
• For all bit-difference $(\alpha_i, \beta_i, \gamma_i), 0 \le i < 32/64$:

• Store bit-tuples $(x_1, \ldots, x_{15})_i$ passing F in the middle part:

 $e.g.: F(x_2, x_3, x_4, x_5, x_6, x_7, x_8)_i = F(x_2, x_3, x_4, x_5, x_6, x_7, x_8 \oplus \alpha)_i$

- Better: Store only those tuples which have a possibility to pass the rest of the path
- Number of tuples depending having the bit-differences:

$(\alpha_i, \beta_i, \gamma_i)$	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
	0	96	128	96	120	96	176
better	0	96	128	2	0	4	2



Number of possibilities to choose
$$(x_1, \ldots, x_{15})_i$$
, $i \in S$:
 $N_{\alpha} = 2^{|\alpha \wedge \neg \beta \wedge \neg \gamma|} \times 4^{|\alpha \wedge \beta \wedge \neg \gamma|} \times 96^{|\neg \alpha \wedge \beta \wedge \neg \gamma|} \times 2^{|\alpha \wedge \beta \wedge \gamma|} \times 128^{|\neg \alpha \wedge \beta \wedge \gamma|}$

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science (\mathbf{x}_{i}) , $i \in \mathbf{S}$

・ロト ・ ア・ ・ ヨト・

Computing the Middle Part - Fix s Bits

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

• 3 >

Computing the Middle Part - Linear Systems

• We have 7 linear systems depending on α , 8 $\leq j \leq$ 14

$$L(x_j)=R_j$$

- x_i and R_i have together
 - 2ℓ bits (ℓ is the word length)
 - 2s bit fixed
- L gives ℓ equations
- Probability of a solution 2^{-(2s-l)} if the system has full rank

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Computing the Middle Part - Solving the Systems

- The position of the fixed bits is given by $\ensuremath{\mathcal{S}}$
- Using Gauss elimination we find 2s − ℓ equation which must be satisfied to have a solution
- Order the $7(2s \ell)$ equations depending on the variables they contain, so that changing the variables in the later equations has no influence on the results of the first ones

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Computing the Middle Part - Finishing

- After solving the linear systems we have
 - In x_j , R_j all bit fixed, $8 \le j \le 14$
 - In x_1, \ldots, x_7, x_{15} we have s bit fixed
 - In x₀, x₁₆ no bit fixed
- Selecting the ℓ − s free bits of x₇ allows us to determine all the other free bits

 \Rightarrow For each solution of the linear systems we have $2^{\ell-s}$ solution for the middle part for free

 In average, we find a solution for x₀,..., x₁₆ in less than one call to the compression function

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

ヘロト ヘワト ヘビト ヘビト

Final Complexity

• To find the optimal α

- ESSENCE-256: Test all possible α
- ESSENCE-512:

Test all α 's with HW \leq 8 (limitation on the left side)

	differer	itial path right	generic method
ESSENCE-256	2 ^{67.4}	2 ^{62.2}	2 ¹²⁸
ESSENCE-512	2 ^{134.7}	2 ^{116.1}	2 ²⁵⁶

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

ヘロト ヘワト ヘビト ヘビト

э

Semi-Free-Start Collision on 29 rounds

				Initial va	lues for r								Initial va	lues for k				
	80741769	BA2BA1A1	349A4DC8	54204D82	29200681	80096194	D23020E1	9098A7EA		4CD35806	4759FB6D	3ED267E5	17641536	BE1F35ED	688B0C3C	DF126549	5FAE0827	
round				differ					round				differ					rour
0	0	0	0	0	0	0	0	0	0	80102040		0	0	0		0	0	0
1	0	0	0	0	0	0	0	80102040	1	537874£B	0	0	0	0	0	0	80102040	1
2	0	0	0	0	0	0	80102040	0	2	0	0	0	0	0	0	80102040	0	2
3	0	0	0	0	0	80102040	0	0	3	0	0	0	0	0	80102040	0	0	3
4	0	0	0	0	80102040	0	0	0	4	0	0	0	0	80102040	0	0	0	4
5	0	0	0	80102040	0	0	0	0	5	0	0	0	80102040	0	0	0	0	5
6	0		80102040	0	0	0	0	0	6	0	0	80102040	0	0	0	0	0	6
7	0	80102040	0	0	0	0	0	0	7	0	80102040	0	0	0	0	0	0	7
8	80102040	0	0	0	0	0	0	0	8	80102040	0	0	0	0	0	0	0	8
9	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	80102040	9
10	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0			10
11	0	0	0	0	0	0	0	0	11	0	0	0	0	0	80102040		0	11
12	0	0	0	0	0	0	0	0	12	0	0	0	0	80102040		0	0	12
13	0	0	0	0	0	0	0	0	13	0	0	0			0	0	0	13
14	0	0	0	0	0	0	0	0	14	0	0			0	0	0	0	14
15	0	0	0	0	0	0	0	0	15	0	80102040		0	0	0	0	0	15
16	0	0	0	0	0	0	0	0	16			0	0	0	0	0	0	16
17	0	0	0	0	0	0	0	80102040	17	537874EB	0	0	0	0	0	0	80102040	17
18	0	0	0	0	0	0	80102040	0	18	0	0	0	0	0	0		0	18
19	0	0	0	0	0		0	0	19	0	0	0	0	0		0	0	19
20	0	0	0	0	80102040	0	0	0	20	0	0	0	0		0	0	0	20
21	0	0	0		0	0	0	0	21	0	0	0		0	0	0	0	21
22	0		80102040	0	0	0	0	0	22	0	0		0	0	0	0	80000040	22
23		80102040	0	0	0	0	0	0	23	0	80102040	0	0	0	0	80000040	38C32419	23
24	80102040	0	0	0	0	0	0	0	24	80102040	0	0	0	0	80000040	38C32419	3B50EAEF	24
25	0	0	0	0	0	0	0	0	25	0	0	0	0	80000040	38C32419	3B50EAEF	29273858	25
26	0	0	0	0	0	0	0	0	26	0	0	0		38C32419	3B50EAEF	29273828	D59E6BC4	26
27	0	0	0	0	0	0	0	0	27	0	0	80000040	38C32419	3B50EAEF	29273828			27
28	0	0	0	0	0	0	0	0	28	0	80000040	38C32419		29273828	D59E6BC4		81993745	28
29	0	0	0	0	0	0	0	0	29	80000040	38C32419		29573858	D59E6BC4	519ECD90		1B9B997C	29
30	0	0	0	0	0	0	0	80000040	30	38C32419	3B50EAEF			519ECD90		1898997c	A7EF91F9	30
31	0	0	0	0	0	0	80000040	102040	31	3B50EAEF		D59268C4		81993745			21E1C70	31
32	0	0	0	0	0	80000040	102040	3336DACE	32	29573858	D5926BC4	519%CD90	8199374F	1898997C	A72F91F9	21E1C70	18715D5F	32

HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Information and Computer Science

イロン 不同 とくほ とくほ とう

ъ

Conclusion

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

Andrea Röck

Cryptanalysis of ESSENCE

イロン 不同 とくほ とくほ とう

ъ

• Complexity:

- ESSENCE-256: 2^{67.4}
- ESSENCE-512: 2^{134.7}
- Why does the attack work?
 - Message precessing is independent of chaining value
 - Precompute low probability part
 - Efficient solving of linear system
 - Exact probability by considering the bit path
 - Reduced cost by considering the whole path

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

イロト イポト イヨト イヨト

• Complexity:

- ESSENCE-256: 2^{67.4}
- ESSENCE-512: 2^{134.7}

Why does the attack work?

- Message precessing is independent of chaining value
- Precompute low probability part
- Efficient solving of linear system
- Exact probability by considering the bit path
- Reduced cost by considering the whole path

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Information and Computer Science

A D N A B N A B N