

Exploiting Linear Hull in Matsui's Algorithm 1

Andrea Röck and Kaisa Nyberg

Department of Information and Computer Science Aalto University, School of Science

The Seventh International Workshop on Coding and Cryptography 2011 April 11-15, 2011, Paris, France

Outline

Introduction

Direct Attack

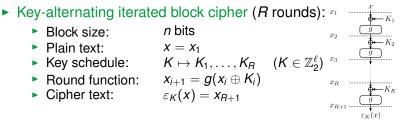
Related Key Attack

Results from Experiments

Conclusion

Introduction

Linear Cryptanalysis [Matsui 1994]



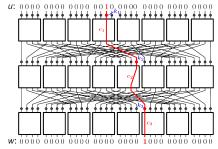
Correlation over R rounds:

$$c_{\mathsf{R}}(u,w,\mathsf{K}) = \frac{\#\{u \cdot x = w \cdot \varepsilon_{\mathsf{K}}(x)\} - \#\{u \cdot x \neq w \cdot \varepsilon_{\mathsf{K}}(x)\}}{2^{n}}$$

- Matsui's Algorithm 1:
 - Use key dependency of $c_R(u, w, K)$ to learn $K \cdot v$
- Matsui's Algorithm 2:
 - Use that $|c_{R-1}(u, w, K)| > 0$ to gain information on K_R

Example 1

Single strong trail (like in SERPENT)



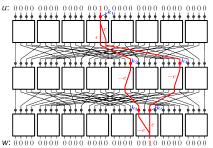
Piling-up Lemma [Matsui 1994]

$$c(u, w, K) = (-1)^{k_1 \oplus k_2 \oplus k_3} c_1 c_2 c_3$$

Sign of trail-correlation depends on linear combination of key bits

Example 2 - Linear Hull

Multiple strong trails (like in AES, PRESENT)



The total correlation is the sum of the trail-correlations [Nyberg 2001, Deamen and Rijmen 2002]

$$c(u, w, K) = (-1)^{k_1 \oplus k_2 \oplus k_3} c^3 + (-1)^{k_1 \oplus k_4 \oplus k_5} (-c^3)$$

Linear Hull - Algorithm 2

- The average squared correlation of the linear approximation taken over all keys is equal to the sum of all squared trail correlations [Nyberg 1995]
- On average $|c_{R-1}(u, w, K)|$ is large enough to learn K_R
- For some keys, |c_{R−1}(u, w, K)| is very small and the attack does not work [Murphy 2009]

Linear Hull - Algorithm 1

Until now not analyzed

Example: Two (independent) trails with trail-correlation *c*

- For 1/4 of keys: c(u, w, K) = −2c
- For 1/2 of keys: c(u, w, K) = 0 (Alg. 2 does not work)
- For 1/4 of keys: c(u, w, K) = 2c
- Correlation gives information of the key
 - In example: we learn 1.5 bits of information

Direct Attack

Idea

- Total correlation can be approximated by strong key-mask correlations: $c(u, w, K) \approx \sum_{v \in \mathcal{V}} \rho(v) (-1)^{v \cdot K}$
- Set of strong key masks: V
- Key-mask correlation: $\rho(v)(-1)^{v \cdot K}$
- Possible correlations:
- Key classes:

$$\mathcal{C} = \left\{ c(u, w, K) : K \in \mathbb{Z}_2^\ell \right\}$$

$$\mathcal{K}(\boldsymbol{c}) = \big\{ \boldsymbol{K} \in \mathbb{Z}_2^{\ell} : \boldsymbol{c}(\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{K}) = \boldsymbol{c} \big\}$$

▶ Goal: For a given secret key K estimate $c \in C$ from data such that $K \in \mathcal{K}(c)$

Efficient Precomputation

- ► How to compute C and $\mathcal{K}(c)$ faster than evaluating $\sum_{v \in V} \rho(v)(-1)^{v \cdot K}$ for all $K \in \mathbb{Z}_2^{\ell}$?
- ▶ Let t = dim(span(V))
- Can partition set of keys into 2^t disjoint subsets such that all the keys in a subset have the same correlation (subset ⊂ K(c) for a c ∈ C)
- Use fast Walsh-Hadamard transform
- ▶ Precomputation complexities: time $O(t2^t)$, memory $O(2^t)$

Statistical Test

- ▶ |C|-ary hypothesis testing problem: Find correct $c \in C$
- $|\mathcal{K}(c)|$ varies a lot for different c
 - ► Use a priori probabilities π_c = Pr[c(u, w, K) = c] of c (Bayesian approach)
- ► Complexity depends on minimal distance in C:
 - $d = \min_{c_1 \neq c_2 \in \mathcal{C}} |c_1 c_2|$
- Data complexity for error probability P_e

$$N = 8 \ln(2) rac{\log_2(|\mathcal{C}| - 1) - \log_2 P_e}{d^2}$$

Gained Information

- How much information do we learn?
- Average learned information: Shannon's entropy of a priori probabilities π_c

$$h = -\sum_{\boldsymbol{c}\in\mathcal{C}} \pi_{\boldsymbol{c}} \log_2 \pi_{\boldsymbol{c}}$$

- Special case: If all vectors in V linearly independent and |ρ(v)| = const: c ∈ C are binomial distributed and O(¹/₂log₂(^{πe}/₂|V|))
- Always $h \leq \log_2 |\mathcal{C}|$

Related Key Attack

Idea

- Complexity of direct attack increases with number of strong key masks |V|
- Reduce number of relevant key masks by related key attack
- Correlation difference:

$$\Delta(K,\alpha) = c(u, w, K) - c(u, w, K \oplus \alpha)$$

=
$$\sum_{v \in \mathcal{V}} (-1)^{v \cdot K} \rho(v) - \sum_{v \in \mathcal{V}} (-1)^{v \cdot (K \oplus \alpha)} \rho(v)$$

▶ Reduced key mask set: $\mathcal{V}_{\alpha} = \{ \mathbf{v} \in \mathcal{V} : \mathbf{v} \cdot \alpha = 1 \}$

$$\Delta(K,\alpha) = \frac{2}{\sum_{\mathbf{v}\in\mathcal{V}_{\alpha}}}(-1)^{\mathbf{v}\cdot K}\rho(\mathbf{v})$$

Statistical test and definition of C_α, d_α, t_α, h_α equivalent to direct attack

Aalto University School of Science

Multiple Related Key Attack

- ► For a given V we can learn at most t = dim(span(V)) bits of information
- ► Independent case: all vectors in *V* are linearly independent
 - Given any $v \in \mathcal{V}$ choose α_v such that for all $v' \in \mathcal{V}$:

$$\alpha_{\mathbf{v}} \cdot \mathbf{v}' = \delta_{\mathbf{v},\mathbf{v}'} = \begin{cases} 1 & \text{if } \mathbf{v}' = \mathbf{v} \\ 0 & \text{otherwise} \end{cases}$$

- ► Then $\mathcal{V}_{\alpha_{v}} = \{v\}$ and from $\Delta(K, \alpha_{v}) = 2(-1)^{v \cdot K} \rho(v)$ we learn $K \cdot v$ (as in the classical Alg. 1)
- Applying related key attacks for all α_v , $v \in \mathcal{V}$ gives us $|\mathcal{V}| = t$ bits of information
- ► Can be generalized to dependent case by considering a basis of span(V) instead of V to learn ≤ t bits

Results from Experiments

Round Reduced PRESENT [Bogdanov et al. 2007]

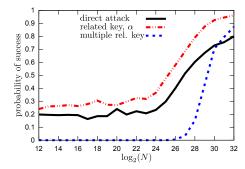
- 7 round 80-bit key version of PRESENT cipher
- Key schedule is semi-linear
- Extended key $K \in \mathbb{Z}_2^{104}$: round keys depend linearly on K
- ▶ Multiple strong trails of correlation 2^{-2R} for *R* rounds
- Direct attack

► $|\mathcal{V}| = 24$, $|\mathcal{C}| = 13$, t = 15, $|\rho(v)| = 2^{-14}$, h = 3.2

- Related key approach
 - ► Assert that $K \oplus \alpha$ can be produced (α must not influences non-linear parts of the key schedule)
 - $|\mathcal{V}_{\alpha}| = 9, |\mathcal{C}_{\alpha}| = 10, t_{\alpha} = 9, |\rho(v)| = 2^{-14}, h_{\alpha} = 2.6$
- Multiple related key approach
 - Learn 14.25 bits of information
- 400 random keys and 2³² plain text blocks
- Direct attack theoretically applicable on up to 12 rounds for an 80-bit key and on up to 14 rounds for a 128-bit key

Probability of Success

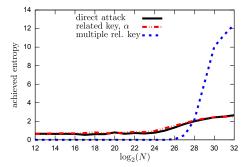
Test for 400 different keys



- Multiple related key is only correct if all key classes are correct
- Related key has higher success probability

Achieved Entropy

- Achieved entropy: entropy × success probability
- Test for 400 different keys



For N ≥ 2²⁸ the multiple related key approach leads to best result

Conclusion

Comparison (1)

Algorithm 1 vs. Algorithm 2 for multiple strong trails
 Algorithm 1 Algorithm 2
 Targets K Targets K_R

Works for all keys

Works for most keys

Data complexity inverse proportional to minimal distance d between elements in C For about half of the keys the data complexity is better or equal to $\mathcal{O}\left(\left(\sum_{v \in \mathcal{V}} \rho(v)^2\right)^{-1}\right)$

Comparison (2)

Multiple related key approach vs. multidimensional linear cryptanalysis for Algorithm 1

Multiple related key

- Setting One approximation with multiple strong trails
- Dim. t dimension of trail set \mathcal{V}

Data N

Offline

$$\mathcal{O}\left(\max_{1 \leq i \leq t} \frac{(|\mathcal{C}_{\alpha_i}| - 1) - \log \mathcal{P}_{e}}{\mathcal{d}_{\alpha_i}^2}\right)$$

: $\mathcal{O}\left(t^2 2^t\right)$, m: $\mathcal{O}\left(t2^t\right)$

Online t: $\mathcal{O}(tN)$, m: $\mathcal{O}(t)$

Inform. $\sim t$ bits

t

Multidimensional

m linearly independent approx. each with one strong trail

m number of base approx.

$$\mathcal{O}\left(\frac{(2^m-1)-\log P_e}{2^m \sum_{\eta \in \mathbb{Z}_2^m} (p_\eta - 2^{-m})^2}\right)$$
t: $\mathcal{O}(m2^m)$, m: $\mathcal{O}(2^m)$
t: $\mathcal{O}(mN)$, m: $\mathcal{O}(2^m)$

m bits

Conclusion

- Application of Matsui's Algorithm 1 on key-alternating iterated block cipher which has linear approximations with multiple strong trails
- Precomputation complexity increases with number of trails
- Data complexity is inverse proportional to minimal distance between possible correlations
- Related key analysis reduces number of considered trails
- Several key differences can be combined for a better result

