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ABSTRACT: The Ramsey number R(k, l) is the least integer n such that all
graphs on n or more vertices contain a clique of k vertices or an independent
set of l vertices as an induced subgraph. In this work we investigate com-
putational methods for finding lower bounds for Ramsey numbers. Some
constructions of lower bounds for multicolor Ramsey numbers, a generaliza-
tion of Ramsey numbers, are also considered.

Several methods that have been used for finding lower bounds for Ram-
sey numbers are surveyed. Specifically, constructions which correspond to
the structure of finite fields are examined, using local search methods is dis-
cussed, and using symmetrical graph colorings are investigated. The main
emphasis in this work is on using local search methods for finding lower
bounds for Ramsey numbers. By a construction found by using tabu search,
we show that R(5, 9) is greater than 120.

Evaluating Ramsey numbers is very difficult due to the combinatorial na-
ture of the problem, and exact values are only known for the smallest values
of the parameters. Some recent results concerning the computational com-
plexity of related problems are summarized.

KEYWORDS: Ramsey numbers, graph theory, tabu search
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1 INTRODUCTION

The aim of this chapter is to give the reader an overview of Ramsey numbers.
Sections 1.1 and 1.2 introduce the subject. Some necessary graph-theoretical
definitions are given in Section 1.3. In Section 1.4 some fundamental and
illustrative results regarding Ramsey numbers are given. In Section 1.5 some
results regarding the computational complexity of determining Ramsey num-
bers are briefly reviewed.

1.1 RAMSEY THEORY

Ramsey theory shows us that in any combinatorial structure, no matter how
random it may seem, there are substructures that are more structured than
the original combinatorial structure. The following three examples are the
simplest cases of the corresponding theorems.

Ramsey: In every group of 6 people, there are three people who know each
other, or three people who do not know each other.

Van der Waerden: If the integers 1, . . . , 325 are colored with two colors,
there will be an arithmetic progression of length three (that is, some
integers a, a + d, a + 2d) in one color.

Schur: If the integers 1, . . . , 14 are colored with three colors, then there will
be some integers a and b such that a, b, and a − b are all of the same
color.

In the Ramsey case, the large group of people who may know or not know
each other always contains a subgroup where either everybody knows every-
body or nobody knows anybody.

In the Van der Waerden case, the integers 1, . . . , 325 form an arithmetic
progression of length 325. When the long arithmetic progression is colored
with two colors, it will necessarily contain a shorter one-colored arithmetic
progression.

The Schur case is slightly different; it states that it is impossible to color
the integers 1, . . . , 14 in a manner so unorderly that there would be no two
numbers and their difference in the same color.

These simple examples alone are not very interesting. What is more inter-
esting is that the results are general. In each of the three statements above, if
one replaces any occurrences of the words two and three with any arbitrary
integers, one can retain the validity of the statement by replacing the 6, 325,
or 14 with a sufficiently large finite integer, for example:

Ramsey: In every group of 25 people, there are four people who know each
other, or five people who do not know each other.

Van der Waerden: If the integers 1, . . . , 4.23 · 1014616 are colored with three
colors, there will be an arithmetic progression of length three (that is,
some integers a, a + d, a + 2d) in one color.

1. INTRODUCTION 1



Schur: If the integers 1, . . . , 45 are colored with four colors, then there will
be some integers a and b such that a, b, and a − b are all of the same
color.

The numbers mentioned for these special cases of Ramsey’s theorem are
taken from [36]. The numbers for the examples of van der Waerden’s the-
orem are taken from [25], an extensive survey on Ramsey theory. The num-
bers for the Schur problem were given in Schur’s original paper [43] and in
an unpublished work of Baumert, respectively.

Since for any given values of the parameters there is always some integer
for which the statement holds, and obviously the statement is then true for all
larger integers as well, the natural follow-up question is that of determining
the smallest integer for which the statement is true. The smallest such integer
is then called the Ramsey number or the van der Waerden number, respec-
tively. For Schur numbers a slightly different definition is usually used: the
Schur number is the largest integer for which the statement does not hold.

• The Ramsey number R (k, l) is the smallest number such that in any
group of that many people at least k will know each other or at least l
will not know each other. (A more formal definition will be given in
Section 1.4.)

• The van der Waerden number W (k, l) is the smallest number n such
that whenever the integers 1, . . . , n are colored with l colors, there will
be a one-colored arithmetic progression of length k.

• The Schur number s (n) is the largest integer k such that the integers
1, . . . , k can be colored with n colors so that there are no integers a
and b such that a, b, and a− b would all be of the same color.

In this work, we will consider various methods for obtaining lower bounds
for specific Ramsey numbers. Schur numbers are investigated because of
their connection to Ramsey numbers. Van der Waerden numbers are not
considered in this work. Finally, the new lower bound R(5, 9) > 120 will be
presented.

1.2 PARTY MATHEMATICS

Recall that the Ramsey number R (k, l) is the smallest integer such that in
any group of that many people at least k will know each other or at least l will
not know each other. The problem of determining the value of a Ramsey
number is also known as the party problem.

Problem 1.2.1 (Party problem) What is the minimum number of guests that
must be invited to a party to ascertain that at least k will know each other, or
at least l will not know each other?

Determining the exact values of Ramsey numbers is rather difficult, and
the exact value is only known in a few cases. For most parameter values, only
bounds are known.
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Example 1.2.2 R (4, 4) = 18: it is known that in a group of 18 people there
are always four who know each other or four who do not; in a group of 17 it
is possible that neither kind of group exists.

Example 1.2.3 R (4, 5) = 25: McKay and Radziszowski [32] expended about
a decade of computer time to show that in a group of 25 there are always four
who know each other or five who do not. It is also known that in a group of
24 it is possible that neither kind of group exists.

Example 1.2.4 The value of R (5, 5) is unknown. It is only known that 42 <
R (5, 5) ≤ 49: in a group of 49 there are always five who know each other or
five who do not, and in a group of 42 neither kind of group necessarily exists.

Radziszowski has compiled many of the known results in his survey [36].
Some of the results found in it are summarized in Figure 1.1. Known ex-
act values appear as centered entries, lower bounds as top entries and upper
bounds as bottom entries. A missing entry indicates that the best currently
known bound can be found by applying the basic inequalities given in Sec-
tion 1.4.2. Only the upper triangle is filled, since R (k, l) = R (l, k).

l
k

3 4 5 6 7 8 9 10 11

3 6 9 14 18 23 28 36
40
43

46
51

4 18 25
35
41

49
61

55
84

69
115

80
149

96
191

5 43
49

58
87

80
143

95
216

116
316

141
442

153

6 102
165

109
298

122
495

153
780

167
1171

203

7 205
540 1031 1713 2826

8 282
1870 3583 6090

9 565
6625 12715

10 798
23854

Figure 1.1: Values and bounds for Ramsey numbers R(k, l).

The lower bounds typically arise from explicit constructions, showing how
people might know/not know each other so that no large subgroup exists. The
upper bounds arise from diverse ways of proving that no matter how people
know/do not know each other, a large subgroup must exist. To illustrate, we
show that R (3, 3) = 6. First, we show the lower bound R (3, 3) > 5 and
then the upper bound R (3, 3) ≤ 6. These results are well known; they were
presented in [26].

Theorem 1.2.5 R (3, 3) > 5: There can be a group of five people, where
there are no three people who know each other and no three people, who do
not know each other.
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Proof: With the dots representing the people, solid lines representing know-
ing each other and dashed lines representing not knowing each other, Figure
1.2 represents such a group. Clearly, no three dots are connected to each
other by lines of the same type.

Figure 1.2: R (3, 3) > 5.

Virtually all known lower bounds have been obtained in essentially the
same way, that is, by presenting a construction and verifying that the largest
cliques with each type of line are not too large.

Theorem 1.2.6 R (3, 3) ≤ 6: In every group of six people, there are three
people who know each other, or three people who do not know each other.

Proof: Consider any of the people. There are five other people, each of
which the first person either knows or doesn’t know. Therefore, there have
to be three people the first person knows or three people he doesn’t know.
Let us assume that there are three people the first person knows. (See Figure
1.3, on the left.) If any two of these three people would know each other,
they and the first person would form a group of three who all know each
other. Therefore, none of them can know each other. (See Figure 1.3, on
the right.) Now, however, they form a group of three who do not know each
other. As the case where there are three people the first person doesn’t know
is completely analogous, the theorem is proven.

Figure 1.3: R(3, 3) ≤ 6.
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1.3 DEFINITIONS

Definition 1.3.1 A graph is the ordered pair (V, E), where V is a set of ver-
tices, and E is a set of edges, each of which is a 2-element subset of V .

Definition 1.3.2 A subgraph G′ = (V ′, E ′) of a graph (V, E) is a graph for
which V ′ ⊆ V and E ′ ⊆ E.

Definition 1.3.3 A complete graph is a graph, where the set of edges E con-
sists of all 2-element subsets of V . A complete graph on n vertices is denoted
by Kn. A few small complete graphs are shown in Figure 1.4.

Figure 1.4: The complete graphs K1, . . . ,K6.

Definition 1.3.4 A clique is a complete graph that is a subgraph of another
graph.

Definition 1.3.5 An edge-coloring of a graph G = (V, E) is a mapping from
the edge set E to the set of colors C. If n colors are used, the coloring is an
n-color edge-coloring.

Definition 1.3.6 A (k, l)-coloring is a 2-color edge-coloring of a complete
graph that contains as a subgraph neither a Kk in the first color nor a Kl in
the second color.

1.4 FUNDAMENTAL RESULTS

In this section some fundamental results concerning Ramsey numbers are
presented.

1.4.1 Definition and Existence of Ramsey Numbers

In his celebrated paper [38] Ramsey proved the following theorem, quoted
verbatim. The subscripts in Γm and ∆n denote the number of elements, and
r-combinations simply mean r-element subsets.

Theorem 1.4.1 (Ramsey’s theorem) Given any r, n, and µ we can find an
m0 such that, if m ≥ m0 and the r-combinations of any Γm are divided in
any manner into µ mutually exclusive classes Ci (i = 1, 2, . . . , µ), then Γm

must contain a subclass ∆n such that all the r-combinations of members of
∆n belong to the same Ci.

1. INTRODUCTION 5



An interpretation of Ramsey’s result is that there is always a structured
subsystem in any random system. When one creates a random system by par-
titioning all the r-element subsets of a set Γ into µ partitions in any manner,
there will be a structured subset ∆ ⊆ Γ, all of whose r-combinations will be
in the same partition. Ramsey’s theorem tells us that regardless of how the
r-element subsets of Γ are partitioned into classes, we can get a structured
subset ∆ of any cardinality we want by taking a large enough set Γ.

The proof is rather lengthy and is therefore not given here. Ramsey gave a
construction for m0, but his bounds were very large – Ramsey did not attempt
to give a good bound, his goal was to prove that there exists a finite m0 that
satisfies the theorem. The question then arose, what the minimal m0 for
given r, µ, and n is. These minimal integers became known as Ramsey
numbers and they are denoted by Rµ (n; r).

As a generalization, instead of one parameter n, a total of µ parameters
n1, n2, . . . , nµ may be given. In that case, a separate ni is given for each
color i instead of one common n for all colors. This leads us to the following
definition, the subscripts of Γ and ∆ again denoting the cardinality of the set:

Definition 1.4.2 (Ramsey number) Given any r, µ, and n1, n2, . . . , nµ, the
Ramsey number R (n1, n2, . . . , nµ; r) is the smallest integer such that if m ≥
R(n1, n2, . . . , nµ; r) and the r-element subsets of Γm are divided in any man-
ner into µ mutually exclusive classes Ci (i = 1, 2, . . . , µ), then, for some i,
Γm must contain a subclass ∆ni

such that all the r-combinations of members
of ∆ni

belong to Ci.

It is an immediate corollary of Theorem 1.4.1 that such a smallest integer
exists in all cases.

In this work only the case r = 2 is considered. In that case, r may be
dropped from the notation: R(n1, n2, . . . , nµ) = R (n1, n2, . . . , nµ; 2), or
Rµ (n) = Rµ (n; 2). When r = 2, the problem can be conveniently ex-
pressed in graph-theoretical form. The 2-combinations of Γm correspond to
the edges of the complete graph Km, and µ-coloring the edges corresponds
to dividing the 2-combinations of Γm into µ mutually exclusive classes. This
gives us the following alternative definition:

Definition 1.4.3 (Ramsey number) The Ramsey number R (n1, n2, . . . , nµ)
is the smallest integer m such that for every µ-color edge-coloring of Km

there is an i such that the edge-coloring contains a Kni
in color i as a sub-

graph.

Using this definition it is convenient to restate the Party problem (Problem
1.2.1) from page 2 in graph-theoretical terms.

Problem 1.4.4 (Party problem) Given k and l, find the smallest integer m =
R (k, l) such that every 2-color edge-coloring of Km contains as a subgraph
a Kk in the first color or a Kl in the second color.

Here the vertices of the complete graph Km correspond to the guests at
the party. The edges are colored in two colors to signify that each pair of
persons either knows or doesn’t know each other. The complete graphs Kk

6 1. INTRODUCTION



and Kl respectively represent a group of k people where everybody knows
each other and a group of l people where nobody knows any of the oth-
ers. In this manner, Theorem 1.2.5 can be rephrased as “There is a 2-color
edge-coloring of K5 that contains no monochromatic K3 as a subgraph” and
Theorem 1.2.6 as “Every 2-color edge-coloring of K6 contains a monochro-
matic K3 as a subgraph.” The proofs are of course completely analogous to
the proofs given earlier.

1.4.2 Recursive Bounds for Ramsey Numbers

The next three theorems are simple, well-known combinatorial results.

Theorem 1.4.5 If R (k, p) ≥ s and R (k, q) ≥ t, then R (k, p + q − 1) ≥
s + t− 1.

Proof: Take a two-color edge-coloring of Ks−1 that contains neither a Kk

in the first color nor a Kp in the second color, and a two-color edge-coloring
of Kt−1 that contains neither a Kk in the first color nor a Kq in the second
color. Create a two-color edge-coloring of Ks+t−2 by connecting each vertex
of the Ks−1 to each vertex of the Kt−1 with an edge of the second color. The
resulting coloring contains neither a Kk in the first color nor a Kp+q−1 in the
second color, which proves the theorem.

Theorem 1.4.6 R (k, l) ≤ R (k − 1, l) + R (k, l − 1).

Proof: Consider any two-color edge-coloring of Km with m = R (k − 1, l)+
R (k, l − 1). To prove the theorem we’ll show that such a coloring must con-
tain a Kk in the first color or a Kl in the second color. Choose any vertex
v. Note first that if v is connected to a Kk−1 of the first color by edges of the
first color, then v and that Kk−1 form a Kk in the first color. Similarly, if v is
connected to a Kl−1 of the second color by edges of the second color, then
there is a Kl in the second color.

With R (k − 1, l) + R (k, l − 1) vertices in the graph, the vertex v has
R (k − 1, l) + R (k, l − 1) − 1 neighbors. By the pigeonhole principle, v is
connected to R (k − 1, l) vertices by edges of the first color or to R (k, l − 1)
vertices by edges of the second color. In the former case, by definition of
R (k − 1, l), the vertex v is connected by edges of the first color to a Kk−1 in
the first color or to a Kl in the second color. Similarly, in the latter case, the
vertex v is connected by edges of the second color to a Kk in the first color
or to a Kl−1 in the second color. In each case there is a Kk in the first color
or a Kl in the second color; thus the theorem is proven.

Theorem 1.4.7 If R (k − 1, l) and R (k, l − 1) are both even, then R (k, l) <
R (k − 1, l) + R (k, l − 1).
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Proof: Consider any two-color edge-coloring of Km with m = R (k − 1, l)+
R (k, l − 1)− 1. We’ll show that any such coloring must contain a Kk in the
first color or a Kl in the second color. If every vertex were connected to ex-
actly R (k − 1, l)−1 other vertices with edges of the first color, the number of
edges of the first color in the coloring would be 1

2
m (R (k − 1, l)− 1). Since

neither m nor R (k − 1, l)− 1 is even, the number of edges of the first color
would not be integer. Now, there has to be a vertex v that is connected to
R (k − 1, l) vertices with edges of the first color or to R (k, l − 1) vertices by
edges of the second color, and similarly to the previous proof there must be
a Kk in the first color or a Kl in the second color.

1.4.3 General Bounds for Ramsey Numbers

The next two theorems are interesting, since they prove that both the lower
and upper bounds of R (k, k) grow exponentially as k grows.

The following proof was given by Erdős [13]. It is purely existential. The
proof is slightly tidier, but weaker than the very similar proof given in [25],
where it was proven that R (k, k) > k2k/2

((
1/e

√
2
)

+ o (1)
)
.

Theorem 1.4.8 Let k ≥ 3. Then R(k, k) > 2k/2.

Proof: Let N ≤ 2k/2. The number of different graphs on N distinguishable
vertices is 2N(N−1)/2. The number of different graphs containing a clique of
order k is 2N(N−1)/2/2k(k−1)/2. Thus the number of graphs on N ≤ 2k/2

vertices that contain a clique of order k is less than(
N

k

)
2N(N−1)/2

2k(k−1)/2
<

Nk

k!

2N(N−1)/2

2k(k−1)/2
<

2N(N−1)/2

2
, (1.1)

since for N ≤ 2k/2 and k ≥ 3, by substituting 2k/2 for N , one obtains by
straightforward calculation that

2Nk < k!2k(k−1)/2.

From (1.1) it is clear that there is a clique of order k in the first color in
strictly less than half of all two-color edge-colorings of the complete graph
on N vertices. The same holds for the second color, and it follows that there
must exist a two-color edge-coloring of the complete graph on N vertices that
contains no monochromatic clique of order k.

The next theorem was proven by Erdős and Szekeres in [14].

Theorem 1.4.9 R (k, l) ≤
(

k+l−2
k−1

)
.

Proof: Assuming this theorem proven for R (k − 1, l) and R (k, l − 1), The-
orem 1.4.6 gives us

R (k, l) ≤ R (k − 1, l) + R (k, l − 1)

≤
(

k + l − 3

k − 2

)
+

(
k + l − 3

k − 1

)
=

(
k + l − 2

k − 1

)
,
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proving the theorem for R (k, l). After noting that R (k, 2) = k =
(

k+2−2
k−1

)
,

and R (2, l) = l =
(
2+l−2
2−1

)
, the theorem follows from induction on k and l.

1.5 COMPUTATIONAL COMPLEXITY

The computational complexity of determining Ramsey numbers is investi-
gated in this section in order to gain insight into the level of difficulty of the
problem. We shall not attempt to cover any significant part of computational
complexity theory in this work; instead only a sketch of the concepts relevant
to this work is given. For a good overview of the subject, see [34].

1.5.1 Computational Complexity Classes

Studying the relative computational complexity of various problems has been
a subject of much interest during the past couple of decades.

The Turing machine
To analyze the complexity of a problem, a computational model is needed.
The prevalent model of computation used for complexity analysis is the Tur-
ing machine.

The Turing machine consists of an unbounded tape, a read/write head,
and a table describing state transitions that may occur during the computa-
tion. There is a finite set of possible states the Turing machine can be in,
and the set includes the starting state and the yes and no states. During a
computation step, depending on the state it is in and the character under the
read/write head, the Turing machine can move to another state, overwrite
the character under the read/write head, and may move the read/write head
one step to the left or right. To start the computation, the tape is initialized
with the input, the read/write head is placed at the beginning of the input
and the machine is set to the starting state. The computation terminates
immediately if the machine enters the yes state or the no state.

Despite its simplicity the Turing machine is very useful for complexity
analysis, and it is essentially equivalent to many computation models that at
first glance appear more powerful or more representative of the real world.

Any Turing machine can be seen as the representation of an algorithm.
A Turing machine receives a string of symbols as input. After performing
computations on the input, the computation may terminate in the yes state
or terminate in the no state. If the computation terminates in the yes state,
the Turing machine is said to accept the input, whereas if the computation
terminates in the no state, the Turing machine is said to reject the input. It
can also happen that the computation never terminates.

Definition 1.5.1 A string is a sequence of zero or more characters, each char-
acter taken from a fixed set.

Definition 1.5.2 A language is a subset of all possible strings.

1. INTRODUCTION 9



Definition 1.5.3 A Turing machine M is said to decide the language L, if
the Turing machine accepts every input string x ∈ L and rejects every input
string x /∈ L.

Deterministic Polynomial Time
Definition 1.5.4 A Turing machine M is said to decide language L in poly-
nomial time, if M decides L and there exists a polynomial function p such
that for every input string x, the computation of M on x will terminate within
p (|x|) computation steps.

Definition 1.5.5 The complexity class P is the set of languages L for which
there exists a Turing machine that decides L in polynomial time.

Non-Deterministic Polynomial Time
There is a generalization of the Turing machine called the non-deterministic
Turing machine. Loosely speaking, a non-deterministic Turing machine can
be seen as a Turing machine that has the additional ability to make lucky
guesses during the computation.

Definition 1.5.6 A non-deterministic Turing machine is said to accept the
input string x, if there exists some series of lucky guesses y that results in the
computation terminating in the yes state.

Definition 1.5.7 A non-deterministic Turing machine N is said to decide
language L in polynomial time, if N decides L and there exists a polynomial
function p such that for every input string x and every series of guesses y, the
computation of M on x will terminate within p (|x|) computation steps.

Definition 1.5.8 The complexity class NP is the set of languages L for which
there exists a non-deterministic Turing machine that decides L in polynomial
time.

Example 1.5.9 Consider the Clique problem: Given a graph G and an in-
teger k, does G contain a clique of at least k vertices as a subgraph? It is
not known whether this problem is in P, but it certainly is in NP: If the
input pair (G, k) is in the language formed by graphs with a clique of order
at least k, then a non-deterministic Turing machine can guess k vertices of
the clique and verify the edges between those k vertices are in the graph, all
in polynomial time.

It is worth noting that for any x ∈ L where L ∈ NP, the sequence of
guesses y made by the nondeterministic machine can serve as a certificate
that x ∈ L. In other words, for any L ∈ NP there exists a deterministic
machine that, given (x, y), can verify in polynomial time whether y is a cer-
tificate for x ∈ L, and for any x ∈ L there exists such a certificate y. Here y
can be at most polynomial in length compared to x. Continuing the previ-
ous example: Given a graph G, an integer k, and k vertices of the graph G,
checking whether the given k vertices induce a clique of order k in the graph
can be done in polynomial time in a straightforward manner.

10 1. INTRODUCTION



Definition 1.5.10 The complexity class coNP is the set of languages L whose
complement L ∈ NP.

Alternatively, the class coNP could be characterized by changing the def-
inition of acceptance for a non-deterministic machine. For a string to be in a
language L ∈ NP it was sufficient to have one computation terminating in
the yes state. For a string to be in a language L ∈ coNP, each computation
must terminate in the yes state.

Example 1.5.11 Consider the Clique Complement problem: Given a graph
G and an integer k, is it true that G contains no clique of k or more vertices?
Here the language is the set of graphs whose largest clique contains at most
k − 1 vertices; the complement of the language is the set of graphs that
contain a clique of k or more vertices, which is the Clique problem, which
is in NP. Hence the Clique Complement problem is in coNP.

As we saw, for yes-instances of problems in NP there exists a succinct
certificate. Similarly, for no-instances of problems in coNP there exists a
succinct disqualification. In other words, there exists a deterministic machine
that, given (x, y), can verify in polynomial time whether y is a certificate for
x /∈ L, and for any x /∈ L there exists such a certificate y. Again, y can be at
most polynomial in length compared to x.

Reductions and Completeness
Reduction is a fundamental concept in classifying problems into complexity
classes. Basically, if a problem is reducible to another problem, then any
input to the first problem can be transformed to an instance of the second
problem with relatively little computing resources. Reductions of various
strengths have been used in the literature, but one of the most commonly
used reductions is the polynomial time reduction.

Definition 1.5.12 A language L is reducible to another language L′, if there
is a deterministic Turing machine that, for any input string x, outputs the
output string x′ such that x′ ∈ L′ if and only if x ∈ L. Furthermore, the
reduction must be done in polynomial time.

Reductions may be chained: if there is a reduction from L to L′ and from
L′ to L′′, then the reduction from L to L′′ can be constructed simply by
chaining the transformations so that the output of the first transformation is
the input for the second transformation, all in polynomial time.

Definition 1.5.13 A language L is hard for the complexity class C, or C-
hard, if all languages L′ ∈ C are reducible to L.

If a language L is C-hard, it basically means that if one can decide L
efficiently, one can efficiently decide all languages in C.

Definition 1.5.14 A language L is complete for the complexity class C, or
C-complete, if L ∈ C and L is C-hard.
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If a language L is C-complete, it basically means that if one can decide
L efficiently, one can decide efficiently all languages in C. Moreover, if it
is impossible to decide L efficiently, then it is impossible to decide any C-
complete language efficiently. In a sense, complete problems for a class are
the most representative problems of the complexity of the class.

To prove that a language L is C-hard, it is sufficient to show that some
C-complete language L′ can be reduced to L. Then, since reductions may
be chained, all languages in C may be reduced to L via L′.

To prove that a language L is C-complete, one also has to prove that L ∈
C. This can be done by a direct construction or by reducing L to a language
in C.

Oracle Machines
There are still more powerful computational complexity classes. The next
question is: what problems could we solve in polynomial time, if we had a or-
acle that could instantly solve decision problems in some complexity class C?
After constructing a string x, the machine may ask the oracle whether x ∈ L,
where L is a language in C. It is assumed that the oracle answers instanta-
neously and never errs. Oracle availability is denoted with a superscript; for
example, the class of languages that are decidable by a deterministic polyno-
mial time machine with an oracle that’s capable of deciding problems in NP
is denoted with PNP.

The complexity classes P, NP, and coNP together constitute the first
level of the polynomial hierarchy. Each successive level of the polynomial
hierarchy may be built by taking the capabilities of machines in P, NP,
and coNP and giving each an oracle of one lower level. With superscripts
denoting the oracle,

∆P
1 = P

ΣP
1 = NP

ΠP
1 = coNP

∆P
i+1 = PΣi

ΣP
i+1 = NPΣi

ΠP
i+1 = coNPΣi .

Thus, for example, the class coNPNP = ΠP
2 is the set of languages whose

complement (NPNP = ΣP
2 ) can be decided in polynomial time by a non-

deterministic Turing machine that is allowed to make queries to an NP-
oracle.

Example 1.5.15 The Minimum Circuit problem is in ΠP
2 = coNPNP:

Given a Boolean circuit, is it true that there is no circuit with fewer gates
that computes the same Boolean function?

Here the non-deterministic machine guesses a smaller circuit, and asks the
NP-oracle if there is an input that for which the output of the two circuits
is different, accepting the input if there is and rejecting it if there isn’t. If
an input is accepted, the Boolean circuit must be minimal: since for a co-
nondeterministic class acceptance is defined by requiring that all series of
guesses lead to acceptance, if an input is accepted it must be true for every
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smaller circuit that there is some input for which the smaller circuit and the
original circuit give a different value.

The Complexity of Counting
There are still other kinds of complexity classes. One fairly difficult class
of problems is #P, the class of counting problems. Unlike the previous
complexity classes, the complexity class #P is a function class. Instead of
simply accepting or rejecting the input, the machine is expected to write the
correct answer on the tape and then finish. For these problems, the correct
answer is the number of different series of guesses that lead to the accepting
state.

Example 1.5.16 The #Clique Problem is in #P: Given a graph G and
an integer k, how many cliques of order k does G contain? With a non-
deterministic Turing machine that guesses k vertices and accepts if they form
a clique. Clearly, the number of accepting computations is exactly the num-
ber of cliques in G. In fact, #Clique is #P-complete.

To bridge the gap between the polynomial hierarchy (PH) and #P we
consider the complexity class PP. The class PP is again a decision class.
Recall that in NP an input is accepted if at least one series of lucky guesses
leads to the accepting state and that in coNP an input is accepted if all series
of guesses lead to the accepting state. In PP an input is accepted if at least
half of the possible series of guesses lead to the accepting state. Certainly, if
one can count the accepting computations one can also check if the number
at least half the number of all possible computations; clearly PP cannot
be stronger than #P. Also, Toda proved in [45] that any problem in the
polynomial hierarchy (PH) can be reduced to PPP; thus PH = PPH ⊆
PPP ⊆ P#P. Thus, it would seem tempting to assume that the problems
in #P are at least as hard and probably harder than the problems in the
polynomial hierarchy; unfortunately that seems to be an open question. It
seems unknown whether PH ⊆ PP.

1.5.2 On The Complexity of Ramsey-Theoretical Problems

It is customary to assess the difficulty of a problem by investigating its theoret-
ical computational complexity. However, the computational complexity of
determining Ramsey numbers is unknown. The results for related problems,
a few of which are summarized below, seem to suggest that the problem is
fairly difficult.

Definition 1.5.17 F → (G, H), if and only if every two-color edge-coloring
of the graph F contains the graph G in the first color or the graph H in the
second color as a subgraph.

Problem 1.5.18 (Arrowing) Given F , G, and H , does F → (G, H)?

The Arrowing problem can be decided in coNPNP. First, guess a two-
color edge-coloring of F , and then ask the oracle to verify whether the chosen
coloring contains a monochromatic G or H . If it does not, reject the input,
since clearly F 6→ (G, H).
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Schaefer [42] proved recently that arrowing is coNPNP-complete. The
proof relied heavily on constructing a suitable graph F . Thus it is unlikely
that a similar construction could be used for the case when F is a complete
graph.

Problem 1.5.19 (Clique-arrowing) Given the graphs Kn, G, and H , does
Kn → (G, H)?

Clique-arrowing is trivially in coNPNP, since it is a special case of Ar-
rowing. However, the best known lower bound for the complexity of Clique-
arrowing is due to Burr, who proved that the problem is NP-hard [8]. In
that proof Burr showed that, if H is a path, then the minimum n for which
Kn → (G, H) often depends on the chromatic number of G, determining
which is NP-hard. A summary of results on the arrowing problem for various
graph classes can be found in [9].

Problem 1.5.20 (Ramsey) Given k, l, and n, does Kn → (Kk,Kl)?

It is hard to say anything useful about the complexity of the Ramsey prob-
lem. On one hand, if k, l, and n are encoded in unary, the problem is
a special case of Arrowing and Clique-arrowing and therefore in coNPNP.
However, when k, l, and n are encoded in binary, the input length is but
a logarithm of the corresponding input length for the Clique-arrowing prob-
lem. With such a compact input, polynomial time is insufficient to even
guess a single coloring of the Kn, since the coloring would be exponential
in size compared to the input. On the other hand, since we’re now dealing
with complete graphs only, theoretically it might be possible to find a way of
deciding the Ramsey problem in polynomial time by looking at the binary
representations of k, l, and n.
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2 OPTIMIZATION AND SEARCH

In this chapter, we describe how the problem of finding a combinatorial ob-
ject that satisfies certain criteria can be expressed as an optimization problem.
We then describe local search methods suitable for solving such optimization
problems.

2.1 SEARCHING AS AN OPTIMIZATION PROBLEM

The discussion in this section is mostly based on [3], a good reference that
covers both the mathematical foundations of optimization and computa-
tional methods for nonlinear programming.

A Generic Optimization Problem
Consider the following optimization problem:

Minimize f(x)

subject to gi(x) ≤ 0, for i = 1, . . . ,m (2.1)
hi(x) = 0, for i = 1, . . . , l

x ∈ X,

where f , gi, hi are functions defined on X . Any vector x of n components
x1, . . . , xn is called a solution, regardless of whether all the constraints are
satisfied. The function f is called the cost function, the constraints gi(x) ≤ 0
are called inequality constraints, and the constraints hi(x) = 0 are called
equality constraints. A vector x ∈ X that satisfies all the constraints is called
a feasible solution. A feasible solution x∗ is called an optimal solution, or
global optimum, if f(x∗) ≤ f(x) for all feasible x.

A problem is called feasible, if it has a feasible solution, or infeasible oth-
erwise.

Multitudes of algorithms for solving (2.1) exist, depending on the form of
f , gi, hi and X .

The Penalty Function Method
Generally it is easier to develop algorithms for optimization problems with
no constraints than for problems that have constraints. Such problems are
called unconstrained optimization problems. For some types of problems, it
may be advantageous to transform the constrained optimization problem to
a series of unconstrained optimization problems using the penalty function
technique described below.

Consider the optimization problem (2.1). Let us replace it with the un-
constrained problem (2.2), where µ > 0 is large.

Minimize f(x) + µ

m∑
i=1

Φ (gi(x)) + µ

l∑
i=1

Ψ (hi(x)) (2.2)

subject to x ∈ X,
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where Φ and Ψ are continuous functions with the following properties:

Φ(y) = 0, if y ≤ 0,

Φ(y) > 0, if y > 0,

Ψ(y) = 0, if y = 0,

Ψ(y) > 0, if y 6= 0.

It is intuitively clear that the optimal solution to (2.2) must have all hi(x)
close to zero, and all gi(x) non-positive or close to zero, for otherwise a large
penalty will be incurred.

In general, a penalty function must incur a positive penalty for infeasible
points and no penalty for feasible points.

Given an algorithm for unconstrained optimization, the penalty function
technique can be used to solve a constrained optimization problem as fol-
lows:

1. Initialize the iteration counter i to 1. Choose a µi > 0.

2. Use the unconstrained optimization algorithm to find the optimum x∗
i

for (2.2) with µ = µi.

3. If x∗
i satisfies all the constraints, then x∗

i is the optimum for (2.1) as
well. Otherwise, choose µi+1 > µi, increment i and go to step 2.
The solutions x∗

i will generally converge to an optimal solution of the
original problem.

The interested reader may find necessary assumptions and proofs for conver-
gence in [3].

Searching For Any Feasible Solution
When searching for a combinatorial structure with given properties, one is
usually willing to accept any solution that satisfies the constraints. In such a
case, one can simply choose a cost function that’s constant over all x ∈ X ,
e.g. f(x) = 0, resulting in (2.3).

Minimize 0

subject to gi(x) ≤ 0, for i = 1, . . . ,m (2.3)
hi(x) = 0, for i = 1, . . . , l

x ∈ X.

Since in this work we search for combinatorial objects with certain struc-
ture, the optimization problems are of this type. Naturally, the penalty func-
tion method can be applied here as well, resulting in (2.4). In this work,
when optimization techniques are used to search for a combinatorial object,
the problem is transformed to this form for optimization.

Minimize
m∑

i=1

Φ (gi(x)) +
l∑

i=1

Ψ (hi(x)) (2.4)

subject to x ∈ X.
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Note that the factor µ, found in (2.2), is unnecessary in (2.4). Also, note
that here for feasible solutions and feasible solutions only, the value of the
objective function is zero. This gives a good termination condition to any
algorithm for solving (2.4).

2.2 LOCAL SEARCH METHODS

Local search methods are heuristic optimization methods. In a local search
method, every iteration only small changes to the current solution are consid-
ered. No attempt is made to guarantee that the algorithm would eventually
search the whole solution space. Usually the name is reserved for heuris-
tics for solving combinatorial problems, such as tabu search and simulated
annealing. Even though finding the optimal solution is usually not guaran-
teed, local search methods have been used with good success in combatting
hard combinatorial problems. Descriptions of the most common local search
heuristics can be found in [1] and [39]. The former also contains detailed
case studies and describes the state of the art in applying local search methods
to a handful of practical problems. In the latter, less emphasis is on specific
applications, and a great variety of possible enhancements and modifications
to the basic algorithms is given.

A general combinatorial optimization problem is given in (2.5).

Minimize f(x)

subject to gi(x) ≤ 0, for i = 1, . . . ,m (2.5)
hi(x) = 0, for i = 1, . . . , l

x ∈ X, X finite.

At the start of a local search optimization run, generally a random feasible
solution is chosen as the current solution. After that, the local search method
will iteratively replace the current solution by new current solutions until
some termination condition is satisfied. The process of replacing the current
solution with a new solution is called a move.

To adapt a local optimization heuristic to a problem, a suitable neigh-
borhood function has to be chosen. The neighborhood function maps each
point x to a set of points N(x), which is a subset of X . Some of the points in
N(x) may be infeasible, and x may or may not be included in N(x). At every
iteration, with the current solution x, only solutions in N (x) — neighbors of
x — may be considered for the next current solution. An outline of a local
search algorithm is described in Figure 2.1.

The choice of a neighborhood function is of critical importance for the
performance of any local search method. The neighborhood function de-
termines which solutions are local optima: the solution x ∈ X is a local
optimum, if no point in N (x) has a lower cost.

In general, the choice of the neighborhood function is crucial for the per-
formance of any local search method. Usually it will help the search, if the
cost of a solution correlates with the distance to the global optimum, so that
the search can proceed to the region around the global optimum. Local
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1. Select a feasible solution x ∈ X

2. Evaluate f(x′) for some or all x′ ∈ N(x)

3. Let x = x′ for one of the feasible neighbors evaluated in step 2, or keep
the previous x.

4. Go to step 2, unless the termination condition is satisfied.

Figure 2.1: An outline of a generic local optimization algorithm.

optima cause problems for local search methods. Similarly, large plateaus of
equal cost or ridges of large cost separating two areas of lower cost often cause
difficulties.

2.2.1 Steepest Descent

The steepest descent method is the simplest of the local optimization meth-
ods. In the steepest descent method, all neighbors of the current solution are
evaluated. The next current solution is taken to be the neighbor with the low-
est cost, if that move would improve the solution. If there are no improving
moves, the search is terminated.

From the description it is obvious that the steepest descend method al-
ways finds a local optimum. In many cases, however, the global optimum
is not found. Instead, the search ends up at a local optimum that is not a
global optimum. Dealing with local optima is one of the key problems of
designing local optimization algorithms, and there are a few ways to attempt
to remedy the situation. Firstly, using a larger neighborhood may reduce
the number of local optima, as some solutions that are local optima with the
smaller neighborhood may have neighbors with a lower cost with the larger
neighborhood. Secondly, running the search repeatedly with different ran-
dom may cause the search to finish at different local optima, one of which
would be the global optimum.

Neither of these has been universally successful. The problem with choos-
ing a larger neighborhood is that it may not remove local optima efficiently
enough. Also, more neighbors have to be evaluated each iteration, which
makes the algorithm run slower. The problem with iterating the search with
different starting points is that there may be a huge number of local optima,
or the global optimum may be surrounded by local optima so that the global
optimum can be reached only if the starting point is very close to the optimal
solution, the chances of which happening are very slim. Thus, the steepest
descent method is not very interesting of itself. It has been used to good effect
as a part of hybrid local search methods that alternatingly use steepest descent
to find local optima and some mechanism such as simulated annealing for
avoiding getting stuck at them.
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2.2.2 Simulated Annealing

In [33], a simple algorithm to simulate a collection of atoms in equilibrium
at a given temperature was presented. Such a system fluctuates randomly in
different energy states, the probability of each state depending on the tem-
perature. Statistically, the cooler the system, the closer to the lowest possible
energy state the system is. Simulated annealing is an optimization heuristic
that is based on an analogy with such a system. An early presentation can be
found in [29].

Only one neighbor x′ ∈ N(x) of the current solution x is considered
each iteration. If x′ is infeasible, the current solution x is retained for the
next iteration. If x′ is feasible, and f(x′) ≤ f(x), x′ is taken as the new
current solution. If x′ is feasible, but f(x′) > f(x), x′ is taken as the new
current solution with a non-zero probability. Such uphill moves move the
search to a solution with a worse cost, but making such moves will allow the
search to escape local minima.

For quantifying the probability with which an uphill move is accepted, a
parameter T > 0, the temperature, is used. An uphill move is then accepted

with probability e
f(x)−f(x′)

T . Since the exponent is negative for T > 0, this
probability will be between 0 and 1. Moreover, for large T the probability
will be close to 1, whereas for small T it will approach zero.

Temperature is generally decreased during simulated annealing. An ini-
tial temperature is chosen at the start of the algorithm. In the simplest form of
simulated annealing, T is multiplied every iteration by a constant 0 < α < 1,
where α is usually close to 1. As the temperature decreases, the probability
of accepting an uphill move decreases as well. Much more elaborate cool-
ing schedules have been used; for some problems, good results have been
obtained by alternately heating and cooling the system. This and many other
suggestions for improving simulated annealing are discussed in [1] and [39].

2.2.3 Tabu Search

Tabu search is a relatively new search heuristic. The first articles presenting
tabu search in its current form are from 1986. An early and fairly thorough
description can be found in [22] and [23]. Several articles on applications of
tabu search can be found in [24].

Tabu search is closely related to steepest descent. The difference is that in
tabu search some neighbors of the current solution may be considered tabu,
so that they may not be chosen as the next current solution. In effect, tabu
neighbors are excluded from the neighborhood for the iteration.

Whether or not a neighbor is considered tabu depends on the history of
the search. Throughout the search, some information on the solutions visited
is stored. This data is then used to guide the search, the principal aim being
preventing the algorithm for getting stuck at local optima.

The tabu search algorithm used to find the construction for the bound
R (5, 9) > 120, described in more detail in Section 5.6, is an application
of tabu search at its simplest. The tabu search algorithm is summarized in
Figure 2.2.

In the simplest form of tabu search, the search only has short-term mem-
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1. Take a random solution as the current solution.

2. Until the termination condition is satisfied, repeat:

• Calculate the cost of all non-tabu solutions in the neighborhood
of the current solution.

• Make the non-tabu neighbor with the lowest cost the new current
solution.

Figure 2.2: The tabu search algorithm.

ory: only the search history from the last few iterations is considered in de-
termining whether or not a neighbor is tabu. In each iteration, a property of
the move from the old current solution to the new current solution is stored
in a tabu list. Usually, the tabu list has a fixed length t; if the tabu list already
contains t entries, the oldest entry in the tabu list may be removed to make
room for the new entry. During the search, a neighbor is considered tabu if
the move from the current solution to it matches an entry on the tabu list.

To adapt tabu search to a problem, one needs to choose the representation
of solutions, the cost function, the neighborhood function, the tabu condi-
tion, and the termination condition. Each of these needs to be tailored to the
specific application. Usually there are several possibilities.

Example 2.2.1 In the traveling salesman problem, the problem is to find
the cheapest way for a traveling salesman to visit each of n cities exactly once
and return to his origin. A possible solution representation would be a list of
the cities in the order they are visited. The most obvious choice for the cost
function is to use the cost of the tour. The search could be terminated after
a fixed number iterations have been performed without finding an improve-
ment. The neighborhood of a solution could be taken as the set of solution
obtained by transposing two adjacent cities in the solution. A possible choice
for the tabu condition would be to consider a neighbor tabu, if it is obtained
from the current solution by transposing a pair of cities that has been trans-
posed during the past t iterations, where t, the length of the tabu list, is a
search parameter.

The above choices are by no means the only possible ones. Another way
of representing the problem would be to use a graph that has vertices corre-
sponding to the cities and an edge between a and b if, during his tour, the
traveling salesman travels from a to b or from b to a. A possible neighborhood
for such a solution representation would be to take as neighbors all graphs
obtained from the current solution by deleting k edges and adding k edges
such that the result is a cycle. As the tabu condition, one could for exam-
ple forbid moves that involve adding an edge that has been deleted from the
graph during the past t iterations.

An appealing property of such a basic tabu search method is that once
the solution representation, the cost function, the neighborhood, the tabu
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condition, and the termination condition have been chosen, the only search
parameter to tune is t, the length of the tabu list. However, there are many
enhancements and modifications that may improve the performance of the
tabu search algorithm; for more information, see [1] and [39].
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3 GROUPS, PERMUTATIONS AND FIELDS

A group may be obtained by defining a binary operation with certain struc-
ture on some set of group elements. Group theory is a convenient tool for
examining the symmetries of combinatorial objects. This is the main purpose
of examining groups in this work.

In a permutation group, the group elements are permutations of some set.
In our case, we will define permutation groups whose elements permute the
vertices of a graph. In Chapter 5.3 lower bounds for Ramsey numbers are
constructed by finding suitable symmetrical edge-colorings of graphs. The
symmetries are defined in terms of permutation groups. Groups, permuta-
tions and permutation groups are discussed in Sections 3.1, 3.2, and 3.3.

When, instead of one, two binary operations with certain structure are
defined on a set, a field may be obtained. In the past, some edge-colorings
without large monochromatic cliques have been obtained by a method based
on finite fields. In the finite field method, the edges of a graph are colored
based on the structure of a finite field. Finite fields are described in in Sec-
tion 3.4.

Much of the discussion in this chapter is based on [30].

3.1 GROUPS

Definition 3.1.1 Let G be a non-empty set. Let ? be a binary operation
defined on G×G. Then the pair (G, ?) is called a group, if

1. The set G is closed under the operation ?, i.e.

∀g, h ∈ G, g ? h ∈ G.

2. The operation ? is associative, i.e.

∀g, h, k ∈ G, g ? (h ? k) = (g ? h) ? k.

3. G contains a unit-element e, such that

∀g ∈ G, e ? g = g ? e = g.

4. Every element of G has an inverse, i.e.,

∀g ∈ G ∃h ∈ G, g ? h = h ? g = e.

When the group operation is clear from the context, it may be omitted: one
may speak of gh instead of g ? h, and of the group G instead of (G, ?).

Definition 3.1.2 A group is called commutative, or abelian, if the operation
? is commutative, i.e.

∀g, h ∈ G, g ? h = h ? g.

22 3. GROUPS, PERMUTATIONS AND FIELDS



Example 3.1.3 (Z, +) is an abelian group: the sum of any two integers is an
integer, associativity holds, 0 is a unit element, and every element a has the
inverse −a. Also commutativity holds.

Example 3.1.4 (R, ·) is not a group: the element 0 has no inverse.

The usual shorthand notation gn =

n times︷ ︸︸ ︷
g ? g ? . . . ? g may be used.

Definition 3.1.5 A subgroup (H, ?) of a group (G, ?) is a group defined on
a subset H ⊆ G with the same operation ? as the group (G, ?).

Definition 3.1.6 Given a group (G, ?) and its subgroup (H, ?), then, for any
g ∈ G the sets gH = {gh : h ∈ H} and Hg = {hg : h ∈ H} are the left and
right cosets of H with respect to g, respectively.

The elements of G may be partitioned into |G|
|H| cosets of cardinality |H|.

Definition 3.1.7 It is said that the group G is generated by the elements
α1, . . . , αr ∈ G, if every element g ∈ G can be expressed as a finite product
g = αi1αi2 . . . αim , where 1 ≤ ij ≤ r for all 1 ≤ j ≤ m. The elements
α1, . . . , αr ∈ G are called generators for the group G.

Definition 3.1.8 Two groups (G, ?) and (H, ·) are said to be isomorphic, if
there exists a bijection φ : G 7→ H such that φ (g1) · φ (g2) = φ (g1g2) for all
g1, g2 ∈ G.

3.2 PERMUTATIONS

A permutation is a rearrangement of the elements of a finite set, that is, a
bijection from a set to itself. A permutation π : X 7→ X can be given by
listing for each element x ∈ X the element π maps it to. For example, if
X = {1, 2, . . . , n}, the permutation can be given in list notation as

[π (1) , . . . , π (n)] .

Since π is a bijection, each element of {1, 2, . . . , n} must occur exactly
once in this list. For example,

x 1 2 3 4 5 6 7 8 9 10 11
π (x) 11 2 4 1 6 5 8 9 7 10 3

where the bottom row is a list of the values of π, is a permutation on
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

Another notation called the cycle notation will be used predominantly
in this work. In cycle notation π = (1, 11, 3, 4) (2) (5, 6) (7, 8, 9) (10). This
notation is best illustrated by drawing the directed graph, illustrated in Fig-
ure 3.1, with the vertex set X and the edges (x, π (x)) for each x ∈ X .
The resulting directed graph is always a union of vertex-disjoint directed cy-
cles. In the cycle notation of a permutation, the vertices in each cycle of
the corresponding directed graph are listed in order in parentheses separated
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Figure 3.1: The directed graph corresponding to the permutation π =
(1, 11, 3, 4) (2) (5, 6) (7, 8, 9) (10).

with commas. Cycles of length one may be included for completeness or
omitted in the interests of brevity: π = (1, 11, 3, 4) (2) (5, 6) (7, 8, 9) (10) =
(1, 11, 3, 4) (5, 6) (7, 8, 9). The identity permutation maps each element onto
itself and is denoted by I.

The cycle notation of a permutation may be found as follows: While
there are elements in X that have not been written yet, find an unwritten
element x ∈ X and write in parentheses x, π (x), π (π (x)), etc. until
π (. . . (π (x))) = x, which is not written again.

The multiplication of permutations is most naturally defined as function
composition. For two permutations α and β that map each x ∈ X to α (x)
and β (x) respectively, the permutation αβ maps each x ∈ X to α (β (x)).
For example, if X = {0, 1, 2, 3, 4}, α = (1, 2, 3) (0, 4), and β = (1, 2, 4),
then αβ = (0, 4, 2) (1, 3).

A permutation maps a set to a set by mapping each element separately:
π (S) = {π (s) : s ∈ S}.

3.3 PERMUTATION GROUPS

Permutation groups are a useful tool for classifying and analyzing the symme-
tries of combinatorial objects. Of particular interest is the set of permutations
that preserve the structure of a combinatorial object. Such permutations
form a permutation group called the automorphism group of the object.

Definition 3.3.1 The symmetric group Sym (X) is the group of all permu-
tations of the set X , with function composition as the group operator.

Sym (X) is a group: the composition of two permutations is a permu-
tation, function composition is associative, the identity permutation is an
identity element and for each permutation, there is an inverse permutation.
Since there are n! of n objects, Sym (X) has |Sym (X)| = |X|! elements.

Definition 3.3.2 A permutation group on X is a subgroup of Sym (X).

Of particular interest are automorphisms of an object, that is, the map-
pings from an object to itself that preserve the structure of the object. In the
case of graphs, the mappings are permutations and they form a permutation
group called the automorphism group of the graph.
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Definition 3.3.3 An automorphism α of a graph G = (V, E) is a permuta-
tion of the vertices, for which it holds for all v1, v2 ∈ V that {α (v1) , α (v2)} ∈
E if and only if {v1, v2} ∈ E.

Definition 3.3.4 The automorphism group Aut (G) of a graph G = (V, E)
is the subgroup of Sym (V ) consisting of the automorphisms of G.

0

1

23

4

Figure 3.2: The graph of the pentagon.

Example 3.3.5 Consider the automorphism group of the pentagon P in Fig-
ure 3.2. In planar geometry, the automorphisms of the pentagon correspond
to the five clockwise rotations of 2kπ

5
radians, k ∈ {0, 1, . . . , 4} about the cen-

ter of the figure, and the five mirrorings about straight lines, each traveling via
the center and one of the corner points of the pentagon. The corresponding
permutations form the automorphism group

Aut (P ) =


I, (0) (1, 4) (2, 3)
(0, 1, 2, 3, 4) (0, 2) (1) (3, 4)
(0, 2, 4, 1, 3) (0, 4) (1, 3) (2)
(0, 3, 1, 4, 2) (0, 1) (2, 4) (3)
(0, 4, 3, 2, 1) (0, 3) (1, 2) (4)

 . (3.1)

This group consists of 5 rotations and 5 mirrorings (the left and right
columns of 3.1 respectively). In general, the automorphism group of an n-
vertex cycle graph is isomorphic to the automorphism group Dn of a regular
n-gon in planar geometry. The dihedral group Dn consists of n rotations and
n mirrorings. For n > 2, |Dn| = 2n. The cyclic group Cn is the subgroup
of Dn with the rotations only: |Cn| = n. The cyclic group Cn on X =
{0, 1, . . . , n− 1} is generated by the permutation π = (0, 1, . . . , n− 1); ev-
ery permutation in the cyclic group can be obtained by applying π repeat-
edly. The generating permutation of C5 is illustrated in Figure 3.3.

Figure 3.3: The generating permutation of C5.
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Definition 3.3.6 Let G be a permutation group on XG and H a permutation
group on XH . The direct product G×H is the permutation group on XG ×
XH consisting of all the ordered pairs (g, h) with g ∈ G and H ∈ H . The
permutation (g, h) maps the pair (xG, xH) to (g (xG) , h (xH)) for all xG ∈
XG, xH ∈ XH . The group operation is defined as (g, h) (g′, h′) = (gg′, hh′).

In general, the group G×H on XG×XH may be interpreted by arranging
the elements of |XG ×XH | into an array of |XG| rows and |XH | columns,
and letting then the elements of G permute the rows, while the elements of
H permute the columns.

Example 3.3.7 Recall that the cyclic group Cn on the set X = {1, . . . , n} is
generated by the permutation π = (1, . . . , n). The group C4 × C4 may be
generated by the two generators illustrated in Figure 3.4; the first one rotates
the columns and the second one rotates the rows.

Figure 3.4: The two generators of C4 × C4.

Example 3.3.8 Let G = {I, (0, 1, 2) (0, 2, 1)} be a permutation group on
XG = {0, 1, 2}. Let H = {I, (0, 1)} be a permutation group on XH =
{0, 1}. Let us denote XG ×XH = {00, 01, 10, 11, 20, 21} in short. Now,

G×H =


I, (00, 01) (10, 11) (20, 21) ,
(00, 10, 20) (01, 11, 21) , (00, 11, 20, 01, 10, 21) ,
(00, 20, 10) (01, 21, 11) , (00, 21, 10, 01, 20, 11)

 .

Here G and H are the cyclic groups C3 and C2 respectively, so G × H is
C3 × C2. It turns out that C3 × C2 is isomorphic to C6: by renaming the
elements [00, 11, 20, 01, 10, 21] ↔ [0, 1, 2, 3, 4, 5] one obtains the group

C6 =


I, (0, 3) (1, 4) (2, 5) ,
(0, 2, 4) (1, 3, 5) , (0, 1, 2, 3, 4, 5) ,
(0, 4, 2) (1, 5, 3) , (0, 5, 4, 3, 2, 1)


on the set {0, 1, 2, 3, 4, 5}.

Definition 3.3.9 Given a permutation group G on the set X , the orbit of the
subset S ⊆ X under G is defined by Orb (S) = {g (S) : g ∈ G}.

Example 3.3.10 Let G be the cyclic group C6 on X = {0, 1, 2, 3, 4, 5}.
Consider Orb ({0}) and Orb ({0, 3}): clearly, each element g ∈ G maps
0 to a different element; Orb ({0}) = {{0} , {1} , {2} , {3} , {4} , {5}}. A
straightforward calculation shows that Orb ({0, 3}) = {{0, 3} , {1, 4} , {2, 5}}.
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The set of k-element subsets of X can be partitioned into orbits. The
number of orbits of k-element subsets is denoted by Nk. Orbits will play a
very important role in the constructions of colorings in Section 5.3. There a
suitable group G on the vertex set V of a complete graph is chosen, and the
edges are partitioned into orbits.

Definition 3.3.11 The orbit incidence matrix Atk is the Nt by Nk matrix
such that

1. The rows of Atk are labeled by the orbits ∆1, ∆2, . . . , ∆Nt of t-element
subsets;

2. The columns of Atk are labeled by the orbits Γ1, Γ2, . . . , ΓNk
of k-

element subsets;

3. The entry [∆i, Γj] is

Atk [∆i, Γj] = |{K ∈ Γj : K ⊇ T0}| ,

with T0 ∈ ∆i any fixed representative.

Example 3.3.12 (from [30]) Let G be the group on X = {0, 1, . . . , 6} gen-
erated by the two permutations (0) (1, 2, 3) (4, 5, 6) and (0) (1, 2) (5, 6). The
orbits of pairs under G are

∆1 = {{4, 5} , {4, 6} , {5, 6}}
∆2 = {{1, 5} , {2, 6} , {3, 4}}
∆3 = {{1, 4} , {1, 6} , {2, 4} , {2, 5} , {3, 5} , {3, 6}}
∆4 = {{1, 2} , {1, 3} , {2, 3}}
∆5 = {{0, 4} , {0, 5} , {0, 6}}
∆6 = {{0, 1} , {0, 2} , {0, 3}} .

The orbits of triples under G are

Γ1 = {{4, 5, 6}}
Γ2 = {{1, 4, 6} , {2, 4, 5} , {3, 5, 6}}
Γ3 = {{1, 4, 5} , {1, 5, 6} , {2, 4, 6} , {2, 5, 6} , {3, 4, 5} , {3, 4, 6}}
Γ4 = {{1, 2, 5} , {1, 3, 5} , {2, 3, 6} , {1, 2, 6} , {1, 3, 4} , {2, 3, 4}}
Γ5 = {{1, 2, 4} , {2, 3, 5} , {1, 3, 6}}
Γ6 = {{1, 2, 3}}
Γ7 = {{0, 4, 5} , {0, 4, 6} , {0, 5, 6}}
Γ8 = {{0, 1, 5} , {0, 2, 6} , {0, 3, 4}}
Γ9 = {{0, 1, 4} , {0, 2, 5} , {0, 3, 6} , {0, 1, 6} , {0, 2, 4} , {0, 3, 5}}

Γ10 = {{0, 1, 2} , {0, 2, 3} , {0, 1, 3}} .

The orbit incidence matrix A23 for G is
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Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10

∆1 1 1 2 0 0 0 1 0 0 0
∆2 0 0 2 2 0 0 0 1 0 0
∆3 0 1 1 1 1 0 0 0 1 0
∆4 0 0 0 2 1 1 0 0 0 1
∆5 0 0 0 0 0 0 2 1 2 0
∆6 0 0 0 0 0 0 0 1 2 2

For example, the 2 at the intersection of row ∆5 and column Γ7 means
that each pair in ∆5 is contained in two three-element subsets in Γ7.

3.4 FINITE FIELDS

When two binary operations are defined on a set, a field may be obtained.
Most of the discussion in this section is based on [46]; this introductory book
on cryptology contains a 22 page appendix on the theory of finite fields.

Definition 3.4.1 A triple (F, +, ·) is called a field, if

1. (F, +) is a commutative group, called the additive group of the field.
Its unit-element is denoted by 0.

2. (F \ {0} , ·) is a group, called the multiplicative group of the field. The
multiplicative unit-element is denoted by e.

3. Distributivity holds, i.e.

∀r, s, t ∈ F, r · (s + t) = r · s + r · t and (r + s) · t = r · t + s · t.

With finite fields the notation gn = refers to the multiplicative group, that

is, gn =

n times︷ ︸︸ ︷
g · g · . . . · g . The notation ng =

n times︷ ︸︸ ︷
g + g + . . . + g is used for the

additive group.

Definition 3.4.2 An element of g ∈ G is called an m-ic residue, if there
exists an element h ∈ G such that hm = g.

A field is called a finite field of order n, if the cardinality of the set F is n.
Such fields only exist when n is a prime power. Also, all finite fields of order
n are isomorphic . Hence, the notation Fn or GF (n) used for a finite field
of order n defines the field up to isomorphism. For details, see [46, p. 155].

For prime p, the integers modulo p form the field Zp. In this field both
addition and multiplication are defined in the usual way, with the results
taken mod p. Fields of order pk with k > 1 are slightly more complicated
to construct. The construction given below involves polynomials and a few
definitions are necessary.

Definition 3.4.3 Let p (x) = f0 + f1x + . . . + fkx
k be a polynomial with

fi ∈ Zp. The polynomial p (x) is said to be a polynomial of degree k over the
field Zp.
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Definition 3.4.4 Let p (x) and q(x) be polynomials, and let q (x) be of de-
gree k ≥ 1. Now define p (x) mod q (x) to be r (x), the polynomial of
minimum degree for which there is a polynomial d (x) such that p (x) =
d (x) q (x) + r (x).

Definition 3.4.5 A polynomial of is said to be irreducible, if it can not be
expressed as the product of two polynomials of lower degree.

A finite field of order pk, p prime, can be constructed by taking as F the
set of polynomials of degree k − 1 over Zp, that is, polynomials of the form
f0 + f1x + . . . + fk−1x

k−1 with fi ∈ Zp for 0 ≤ i ≤ k − 1. Addition of two
polynomials is defined by

n∑
i=0

fix
i +

n∑
i=0

gix
i =

n∑
i=0

(fi + gi) xi,

where the sum (fi + gi) is taken in Zp. Multiplication is defined by(
m∑

i=0

fix
i

)(
n∑

j=0

gjx
j

)
=

m+n∑
k=0

(∑
i+j=k

figj

)
xk mod q (x) ,

where q(x) is an irreducible polynomial of degree k over Zp , resulting in a
polynomial of degree at most k − 1. For any given p and k there is always at
least one irreducible polynomial; there may be more than one, but recalling
that finite fields of the same order are isomorphic, it suffices for our purposes
to choose any one of them. A table that gives one primitive polynomial for
all p and k with pk < 30000 can be found on the World Wide Web [11];
primitive polynomials are also irreducible.
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4 SCHUR NUMBERS

4.1 INTRODUCTION TO SCHUR NUMBERS

In 1916, in his article on the modular version of Fermat’s Last Theorem
[43], Schur proved that when the integers {1, . . . , N} are partitioned into
n classes, if N > n!e, then one of the classes will necessarily contain two
integers and their difference. In other words, one of the classes will contain
two not necessarily distinct integers and their sum.

A partition is called sum-free, if none of the classes contain two not nec-
essarily distinct integers and their sum. A partition into n classes is called an
n-partition.

Definition 4.1.1 The Schur number s(n) is the largest integer k for which
there exists a sum-free n-partition of the integers {1, . . . , k}.

One should note that the alternative definition “the smallest integer k for
which no sum-free n-partition of the integers {1, . . . , k} exists” has also been
used. The definitions are equivalent except for the values being larger by one
with the latter definition.

Schur himself gave the bounds 1
2
(3n − 1) ≤ s(n) ≤ n!e.

4.2 THE KNOWN SCHUR NUMBERS

The exact value of the Schur numbers is only known for n ≤ 4. The known
values along with sample partitions are given in Figure 4.1.

s(1) = 1 :
{
{1}

s(2) = 4 :

{
{1, 4}
{2, 3}

s(3) = 13 :


{1, 4, 10, 13}
{2, 3, 11, 12}
{5, 6, 7, 8, 9}

s(4) = 44 :


{1, 4, 9, 12, 19, 26, 33, 36, 41, 44}

{2, 3, 10, 11, 15, 16, 29, 34, 35, 42, 43}
{5, 6, 7, 8, 17, 18, 27, 28, 37, 38, 39, 40}
{13, 14, 20, 21, 22, 23, 24, 25, 30, 31, 32}

Figure 4.1: The known Schur numbers.

For n ≤ 4, verifying that the integers {1, 2, . . . , s(n) + 1} cannot be par-
titioned into n sum-free partitions can be done by trying out all possibilities,
e.g. by using a backtracking procedure. For n ≤ 3 this can be done by hand,
but for n = 4 a computer is necessary. The result s(4) = 44 was allegedly
first obtained by Baumert in 1961.

For n = 5, Exoo [17] gives the best currently known lower bound s(5) ≥
160.

30 4. SCHUR NUMBERS



4.3 LOWER BOUNDS FOR RAMSEY NUMBERS

We are not only interested in Schur numbers because of themselves, but also
because of their connection to Ramsey numbers. The following theorem was
presented in [17].

Theorem 4.3.1 Rn(3) ≥ s (n) + 2.

Proof: Identify the vertices of a Ks(n)+1 with the integers 0, . . . , s (n). Let
the sets Pk, 1 ≤ k ≤ n, represent the classes in a sum-free n-partition of the
integers {1, . . . , s (n)}. Now, color each edge ij, where i < j, with color k,
iff (j− i) ∈ Pk. The resulting coloring contains no monochromatic triangle,
as we shall see. Assume, for contradiction, that the edges between the vertices
a, b, and c, where a < b < c, form a monochromatic triangle. This means
that b − a, c − b and c − a must be in the same partition. But (b − a) +
(c − b) = (c − a), so the partition would not be sum-free, a contradiction.
Since the coloring of Ks(n)+1 contains no monochromatic triangle, Rn(3) ≥
s (n) + 2.

The best currently known lower bound s(5) ≥ 160 immediately yields the
best currently known lower bound R5(3) ≥ 162, both given in [17]. It may
naturally be possible to obtain better lower bounds by other methods. For
example, s(3) = 13, but in [26], it was shown that R3(3) = 17. Similarly
s(4) = 44, but in [12] it was shown that R4(3) ≥ 51.

4.4 LOWER BOUNDS FOR SCHUR NUMBERS

For n > 4 the exact value of s(n) is unknown. However, by presenting
any sum-free n-partition of {1, 2, . . . ,m} one immediately obtains the lower
bound s(n) ≥ m. This is a most natural method of establishing lower bounds
for Schur numbers.

4.4.1 Backtracking

In [19] and [20], Fredricksen used a backtracking algorithm to obtain the
lower bounds s(5) ≥ 138 and s(5) ≥ 157 by constructing sum-free 5-
partitions of {1, . . . , 138} and {1, . . . , 157} respectively. In [19], Fredrick-
sen reduced the size of the search space by requiring that the partitions be
symmetric. An n-partition of {1, 2, . . . ,m} is called symmetric, if for all
1 ≤ k ≤ m, k and m + 1 − k are in the same class. The reduction re-
duced the size of the search space from nm to nd

m
2 e, or roughly to the square

root of the size of the original search space.

Theorem 4.4.1 No symmetric sum-free partition of {1, 2, . . . ,m} can exist
for m ≡ 2 mod 3.

Proof: When m ≡ 2 mod 3, m+1
3

is integer. By the symmetry requirement,
m+1

3
and (m + 1)− m+1

3
must be in the same class. However, m+1

3
+ m+1

3
=

(m + 1)− m+1
3

, and there would be a sum in that class.
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Generally, when arbitrary restrictions are imposed on the search space,
there is no guarantee that there’s an optimal solution to the original problem
in the reduced search space. Indeed, no symmetric partition correspond-
ing to s(4) = 44 exists, as 44 = 2 mod 3. Nearly symmetric 4-partitions of
{1, . . . , 44}, with all elements except 15 and 30 symmetrically placed, exist.
Whether there always is a nearly symmetric sum-free n-partition of the inte-
gers {1, 2, . . . ,m} when there’s a sum-free n-partition of {1, 2, . . . ,m} is an
interesting and apparently open question.

Fredricksen also did not place the pairs of integers {i, m + 1− i} in order;
rather, at every node of the search tree the pair was placed that had the small-
est number of sets where it could be placed while keeping the set sum-free.
In this manner, the branching factor (the number of children of a search
node) can be kept low near the root of the tree, leading to a decrease in the
total effort required.

In [20], no details of the search method were given, other than that a
backtrack search technique was used.

4.4.2 Local Search

In [17], Exoo presented a sum-free 5-partition of the integers {1, . . . , 160},
thus showing that s(5) ≥ 160. In total, Exoo found approximately 10,000
different sum-free partitions, of which 4 were symmetric. The partitions were
found by using an unspecified local search technique with an interesting
objective function.

As is usual with local search techniques, Exoo’s algorithm maintained P ,
the current n-partition of {1, 2, . . . ,m}, which consists of the n classes Pi,
1 ≤ i ≤ n. In constructing a sum-free n-partition of {1, 2, . . . ,m} Exoo was
optimizing

max c1f1(P ) + c2f2(P ), (4.1)

where

f1(P ) = arg max
k

(Pi ∩ {1, 2, . . . , k} is sum-free for all i = 1, . . . , n) ,

that is, f1 (P ) is one less than the smallest sum occurring in the partition, or
m, if the partition is sum-free, and

f2(P ) =
n∑

i=1

∑
a,b∈Pi

g(a, b)

where g(a, b) =

{
2n− a− b, when a + b > n

0, otherwise.

Here f1 is clearly the major term in the cost function. A sum-free partition
of {1, 2, . . . ,m} is found when f1(P ) = m, irrespective of the value of f2.
The significance of f2 is more subtle. With c1/c2 varying between 212 and
218, its role is to guide the search towards regions of the solution space, where
many pairs of numbers in a partition sum to slightly more than n. According
to Exoo, (4.1) clearly outperforms the simple count of sums as an cost func-
tion. We independently verified the bad performance of the count of sums
cost function.
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4.4.3 Incremental Construction

Theorem 4.4.2 For Schur numbers s(n + 1) ≥ 3s(n) + 1.

The following proof is different from the one presented in Schur’s original
paper [43].

Proof: With k = s (n), let P = {P1, . . . , Pn} denote a sum-free n-partition
of {1, 2, . . . , k}. We will construct P ′ =

{
P ′

1, . . . , P
′
n+1

}
, the sum-free n+1-

partition of {1, 2, . . . , 3k + 1}. Let P ′
i = {x|x ∈ Pi ∨ (3k + 1− x) ∈ Pi} for

1 ≤ i ≤ n, and P ′
n+1 = {k + 1, k + 2, . . . , 2k + 1}. In effect, the numbers

from 1 to k are mirrored and copied to the other end of the range 1 . . . 3k+1.
Clearly P ′

n+1 is sum-free: the smallest element is k+1 and the largest element
is less than twice that. Suppose that for some 1 ≤ i ≤ n there are a, b, c ∈ P ′

i

such that a+ b = c. Note that by construction, P ′
i ∩{1, 2, . . . , 2k + 1} = Pi.

It cannot be that a, b ≤ k, since then a + b = c ≤ 2k, and necessarily
a, b, c ∈ Pi, but Pi is sum-free. It cannot be that a, b ≥ 2k + 2, since then
a + b = c ≥ 4k + 4 /∈ P ′

i . Suppose then that a ≤ k and b ≥ 2k + 2.
Let b′ = 3k + 1 − b and c′ = 3k + 1 − c. By construction, since a ≤ k
and b, c ≥ 2k + 2 and a, b, c ∈ P ′

i , the elements a, b′, c′ ∈ Pi. However,
a + c′ = b′, contradicting the assumption that Pi is sum-free.

In this construction it is striking that in the last partition, the smallest
element is relatively large. Also, the partitions in Figure 4.1 and the partition
given by Exoo [17] for s(5) ≥ 160, where the smallest element in one of the
sets in the sample partition presented was 44, exhibit a similar property.

This led to the idea of constructing lower bounds for s(5) ≥ k′ by first
constructing a lower bound s(4) ≥ k, and then searching for a sum-free
partition of {1, . . . , k′} keeping the elements 1, . . . , k and k′ + 1− k, . . . , k′

fixed according to the partition corresponding to the lower bound s(4) ≥ k
as per the construction above.

A complete backtracking procedure was carried out, taking each 4-partition
of as starting point in turn and restricting the search to symmetric partitions.
The partitions corresponding to s(4) ≥ 44 yielded no lower bounds worth
mentioning, but starting from s(4) ≥ 43 some 5800 symmetric 5-partitions of
{1, . . . , 160} were found. Starting from s(4) ≥ 40 an estimated two million
symmetric 5-partitions were found. However, even starting from s(4) ≥ 34,
no lower bound greater than 160 was found for s(5).
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5 LOWER BOUNDS FOR RAMSEY NUMBERS

In this chapter, various methods used for constructing lower bounds for Ram-
sey numbers are reviewed. In section 5.1 lower bounds obtained with a
method based on finite fields are summarized. In section 5.2 our attempts
at improving some lower bounds with the finite field method are summa-
rized. In section 5.3. Section 5.4 contains a description of our attempts to
improve Ramsey numbers of the form Rk (3). Section 5.5 contains a descrip-
tion of various local search methods found in the literature applied to con-
structing lower bounds for Ramsey numbers for, mostly for Ramsey numbers
of the form R (k, l). In section 5.6 we describe how the new lower bound
R (5, 9) ≥ 121 was found.

5.1 LOWER BOUNDS USING FINITE FIELDS

Greenwood and Gleason [26] gave several lower bounds for Ramsey numbers
using a method based on the structure of finite fields.

Theorem 5.1.1 R(3, 3, 3) > 16.

Proof: Identify the vertices of the graph with the elements of GF (16). Asso-
ciate with each edge the difference of the field elements corresponding to the
endpoints of the edge. If that difference is a cubic residue in the multiplica-
tive group of the field, color the edge red. If the difference belongs to the first
coset of cubic residues, color it green. If it belongs to the second coset, color
it blue. In GF (16), −1 ≡ 1, so the order of differencing makes no differ-
ence. Suppose that three vertices were completely interconnected by edges
of the same color. Without loss of generality, assume they are 0, 1 and A. Of
course, 1− 0 = 1 is a cubic residue (13 = 1). Now there would have to exist
some A ∈ GF (16) \ {0, 1} for which both A and A − 1 are cubic residues
other than 0 or 1. However, by calculating the cubic residues in GF (16) it
is found that no such pair exists, and therefore there is no monochromatic
triangle in the coloring.

The finite field GF (16) can be calculated by taking the binary polyno-
mials of degree at most three as the field elements and defining multiplica-
tion modulo x4 + x + 1 as described in Section 3.4. The cubic residues of
the multiplicative group of the field can be found by brute force by raising
each non-zero field element to the third power. The set of cubic residues is
{1, x3, x3 + x, x3 + x2, x3 + x2 + x + 1}. The elements and their cubes are
listed below.

In the same paper, the exact values for a few Ramsey numbers of small
cliques were also given. The following lower bounds were obtained similarly
by using the finite field technique:

• R(3, 5) > 13, obtained by coloring the edges corresponding to differ-
ences that are cubic residues with one color and cubic non-residues
with the other,
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• R(4, 4) > 17, obtained by coloring the edges corresponding to differ-
ences that are quadratic residues with one color and non-residues with
the other,

• R(3, 3, 3, 3) > 41, obtained by coloring the edges according to the
coset of the quartic residues the corresponding difference belongs to,

• R(3, 3, 3) > 16, as described above.

Of these lower bounds only R(3, 3, 3, 3) is not exact. The best currently
known lower bound is R(3, 3, 3, 3) ≥ 51 by Chung [12]. The best known
upper bound R (3, 3, 3, 3) ≤ 64 is due to Sanchez-Flores [41].

Furthermore, in [40] Robertson proved the lower bounds R(5, 5, 5) ≥ 242
and R(6, 6, 6) ≥ 692 using the finite field technique.

The finite field technique seems especially suitable for constructing lower
bounds for Ramsey numbers of the form R (k, k). In [7] Burling and Reyner
colored each edge of Kp, with p = 4r + 1 prime, with two colors according
to whether the difference of the endpoints of the edge corresponded to a
quadratic residue in Zp or not. Then they calculated the largest cliques in
the colorings obtained; clearly, if the order of the largest clique is k, then
R (k + 1, k + 1) > p. They gave lower bounds for R (k, k), 5 ≤ k ≤ 9, of
which R (6, 6) > 101 and R (8, 8) > 281 are still the best known bounds.

In [44] and [31], Shearer and Mathon gave apparently independently the
best currently known lower bounds R (7, 7) ≥ 205, R (9, 9) ≥ 565, and
R (10, 10) ≥ 798. Again, the elements of Zp with p = 4k + 1 prime are
associated with the vertices of Kp and each edge is colored with the first
color if the difference of its endpoints is a quadratic residue in Zp and with
the second color otherwise. The bounds are based on calculating the or-
der of the largest clique in the resulting two-color edge-colorings; the bound
R (10, 10) ≥ 798 was found by noting that in the coloring of K797 the maxi-
mum clique was of order 9. Additionally, both showed that if the maximum
clique in such a coloring is of order k, then not only R (k + 1, k + 1) > p,
but also R (k + 2, k + 2) > 2p + 2. In the construction, two identical copies
H and H ′ of the coloring of Kp are taken. Then, the edges between H and
H ′ are colored with the first color if the difference corresponds to a quadratic
non-residue. Finally, the vertices v and v′ are added; the edges from v to H
and from v′ to H ′ are colored with the first color. The rest of the edges are
colored with the second color, except that the edges from H to H ′ whose
endpoints are associated with the same field element may be colored freely
with either color. This construction resulted in the best currently known
lower bounds R (7, 7) ≥ 205 and R (9, 9) ≥ 565.

5.2 ATTEMPTS TO IMPROVE RK(3) USING FINITE FIELDS

In search for improvements of the lower bounds for the Ramsey numbers
R(3, . . . , 3), we checked for each integer i = pn ≤ 1000, p prime, whether
i was between the best currently known upper and lower bounds for some
Ramsey number of the form R(3, . . . , 3). The best known bounds are shown
in (5.1).
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R(3, 3) = 6

R(3, 3, 3) = 17

51 ≤ R(3, 3, 3, 3) ≤ 64 (5.1)
162 ≤ R(3, 3, 3, 3, 3) ≤ 317

500 ≤ R(3, 3, 3, 3, 3, 3)

For each i between the lower and upper bound for some Rm(3), we at-
tempted to construct an m-color triangle-free edge-coloring of Ki. We first
checked whether m | i − 1, which is necessary to have m cosets of m-ic
residues. If that was the case, the i−1

m
m-ic residues were found by exponen-

tiating the elements of the field. Then a straightforward check was made to
see whether for any residue A, the set of residues also contains A− 1.

This occurred in all cases, so the approach did not yield any new lower
bounds. Had a field passed this test, it would also have been necessary to
make sure that the order of differencing does not matter, that is, for the field
GFn in question and for every a, b ∈ GFn, the differences a− b and b−a are
in the same coset.

5.3 COLORINGS AS UNIONS OF ORBITS

The search space for Ramsey graphs is enormous. A complete graph with
n vertices has

(
n
2

)
= n(n−1)

2
edges. The number of m-color edge-colorings

of the complete graph on n vertices is m
n(n−1)

2 . This number grows far
too quickly for any naïve enumerative technique to be successful with any
reasonable-sized problem.

In order to limit the size of the search space, additional requirements may
be placed on the solution. In particular, the search may be restricted to
colorings with a certain symmetry. By choosing a suitable symmetry, one
hopes to reduce the search space enough to make the problem manageable,
but not so much as to exclude all feasible solutions.

Let G be a permutation group on the vertices V of a complete graph
Kn = (V, E). With a complete graph, the set of edges is the set of two-
element subsets of V . Now partition the edges (that is, two-element subsets
of V ) into orbits O = {O1, . . . , ON}, where N is the number of orbits of
edges. In this chapter we shall consider colorings where the subset of edges
colored with a certain color is a union of some orbits of edges. This is exactly
equivalent to searching for colorings with the automorphism group G.

Example 5.3.1 To show that R (3, 4) > 8, we shall construct a two-color
edge-coloring of K8 without a K3 in the first color and without a K4 in the
second color. Additionally, we shall require the coloring to have the cyclic
symmetry.

Let G be the cyclic group C8 on the elements X = {0, 1, 2, 3, 4, 5, 6, 7}.
Associate with each of the vertices of K8 = (V, E) one of the elements of X .
In this case, the number of orbits N = 4. Partitioning the edges into the four
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orbits O = {O1, O2, O3, O4} gives us

O1 = {{0, 1} , {1, 2} , {2, 3} , {3, 4} , {4, 5} , {5, 6} , {6, 7} , {0, 7}}
O2 = {{0, 2} , {1, 3} , {2, 4} , {3, 5} , {4, 6} , {5, 7} , {0, 6} , {1, 7}}
O3 = {{0, 3} , {1, 4} , {2, 5} , {3, 6} , {4, 7} , {0, 5} , {1, 6} , {2, 7}}
O4 = {{0, 4} , {1, 5} , {2, 6} , {3, 7}} .

The orbits are illustrated in Figure 5.1. The size of the search space is
reduced dramatically: instead of 228 ≈ 2.7 · 108 ways of choosing colors for
the edges there are only 24 = 16 ways to choose colors for the orbits.

3
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0
7 1

26

3
4

5

0
7 1

26
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4

5
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7 1

26

3
4

5

0
7 1

26

Figure 5.1: The edge-orbits of K8 under C8.

By checking each of the 16 symmetric edge-colorings, it is not difficult to
find the two that contain no K3 nor a K4 in the second color. In one of them,
the edges in O3 ∪O4 is colored with the first color and the edges in O1 ∪O2

with the second color; in the other, the edges in O1 ∪ O4 are colored with
the first color and the edges in O2 ∪O3 with the second color. The resulting
colorings are illustrated in Figure 5.2. Notice that C8 is only a subgroup of
the automorphism group of the coloring, which is D8. Also notice that the
colorings are isomorphic, that is, they are essentially same in the sense that
one can be obtained from the other by suitably renaming the vertices.

Figure 5.2: Two two-color edge-colorings of K8.

Typically, the cyclic group Cn has been used as the automorphism group
to construct colorings of Kn without large monochromatic cliques. Con-
structions with cyclic symmetry account for a significant portion of the lower
bounds given in Radziszowski’s regularly updated dynamic survey [36].

In [37] Radziszowski and Kreher give an algorithm for searching for graphs
on n vertices with no clique of k vertices and no independent set of l vertices.
Naturally, this is equivalent to searching for two-colorings of the edges of the
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complete graph Kn that contain no clique of k vertices in the first color and
no clique of l vertices in the second color.

In their method, a permutation group G on the set of vertices V is cho-
sen, and the orbit incidence matrices A2k and A2l are calculated. For the
purposes of the algorithm, the orbit incidence matrices A2k and A2l contain
information on which edges occur in which cliques. Each k- or l-subset orbit
represents a constraint on the admissible colorings, since, in order not to be
monochromatic, each k-clique must contain at least one edge in the second
color, and each l-clique must contain at least one edge in the first color:

U · A2k > 0 (5.2)
U · A2l > 0

where U is a (0, 1)-vector, U is its complement, and the inequality means
that each component of the vector must be greater than zero. Each element
of U represents the color of one edge orbit.

Many of the constraints are redundant, and before embarking on the
search for a U to satisfy (5.2), the redundant columns of A2k and A2l were
removed. In one case (n = 56, k = 5, l = 6, G = D56) this led to matrices
that were smaller than the original ones by a factor of over 30 000. Then a
backtracking procedure was carried out to find admissible colorings.

Radziszowski and Kreher gave lower bounds for R(4, 7), R(4, 8), R(4, 9),
R(5, 7), and R(5, 8) using this method. Of the lower bounds, however, only
R (4, 9) ≥ 69 has withstood the test of time. In [10] Calkin, Erdős and Tovey
searched all cyclic two-color edge-colorings of Kp, p prime; lower bounds
were given for R (4, 12), R (4, 15), R (5, 7), and R (5, 9). The lower bound
R (5, 7) ≥ 80 is the best currently known lower bound.

5.4 ATTEMPTS TO IMPROVE RK(3) USING SYMMETRIC COLORINGS

Restricting the search to colorings with cyclic symmetry is equivalent to iden-
tifying each node with an integer mod n, and coloring each edge according to
the difference (mod n) of its end points. Naturally, since each edge can be of
only one color, the colors have to be assigned so that the order of differencing
does not matter. For finding triangle-free graphs this reduces to finding Schur
partitions of {1, . . . , n− 1} that are sum-free mod n. As seen in Chapter 4,
the Schur partitions for s(3) = 13 and s(4) = 44 yield triangle-free colorings
of K14 and K44 with 3 and 4 colors respectively.

However, it is possible to do better than that. Triangle-free colorings of
K16 and K50 with three and four colors respectively have been constructed.
In particular, it is well known that there are exactly two non-isomorphic
three-color colorings of K16 that contain no monochromatic triangle in any
color [28]. One of these has the automorphism group C4 × C4, whereas the
other has the automorphism group C2 × C2 × C2 × C2. Also, at least one
four-color coloring for K49 with the symmetry C7 × C7 exists. This alone
should be enough to motivate trying other than cyclic symmetries; groups of
the form Cn1 × Cn2 × . . .× Cnk

were tried next.
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First, we searched for new 4-color triangle-free colorings. To improve the
lower bounds R (3, 3, 3, 3) > 50 by Chung [12], and since R (3, 3, 3, 3) ≤
64, shown by Sanchez-Flores [41], it suffices to search the range 51 ≤ |V | ≤
63.

Colorings with automorphism groups of the form Cn were searched ex-
haustively without success; indeed, a triangle-free cyclic m-coloring on |V |
vertices would imply that the Schur number s (m) ≥ |V | − 1 in a manner
very similar to the proof of Theorem 4.3.1, but as discussed in Chapter 4,
s (4) = 44.

Next, groups of the form G = Cn1 × Cn2 × . . . × Cnk
were investigated.

These groups are finite and abelian. A standard result (found in e.g. [2]) on
finite abelian groups shows that every finite abelian group is isomorphic to a
direct product of cyclic groups Cn1 × . . .×Cnk

with n1|n2| . . . |nm. It follows
that it suffices to search the groups listed in Figure 5.3. Each group G is a
permutation group of cardinality |G| =

∏k
i=1 ni on |X| =

∏k
i=1 ni elements.

|V | group
52 C2 × C26

54 C3 × C18

54 C3 × C3 × C6

56 C2 × C28

56 C2 × C2 × C14

60 C2 × C30

63 C3 × C21

Figure 5.3: The automorphism groups tried for improving R(3, 3, 3, 3) > 50.

As in the previous section, the orbit incidence matrix A23 was calculated in
each case, using the GAP software package [21]. An exhaustive backtracking
search was then performed, but all colorings contained a monochromatic
triangle.

Next, smaller order abelian symmetry groups were tried on graphs with the
same number of vertices. Let us define the group Idn to be the permutation
group on the elements {1, 2, . . . , n} consisting of the identity permutation
only. Now the group G = Cn1 × . . . × Cnk−1

× Idnk
on the set X is a

permutation group of cardinality |G| =
∏k−1

i=1 ni on |X| =
∏k

i=1 ni elements.
In a sense, nk parallel copies of Cn1× . . .×Cnk−1

are created. As an example,
the generator of C5 × Id3 is illustrated in Figure 5.4.

Figure 5.4: The generator of C5 × Id3.

Again, orbit incidence matrices were constructed and an exhaustive search
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was performed under the symmetries Cn × Id2, where 25 ≤ n ≤ 31. Unfor-
tunately, no triangle-free colorings were found.

Even smaller order symmetry groups were then tried. The groups tried
included C16 × Id3, C17 × Id3, C19 × Id3, C12 × Id4, C13 × Id4, C11 ×
Id5, C7 × Id7 and C5 × Id9. The orbit incidence matrix corresponding to
each group was again constructed with GAP. With these groups, however,
the search space was too large to search exhaustively. Therefore, the orbit
incidence matrix was transformed into a form suitable for input to a tabu
search program. The tabu search program was written by Kari Nurmela, and
a version of it has been included in the DISCRETA software package [4]. No
new lower bounds were found. However, especially for groups of small order
this constitutes rather weak evidence for the non-existence of triangle-free
colorings with those symmetries, since the smaller order groups do not limit
the search space very much, and the search space may simply have been too
large.

Some attempts were made to improve the lower bound R(3, 3, 3, 3, 3) ≥
162 given in [17] using the symmetry groups C163, C164, C166, C13 × C13,
C5 × C35, and C34 × Id5. The orbit incidence matrix was calculated and
transformed for use with the tabu search program used. No new lower bound
was found.

5.5 LOCAL SEARCH FOR TWO-COLOR RAMSEY NUMBERS

In this section, local search methods used to find two-colorings without large
monochromatic cliques are described.

Searching all edge-colorings exhaustively for colorings that contain no
large monochromatic cliques is computationally feasible only for the smallest
problem instances. In the previous section, the requirement that the color-
ings have a predetermined symmetry was used to limit the search space so
that an exhaustive search was again computationally feasible.

For still larger problem instances one would need to use more restrictive
symmetries to maintain the computational feasibility of exhaustive search.
Reducing in this manner the search space to a smaller and smaller fraction
of the original search space increases the risk of all feasible solutions being
excluded from the restricted search space. Since local search methods can
handle a larger search space than exhaustive search methods, less restrictive
symmetries may be used. Due to the stochastic nature of local search meth-
ods it may happen that a clique-free solution is never found even if there
were one in the search space; however, it is hoped that this is disadvantage
is offset by being able to use a less restrictive symmetry, thus increasing the
odds that the reduced search space contains a clique-free coloring.

5.5.1 Exoo on R (3,10), R (3,12) and R (5,5)

Virtually all lower bounds obtained by local search techniques have made use
of cyclic colorings in one form or another. Sometimes slight modifications
to a cyclic coloring have been made to construct a coloring of the required
type.
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In [16] Exoo showed that R (3, 10) ≥ 40 and R (3, 12) ≥ 50, of which
the former is still the best known bound for those parameters. First, a cyclic
(3, 9)-coloring on 35 vertices and a cyclic (3, 11)-coloring on 45 vertices were
chosen, respectively. In each case, four vertices were added to the cyclic
colorings and the added edges were colored suitably. A simulated annealing
procedure was used, where the cost function was based on the number of
monochromatic cliques in each color; the number of cliques in each color
was multiplied by a suitable weight. For the weights, Exoo suggested the use
of the number of the edges in the cliques being counted.

The best currently known lower bound R (5, 5) ≥ 43 was established by
Exoo in [15]. First, a cyclic two-coloring of K43 with 43 monochromatic
K5’s in color one was found. Then, one of the vertices was removed from
the graph, 16 edges of color one were recolored, and a (5, 5)-coloring was
obtained. A fairly complex genetic algorithm was used, but not described in
the article.

5.5.2 Piwakowski with Tabu Search

In [35], Piwakowski gave several lower bounds for two-color Ramsey num-
bers. The search algorithm was a form of tabu search and the search was
restricted to colorings with cyclic symmetry. In the tabu search, the neigh-
borhood of a coloring was the set of colorings obtainable from it by recoloring
one edge-orbit. The cost function was simply the number of monochromatic
cliques of the given order in the coloring. The tabu condition was that an
edge-orbit may not be recolored, if it has been recolored within the past t
moves.

Piwakowski gave the lower bounds for R (3, 13) ≥ 59, R (4, 10) ≥ 80,
R (4, 11) ≥ 96, and R (5, 8) ≥ 95 using the symmetry groups C29×Id2, C79,
C95, and C94, respectively. Piwakowski also gave lower bounds for R (4, k)
with 12 ≤ k ≤ 14, but those bounds have been improved on since.

5.5.3 Fifteen Lower Bounds by Exoo

In [18], Exoo gave thirteen new lower bounds for two-color Ramsey numbers
and two lower bounds for multi-color Ramsey numbers. Again, the edges
were partitioned to edge-orbits and the neighborhood of a coloring was the
set of colorings obtainable from it by recoloring one edge-orbit. The search
algorithm was a hybrid of simulated annealing and tabu search: Each neigh-
bor is evaluated, one of the T best values obtained is randomly chosen, and
the corresponding solution is taken as the new current solution. Additionally,
a history list H of previous current solutions was maintained and used as a
tabu list; the search was not allowed to move to a previously visited solution.
The parameter T , roughly corresponding to the temperature in simulated
annealing, was initialized to roughly 1

10
of the number of edge-orbits and

decremented every two or three iterations. If after some time at T = 1 no
improvement is seen, T was reinitialized to the original value. The history
list H was essentially infinite in length.

The lower bounds for R (6, k) with 7 ≤ k ≤ 10 and the bounds R (5, 9) ≥
116, R (3, 4, 5) ≥ 80, and R (3, 3, 3, 4) ≥ 87 were found using the corre-
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sponding cyclic groups. Additionally, Exoo gave the lower bounds R (3, 12) ≥
52 and R (4, 8) ≥ 55 with the symmetry groups C17 × Id3 and C18 × Id3 re-
spectively.

In the same paper [18], Exoo also gave the best currently known lower
bounds for R (5, k) with 10 ≤ k ≤ 15. The construction was an incremental
construction based on smaller colorings with no triangle in the first color or
a Kt−1 in the second color. Construct B by taking the adjacency matrix of
such a coloring and filling the diagonal with ones. Let C be the adjacency
matrix of a coloring obtained from B by swapping the colors, but retaining
ones on the diagonal. The constructions Exoo gave then had an adjacency
matrix of the form

A =


B C B B
Ct B B B
Bt Bt B C
Bt Bt Ct B

 .

For each 10 ≤ k ≤ 15 Exoo then chose a (3, k − 1) coloring and con-
structed A to establish the bounds. Apparently, the construction alone does
not guarantee the non-existence of a K5 or Kk, but one also has to choose a
suitable (3, k − 1)-coloring: as mentioned, in the same paper Exoo showed
that R (3, 12) ≥ 52, but for his construction to show that R (5, 13) ≥ 193 he
used a cyclic (3, 12)-coloring on 48 vertices instead of the 51-vertex (3, 12)-
coloring he had just constructed.

5.6 A NEW LOWER BOUND FOR R (5,9)

In this section a new lower bound for a Ramsey number, R(5, 9) > 120, is
presented. The bound is obtained by constructing a two-color edge-coloring
of the complete graph with 120 vertices such that the coloring contains nei-
ther a clique of order 5 in one color nor a clique of order 9 in the other.
The construction was found by using tabu search and restricting the search
to cyclic edge-colorings.

For R(5, 9), Calkin, Erdős, and Tovey [10] gave the first non-trivial lower
bound R(5, 9) > 113 by constructing a two-color edge-coloring of K113 with
no K5 in the first color nor a K9 in the second color. The construction was
found by searching exhaustively the two-color edge-colorings of K113 with
cyclic symmetry.

According to [36] the bound R(5, 9) > 115, given by Exoo [18], is the best
previously known lower bound. The corresponding construction was found
by using a local search method and searching for an edge-coloring with cyclic
symmetry.

The construction corresponding to the new lower bound R(5, 9) > 120
was found by applying tabu search and, again, restricting the search to edge-
colorings with cyclic symmetry.

5.6.1 The Search Method

We use tabu search in the style of Piwakowski [35] to search for a two-color
edge-coloring of Kn with no Kk in the first color and no Kl in the second
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color as a subgraph. Tabu search is a local search method; in every itera-
tion the current solution is replaced by one of its neighbors. Tabu search is
stochastic by nature: it is not guaranteed to always find an optimal solution
even if one exists. Nevertheless, tabu search is sometimes very effective in
solving combinatorial problems.

The tabu search algorithm used is described on a general level in Figure
5.5.

1. Take a random solution as the current solution.

2. Until the termination condition is satisfied, repeat:

• Calculate the cost of all non-tabu solutions in the neighborhood
of the current solution.

• Make the non-tabu neighbor with the lowest cost the new current
solution.

Figure 5.5: The tabu search algorithm

To complete the description of the algorithm, we next specify the solution
space, neighborhood, cost function, and tabu condition used.

The solution space used is not the set of all two-color edge-colorings of
the Kn. Instead, we restrict the size of the search space by partitioning the
edges into edge sets and requiring that all edges in each edge set be colored
with the same color. The solution space is then the set of two-colorings of the
edge sets. In particular, the vertices are identified with the integers 1, . . . , n,
and the edges are partitioned according to the distance of their endpoints into⌊

n
2

⌋
edge sets Ed:

Ed = {{i, j} : dist (i, j) = d} , 1 ≤ d ≤
⌊n

2

⌋
,

where dist(i, j) = min (|i− j| , n− |i− j|) .

This is equivalent to restricting the search to edge-colorings whose automor-
phism group has the cyclic group acting on the vertices as a subgroup.

The neighborhood of a coloring is the set of colorings obtainable from the
coloring by changing the color of one edge set.

The cost of a coloring is the number of Kk’s in the first color plus the
number of Kl’s in the second color.

A neighboring coloring is tabu, if the edge set where the current and
neighboring colorings differ has been recolored within the past t iterations.
Here t, the length of the tabu list, is a search parameter.

5.6.2 The Construction

Using the technique described above with n = 120, k = 5, l = 9, and t = 12,
we found a two-color edge-coloring of K120 that contains neither a K5 in the
first color nor a K9 in the second color. With
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S = {2, 3, 6, 7, 13, 15, 17, 18, 19, 20, 22, 23, 28,

29, 31, 33, 41, 42, 43, 45, 48, 52, 53, 54, 60},

the coloring may be constructed by coloring the edges in edge sets Ed for
which d ∈ S with the first color and the remaining edges with the second
color. Using a computer it is not hard to verify that the resulting coloring
contains no K5 in the first color and no K9 in the second color. Thus, this
construction yields the new lower bound R(5, 9) > 120.
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6 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this report, methods used for constructing lower bounds for Ramsey num-
bers are reviewed and the new lower bound R (5, 9) > 120 is presented. The
new bound is found by using tabu search and restricting the search to cyclic
edge-colorings.

Several best currently known lower bounds and the methods used to ob-
tain them are reviewed. The results reviewed are summarized in Figure 6.1.

l
k

3 4 5 6 7 8 9 10

3 6S 9S 14F 18 23 28G 36
40L

43

4 18F 25
35
41

49
61

55Lc

84
69C

115
80LC

149

5 43Lc

49
58
87

80C

143
95LC

216
121LC

316
141Lc

442

6 102F

165
109LC

298
122LC

495
153LC

780
167LC

1171

7 205f

540 1031 1713 2826

8 282F

1870 3583 6090

9 565f

6625 12715

10 798f

23854

S: bound obtained with simple analysis
L: construction obtained with local search
C: corresponding construction has cyclic symmetry
c: corresponding construction is based on cyclic symmetry
F : construction corresponds to the structure of a finite field
f : construction is based on the structure of a finite field
G: construction presented by Grinstead and Roberts [27]

Figure 6.1: Methods used for lower bounds of Ramsey numbers R(k, l)

It is striking that almost all best known lower bounds for Ramsey numbers
R (k, k) have been found by using constructions based on finite fields, and
that virtually all lower bounds for R (k, l) with k 6= l have been found by
using cyclic symmetries.

Several ideas for further research have surfaced during the writing of this
report. To round off this work, some of them are sketched.

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 45



Symmetries:
On one hand, the vast majority of lower bounds listed in Radziszowski’s sur-
vey [36] has been obtained by constructing a coloring with a cyclic symmetry.
On the other hand, according to Bollobás [5, p. 185], “The two-colourings of
Kn without large monochromatic complete subgraphs lack order: they look
as if they had been chosen at random.” There is a trade-off: with the current
search algorithms one must limit the search space, but one hopes that the
limitation affect the result as little as possible. There seems to be no partic-
ular reason why cyclic groups seem to perform so well, and trying out other
groups seems warranted. Unfortunately, choosing the right groups is not easy.
If the optimal colorings really lack structure, examining known optimal col-
orings may not suggest any useful symmetries to try for other cases.

Typically, the symmetries used have restricted certain edges to be colored
with the same color. Except for the reduction in the size of the search space,
this seems counterproductive — it would seem more sensible to restrict cer-
tain edges to be colored with a different color.

In the scheme used, the group G ⊂ Sym (V ) is a group of permutations of
the vertices; the edges have been partitioned into orbits under G and all the
edges in an orbit have been colored with the same color. Equivalently, one
could partition the set E×C of edge-color pairs into orbits under G and look
for a subset of those orbits such that each edge is covered by exactly one edge-
color pair and the resulting edge-coloring contains no large monochromatic
clique. Since G does not permute the colors, all edge-color pairs in an orbit
have the same color. To generalize this, one could allow the elements of
G to permute the colors as well: let G ⊂ Sym (V ) × Sym (C). Then, the
element (gV , gC) ∈ G would permute the edge-color pair ({v1, v2} , c) to
({gV (v1) , gV (v2)} , gC (c)). Again, partition E ×C into orbits — now edge-
color pairs in the same orbit may have different color — and, again, look for
a subset of the orbits such that each edge is covered exactly once and the
resulting coloring contains no large monochromatic clique.

As a simple example, number the vertices of a K5 from 1 to 5 and let G be
the group generated by ((1, 2, 3, 4, 5) , I) and ((1, 2, 4, 3) , (r, g)) with r and
g representing red and green respectively. Taking the edges of the K5 as E
and {r, g} as C, the group G partitions E × C into two orbits. One of them
is exactly the coloring presented in Figure 1.2 on page 4.

Cost Function:
In most local search techniques used for constructing colorings without large
monochromatic cliques, the cost function used has been the number of
monochromatic cliques of a certain order. Recall that deciding whether a
graph contains a clique of a certain order is an NP-complete problem, and
that arrowing is a coNPNP-complete problem. From Section 1.5 we know
that coNPNP ⊆ PH ⊆ P#P. That is, it should be possible to decide
the arrowing problem—and presumably other, significantly more difficult
problems—in polynomial time, with at most a polynomial number of calls to
the clique-counting subroutine. However, the local search algorithms offer
no guarantee of deciding the problem correctly in any reasonable time. This
would seem suggesting trying some slightly different approach, such as trying
a computationally easier cost function.
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Interestingly, in searching for a Schur partition of the integers {1, . . . , 160}
Exoo reported a far better performance with a cost function (Equation 4.1)
whose main term was the smallest sum occurring in any of the partitions
than with an cost function that calculated the number of sums. Perhaps in
the search for colorings without monochromatic cliques one could use as an
cost function a function based on finding one clique and considering the
vertices in the clique.

Finite Field Method:
Since all finite fields of a given order are isomorphic, it should be possible
to try all finite fields up to a certain order systematically. One could then
calculate the set of m-ic residues and the corresponding cosets for some rea-
sonable values of m and check whether the corresponding coloring gives a
new lower bound for some Ramsey number by calculating the order of the
largest clique in each color.

Search for Colorings as Satisfiability Problem:
The satisfiability problem is the problem of deciding whether for a given
boolean expression there is a truth assignment that makes the expression
true. Searching for a two-color clique-free edge-coloring with a given sym-
metry can be expressed as a satisfiability problem. Suppose that the edges
of the complete graph have been partitioned into orbits O1, . . . , ON and
that we’re trying to avoid a monochromatic clique on k vertices. Let ri be
a boolean variable which is true if Oi is colored with red, and false if Oi

is colored with green. Suppose, for example, that there is a clique of or-
der at least k in the graph formed by taking the edges in O2, O7, and O9.
Then, all three orbits may not be colored with the same color. This gives
us two constraints: at least one of the orbits must be colored with red, and
at least one of the orbits must be colored with green. As a boolean expres-
sion, this translates to (r2 ∨ r7 ∨ r9) ∧ (¬r2 ∨ ¬r7 ∨ ¬r9). By calculating all
constraints, one can form a logical expression that is satisfiable if and only if
there is an edge-coloring with the prescribed symmetry that contains no large
monochromatic clique.

This idea is strongly based on the work in [37], described in Section 5.3.
In that work, essentially a constraint was created for each color and every or-
bit of cliques. Then redundant constraints were filtered out. The problem
is that the number of k-element subset orbits grows rapidly. There is hope,
however, that calculating the non-redundant constraints could be done effi-
ciently without calculating all k-element subset orbits.
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