Comparison of graph-search algorithms for authorization
verification in delegation networks

Tuomas Aura
Helsinki University of Technology, Digital Systems laboratory
FIN-02015 HUT, Finland; Tuomas.Aura@hut.fi

Abstract

We describe and compare several algorithms for authorization decisions from a database
of certificates. The algorithms are based on well-known graph-search techniques that we
enhance to handle joint-delegation certificates. Experiments on generated certificate data
were done to compare the efficiency of the algorithms.

1 Introduction

Emerging key-based access control mechanisms are moving the access control decisions from
centralized trusted servers to the local ones. They also shift the focus from identity of en-
tities to authorization, the right to perform operations. The access right can be delegated
anonymously from key to key with a chain of certificates. Three key-based access control
systems have received wide attention: SPKI certificates [2], SDSI public key infrastructure
[3], and PolicyMaker local security policy database [1]. The authorization decision in all of
these systems is to some extent dependent on the chaining of signed certificates that grant
authority to perform operations. Thus, they must have some mechanism for determining if a
set of certificates contains a chain that authorizes an operation.

In this paper, we present and compare algorithms for authorization decisions from sets of
certificates. We take a simplified view of certificates: A certificate is issued by a key. With
the certificate, the issuer authorizes another key, the subject of the certificate, or a group
of subject keys together, to perform an operation and to delegate this right to other keys.
We view the certificates as arcs of a generalized directed graph, delegation network. Our
algorithms are based on ideas from graph search.

We believe efficient algorithms of this kind to be necessary when the distributed access
control systems are implemented. The tasks of making authorization decisions and maintain-
ing the certificates is likely to be given to a specialized servers that must have predictable
performance. Also, if common-place applications such as databases and file and document
servers start using the new access control systems, the volume of the certificate data may be-
come so0 high that the techniques for its processing should be carefully selected. Experimental
results with certificate data generated according to our understanding of a typical delegation
network structure show that the authorization decisions can be made efficiently from large
and variable sets of certificates as long as some care is taken in designing the algorithms for
the purpose.

We begin by introducing our abstract view of the delegation networks and the authoriza-
tion problem in Sec. 2. Sec. 3 describes the algorithms. In Sec. 4 we give results of experiments
and comparisons between the algorithms. Sec. 5 concludes the paper.

2 Delegation network

We first define the terminology and authorization problem and then proceed to describe what
the typical delegation networks look like.

2.1 Definitions

In our discussion, a certificate is a four-tuple < issuer, subjects, k, authorization >. issuer
is the key signing of the certificate and subjects is a set of n keys to whom the certificate has
been given. k is the threshold value determining how many subjects must co-operate to use
and further delegate the right specified by authorization.

A delegation network is a set of certificates. The issuers and subjects in the certificates are
called keys. A delegation network can be stored as a (generalized) directed graph structure
where the certificates serve as directed arcs and keys as nodes. The joint-delegation certificates
can be viewed as generalized arcs. If all certificates have only a single subject, the delegation
network becomes a standard directed graph.

In our simplified model, delegation is always transitive. (In actual systems, the transitivity
can be limited. In SPKI, for example, further delegation can be forbidden in the certificate.
The algorithms in this paper are easily adaptable to such limitations.)

The authorization problem can be formulated as the existence of a computation [2]. In-
stead, we will try to help the reader visualize the problem with the help of trees. This is
important because in order to understand the algorithms in this paper, the delegation net-
work should be visualized as a graph. We also assume that the certificate database is set up
as a graph so that the keys and their certificates are easily accessible from one another.

The tree-based definition goes as follows: A delegation network authorizes a client key ¢
to perform an operation for a server key s if a finite tree can be formed such that

1. All nodes of the tree are marked with a key. The key on the root node of the tree is
s. The key on every leaf node of the tree is c. The same key can be used for multiple
nodes.

2. All nodes that have children (i.e. non-leafs) are marked with a certificate. The issuer
of the certificate must be the key on that node. The subjects of the certificate must
correspond to the keys on the children. If the threshold value of the certificate is lower
than the number of subjects, only the threshold number of children are required. The
same certificate can be used for multiple nodes. For a certificate with only a single
subject, this means that there is a single child node and the key on the child node is the
same as the subject. (Actually, we are not as much marking the nodes with certificates
but the connection between the parent node and the group of children.)

Thus, the question “Does a delegation network authorize key ¢ to perform operation s from
server s?” can be stated as: “Does a tree exist that conforms to the above requirements?”
With the graph-search algorithms, we are trying to find this kind of tree in the generalized

e G
L

Inteﬁnediate keys
7 — \

~4

Figure 1: Typical delegation network structure

Servers
S
DFS DFS
forward backward
c
(a) Clients (b) (c)

Figure 2: When forward branching is greater, backward search is faster

directed graph formed by the keys and certificates. When there are no joint-delegation certifi-
cates, the tree is reduced to a path, and standard path-finding algorithms for directed graphs
can be used.

2.2 Typical delegation network structure

The delegation networks in practice, however, will not be arbitrary graphs but they will
have certain structure. Although the system architectures themselves do not constrain the
associations between the keys, common practices will arise from the way popular applications
choose to chain their certificates.

We anticipate that most delegation networks will have an hourglass shape (Fig. 1). On
the top of the hourglass there are the servers and on bottom the the clients. Direct certificates
between the servers and clients are scarce. Instead, the access rights are distributed to the
clients by a network of intermediate keys. These can be trusted certificate databases near
the clients, reference monitors near the servers, and service brokers between them. In the
extreme case, there could be a single broker delivering access rights from servers to clients,
as in Fig. 2(a).

Application programs, user platforms and specialized servers themselves are unlikely to
incorporate wide capabilities for maintaining valid certificates. Therefore, trusted servers are
needed for certificate acquisition, updates, bookkeeping and verification. These servers will

need algorithms for authorization decision from large sets of certificates, and they themselves
form an additional key layer in the network.

Naturally, the common structure will only hold for majority of the certificates. There
may be occasional short links and even certificates from clients to servers. Also, the servers
or clients can create a wealth of mutual relationships amongst themselves. Thus, the system
must be able to accommodate arbitrary certificates between arbitrary keys. Nevertheless, we
will optimize the efficiency of our algorithms to with the hourglass structure in mind.

3 Algorithms for access control decision

In the literature, no actual algorithms for authorization decisions have been described. The
SPKI document [2] explicitly states that its authors believe that the authorization questions
can be answered but no implementation exists for the time being. In this section, we will
shortly refer to the semantical definition of the SPKI certificates and then describe several
algorithms for the authorization decisions.

Two things are worth noting about our algorithms. Firstly, they are based on simple
path-finding algorithms for directed graphs. We have not considered any pre-computation
techniques. Storing the precomputed results or some partial information in the memory can
lead to constant-time algorithms but the memory space required is O(n?) with respect to the
size of the certificate database. This does not seem feasible for the implementations that we
have in mind, although some kind of caching might improve the efficiency of our algorithms.
Secondly, signature verification is not part of the algorithm. All signatures are verified at the
time when the certificates are entered into the database.

3.1 Five-tuple reduction

The SPKI document defines the semantics of the certificates with a five-tuple reduction. (The
five-tuples are certificates almost like our four-tuples.) That is, rules are given for how two
certificates (or more in the case of joint delegation) reduce into one. A server should grant
access to a client if there is a path of certificates that recursively reduces to one certificate
where the server itself authorizes the client.

The five-tuple reduction can be used as an implementation technique. When the client
asks intermediate keys to sign the reduced certificates, no signature needs to be verified more
than once. Still, the client, or an entity trusted by the client, must maintain the certificates
and decide when it needs to start reducing a path. Therefore, techniques are needed for
efficient path finding and decision making from a set of certificates even when the five-tuple
reduction is actually implemented.

3.2 Depth-first search forward

The most straight-forward way to verify authorization from a certificate graph is depth-
first search in the certificate graph tracing the flow of access rights from the server to the
client. The recursive search procedure has, in fact, been proposed as an alternative semantic
definition of authorization for the SPKI certificates [4].

Pseudo-code for a recursive depth-first search algorithm is listed in Listing 1. The al-
gorithm should contain no surprises to the reader. For each certificate, it counts the valid

1 function dfsForward (server,client,operation)

2 return dfsForwardRecursive(server,client ,operation);

3

4 function dfsForwardRecursive (key,client ,operation)

5 mark key as in search path;

6 if (key = client) return TRUE;

7 for ¢ in certificates signed with key

8 if (¢ authorizes operation)

9 countPaths = 0;

10 for (subj in subjects of c¢)

11 if (countPaths < number of paths required by c¢

12 AND (subj marked as having path to client

13 OR (subj NOT marked as having path to client
14 AND subj NOT marked as in search path
15 AND dfsForwardRecursive(subj,client ,operation))))
16 countPaths = countPaths + 1;

17 if (countPaths > number of paths required by c)

18 mark key as having path to client;

19 return TRUE;

20 unmark key as in search path;

21 return FALSE;

Listing 1: Depth-first search forward from server to client

paths leading from subjects of the certificate to the client. If the count reaches the thres-
hold required by the certificate (the threshold is 1 for non-joint delegation), there is a valid
authorization path from the issuer of the certificate to the client.

Unfortunately, the number of paths in a graph grows exponentially with the graph size.
Fig. 3(b) shows an example of how forward search must process some nodes again even though
they have been visited before. (This is a good test case for algorithmic improvements.) If all
certificates had only one subject, a linear algorithm could be used instead.

Our implementation that was used for the experiments reported in Sec. 4, does several
further optimizations to avoid retraversing paths. Although these significantly reduce the
number of keys processed, the complexity of the algorithm remains exponential. Typically,
existing certificate paths are found fast but negative answers can take even millions of steps.

3.3 Depth-first and breadth-first search backward

In Fig. 2, there is a simple hourglass shaped delegation network. Part (b) shows how a
forward depth-first search from the server finds the client. In part (c), the same kind of
search is initiated backward from the client to find the server. The searches are functionally
equivalent (even the same algorithm can be used when all certificates have only one subject),
but since the network branches less in the backward direction, the backward search is faster.
That is, in a typical delegation network, backward search will perform better than forward
search.

There are two possible ways for handling joint-delegation certificates in backward search.

joint
delegation
certificate

DFS

(a) ¢ (b) forward (C) backward

Figure 3: Depth-first forward search can visit the same node several times.

22 function dfsBackward (server,client,operation)

23 return dfsBackwardRecursive(client,server,client ,operation);
24

25 function dfsBackwardRecursive (key,server,client,operation)

26 mark key as having path to client;

27 if (key = server) return TRUE;

28 for ¢ in certificates given to key

29 if (¢ authorizes operation

30 AND issuer of ¢ NOT marked as having path to client)
31 countPaths = 0;

32 for (subj in subjects of c)

33 if (subj marked as having path to client)

34 countPaths = countPaths + 1;

35 if (countPaths > number of paths required by c

36 AND dfsBackwardRecursive(issuer of c,server,client,
37 operation)

38 return TRUE;

39 return FALSE;

Listing 2: Depth-first search backward from client to server

One can span forward searches from the subjects in order to determine immediately if enough
paths from the subjects to the client exist. This approach suffers from the poor performance
of the forward search. Instead, we have chosen to count the number of paths leading from
the client to the subjects, and to continue the backward search from the issuer of the joint-
delegation certificate when the threshold value is reached. This appears to be simple and
effective. If the same subject never appears twice in the same certificate, the counting can be
optimized by keeping counters with the certificates. In the pseudocode of Listing 2, we have
chosen the most general approach and recount the subjects on every visit. Fig. 3 illustrates
how the backward search processes every key at most once.

Backward search can also be done in breadth-first order. The breadth-first algorithm
processes keys by increasing distance from the client. Like in the depth-first algorithm,
the issuers of joint-delegation certificates are discarded until enough of the subjects of the
certificate have been processed. In theory the breadth-first search can require more memory
than the depth-first search. In our experiments, however, the memory consumption was so
small that we found it difficult to give any estimates.

40 function bfsBackward (server,client,operation)

41 nectKeys = {client};

43 mark client as having path to client;

44 while (neztKeys = ()

45 currentKeys = nextKeys;

46 nextKeys = 0);

47 for key in currentKeys

48 for ¢ in certificates given to key

49 if (¢ authorizes operation

50 AND issuer of ¢ NOT marked as having path to client)
51 countPaths = 0;

52 for subj in subjects of ¢

53 if (subj marked as having path to client)

54 countPaths = countPaths + 1;

55 if (countPaths > number of paths required by c)

56 if (number of certificates given to issuer of ¢ > 0)
57 nextKeys = nextKeys U {issuer of c};

58 mark issuer of ¢ as having path to client;

59 if (issuer of ¢ = serwver) return TRUE;

60 return FALSE;

Listing 3: Breadth-first search backward from client to server

3.4 Two-way search

The graph search can be optimized by starting from both ends and meeting in the middle of
the path. This is illustrated in Fig. 4.

The average cost ¢ of finding the path between two nodes in a graph grows exponentially
with the length of the path d. By searching from both ends and meeting in the middle, we can
reduce the problem to two parts with path length d/2. This way, the complexity decreases
to approximately the square root of the original. In normal graphs, we can search both ways
and mark visited nodes along the way. When one search finds a node visited by the other,
we know that a path exists. In order to find the complete path, the search that had first
visited the node and already left it must retraverse the graph to find that node again, unless
memory can be used to remember the paths to all visited nodes. When we do not have excess
memory at disposal, the two-way search thus reduces the cost of deciding the existence of a
path between two nodes to 24/c and the cost of finding the path to 3y/c. (This is, of course,
not complete mathematical treatment but it should give an idea of the magnitude of the
expected benefits.)

When the branching factors of the graph in the two directions are different, as in our case,
the efficiency is not improved quite as much but still significantly. The reason is that one-way
search is always done in the direction of smaller branching factor while two-way search must
also go in the less beneficial direction. If the branching factors can be estimated, the meeting
point should be set nearer the end from which the branching is greater, not half-way between.
If the distance d and the branching factors 5; and B2 are large enough, the optimal meeting
point is distance

dlog (2 /(log 31 + log [B2)

Figure 4: Two searches meet in the middle

away from the end from which the branching is f;.

We implemented the two-way search by first doing depth-first search forward from the
server, marking the visited keys on the way, and then trying to find a marked key with breadth-
first (or depth-first) search from the client. The forward search algorithm is a simplified version
of Listing 1 that ignores joint-delegation certificates and, thus, needs to visit every key only
once. The forward search is terminated at a specified maximum depth. Experiment showed
that in practice the above formula cannot be used to determine the optimal depth. Instead,
a constant value of one or two should be used unless the delegation paths are especially long.

Unfortunately, the gains of two-way searching do not seem to be as big in practice as in the
theoretical discussion above. The main reason is that the joint-delegation certificates make
forward search from the server to the client almost infeasible. Therefore, it is not advisable
to come more than one or two certificates away from the server to meet the backward search.
Nevertheless, when large numbers of servers sign certificates for a few intermediate keys, the
benefits of first marking keys one or two keys away from the server can be noticeable. If all
certificates have only a single subject, the situation is quite different because also the forward
search can be done more efficiently.

4 Experimental results

Experiments conducted with generated certificate data show that the gains from two-way
search are not quite as big as expected. The backward search algorithms appear almost as
efficient.

4.1 Generating certificate data

Since no real-world certificate databases are available for the time being, we generated random
delegation networks with the assumed hourglass structure. This was done by dividing the
keys to several levels, the top level representing servers and the bottom level clients. The
number of keys on each level and the amounts of certificates between each two levels were
chosen according to our (admittedly vague) idea of the typical system. The network was then
automatically constructed by assigning the certificates between random keys in the specified
levels.

The data presented here was collected from a network with 4 layers of keys. Table 1
shows the number of keys on each level and the certificates between them. It should be noted

Level | # keys || # certificates from level Number of % of

1 2 3 4 || subjects certificates
1 100 115 200 10 100 || 1 80
2 10 || to level 2|2 2 200 10 || 2 15
3 100 312 2 5 20000 || 3 3
4 5000 412 2 2 500 || 4 2

Table 1: Parameters for the generated delegation network

Search algorithm
Decision | dfs forward dfs backward+forward dfs backward bfs backward

all 3273 4327 56 54
positive 3581 4210 53 51
negative 2347 4676 64 64

Table 2: Average number of algorithmic steps in for a key pair in different algorithms

that in our sample network, there are only few backward arcs towards the server. (This is
determined by the lower half of the matrix giving certificate counts.) We found the results of
comparisons between algorithms to be relatively stable with small changes in the parameter
values. The amount of backward arcs and the arcs inside the levels, however seemed to have
great effect on the efficiency of the forward depth-first search. Although we have chosen the
parameters to somewhat help that algorithm, the results will not be too favorable in any case.

4.2 Results of comparison

The experiments with different one-way algorithms showed that the breadth-first backward
search and depth-first backward search perform best (see Table 2). Any performance dif-
ferences between these two algorithms were insignificant and certainly much smaller than
differences caused by implementation details. The depth-first forward search and the depth-
first backward search that spans forward searches at joint-delegation certificates, performed
badly.

In the delegation network of Table 1, the forward searches took about 50 times more time
than the pure backward searches. The efficiency of the depth-first search is greatly dependent
on the degree of completeness of the graph and on the number of backward arch from levels
near the client to levels near the server. These arcs create more paths in the graph, and
the depth-first search may traverse a lot of them. The positive answers are usually returned
quite fast while negative results may require exponentially more work. In some networks,
the forward searches become painfully slow taking occasionally millions of steps to complete
queries with negative result.

In the comparisons, the lookahead test of the breadth-first backward search (Listing 3, line
56) was disabled. We observed that the lookahead can reduce the number of keys processed
in the algorithm by about up to 70 %. The more pure clients, i.e. keys that only receive
certificates, there are, the more significant the speed-up will be. Hence, the optimization is
in many situations more significant than it first seems.

Two-way search was tested by the first starting depth-first forward from the server to a

Depth of forward search

Decision | 0 1 2 3 4
all 56 42 67 1517 1606
positive | 51 32 58 1714 1804
negative | 70 71 92 970 1053

Table 3: Average number of algorithmic steps for a key pair in two-way search

Depth of forward search

Decision | 0 1 2 3 4
all 58 36 73 1900 1895
positive | 50 21 60 2065 2048
negative | 81 82 116 1370 1406

Table 4: Average cost in two-way search with no joint delegation

constant depth, and then looking for the marked nodes with breadth-first search backward
from the client. (The depth-first search ignored all joint-delegation certificates; see Sec. 3.4.)
Table 3 shows how the cost of computation varied in the two-way search as a function of the
depth of the forward search.

The one-step forward search gave the best results. This is probably because that one step
away from the client saves a lot of work in going through the large number servers attacked
to a single broker. The savings amount to only 25 %. In experiments with other delegation
network parameters, the best results were also given by forward search to the depth of one,
or sometimes two, certificates. The savings in computation time were between 10 and 50 %.
Thus, the two-way search does not perform as well as one would expect. It is also important
to note that setting the maximum depth for the forward search to a number higher than
2 is risky: the complexity usually jumps up at depth 3 or 4. In delegation networks with
significantly more than five distinguishable levels of keys, the desirable depth of the forward
search could be higher, but we find such networks are unlikely to exits.

Table 4 shows the same kind of measurements as Table 3, only for a network without any
joint-delegation certificates. Here we can see that the two-way search saves about 60 % of the
cost for queries where a valid path is found. The performance improvement is much bigger
than in the general delegation network. This is natural because the forward search part in
the two-way search cannot handle well joint-delegation certificates.

It is also interesting to compare the last column of Table 2 with the first column of Table
3. These figures should be approximately equal. Both experiments were done by averaging
the execution costs for over 1000 key pairs from the same delegation structure. The variation
seems to be always greater in the searches with negative answer but we expect such queries
to be minority in actual systems.

5 Conclusion

We described and compared several algorithms for authorization decisions from a database of
certificates. The algorithms are based on well-known graph-search techniques that have been

enhanced to handle joint-delegation certificates. Measurements on generated certificate data
were done to compare the efficiency of the algorithms.

The main observations was that it is feasible to make authorization decisions from large
delegation networks comprising thousands of keys and certificates. The most efficient algo-
rithm was found to be the two-way search where we first mark keys one or two certificates
away from the server with a forward search and then try to locate one of the marked nodes
with a backward search. This is a little faster than simple backward search, but more difficult
to implement. The two-way search is at its best when there are no joint-delegation certificates
while the backward searches handle them particularly well.

References

[1] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In Proc.
1996 IEEE symposium on Security and Privacy, pages 164-173. IEEE Computer Society
Press, May 1996.

[2] Carl M. Ellison, Bill Franz, Butler Lampson, Ron Rivest, Brian M Thomas, and Tatu
Yl6nen. Simple public key certificate. Internet draft, SPKI Working Group, July 1997.

[3] Ronald L. Rivest and Butler Lampson. SDSI — A simple distributed security infrastuc-
ture. Technical report, April 1996.

[4] Tatu Ylonen. Proposal for SPKI certificate formats and semantics. Unpublished
manuscript, April 1997.

