Stateless connections

Tuomas Aura, Pekka Nikander

Helsinki University of Technology, FIN-02015 HUT, Finland
Tuomas . Aura@hut.fi, Pekka.Nikander@hut.fi

Abstract We describe a secure transformation of stateful connections
or parts of them into stateless ones by attaching the state information
to the messages. Secret-key cryptography is used for protection of in-
tegrity and confidentiality of the state data and the connections. The
stateless protocols created in this way are more robust against denial of
service resulting from high loads and resource exhausting attacks than
their stateful counterparts. In particular, stateless authentication resists
attacks that leave connections in a half-open state.

1 Introduction

In the open networks, malicious denial-of-service attacks and resource exhaustion
by unexpectedly high demand for a service have become increasingly serious
threats. In this paper we show how stateless protocols can be used to make
systems more robust against denial-of-service. Our goal is to limit the number
of potential attackers and to make recovery after an attack easier. This is done
by saving the server state in the client rather than in the server.

The paper is structured as follows. We first discuss resource exhaustion prob-
lems typical of stateful services in Sec. 2. Sec. 3 shows how to securely make
protocols stateless and compares their behavior to stateful ones under denial-
of-service attacks. Sec. 4 describes partially stateless protocols. Sec. 5 contains
some examples of real-world protocols and Sec. 6 concludes the paper.

The closest resemblants to our ideas in the literature are the HI'TP cookie
mechanism [7] and the stateless Sprite file server [9] that distributed the storage
of state information in order to recover from server crashes. Perrochon [8] sug-
gests stateless front-ends to stateful services. The cost of saving the connection
state has been considered as one aspect affecting scalability of authentication
protocols, for example, in [6]. Most literature concentrates on application-specific
design techniques and reactive countermeasures.

2 Denial of service in stateful protocols

In Sec. 2.1 we explain how storing connection state makes stateful protocols vul-
nerable to resource exhaustion by overload. Sec. 2.2 discussed malicious attacks.
2.1 Running out of connection table space

In stateful protocols, there is always an upper limit on the number of clients that
can connect to a server simultaneously, even if the clients might still be satisfied

Stateful server Stateless server

connected

clients all clients

Service quality
Service quality

new clients

Number of clients Number of clients

Figurel. Service quality as a function of load in stateless and stateful servers

with a thinner share of the server capacity. Eventually, the restriction is caused
by the limited space that is available for storing connection state information.
When more and more clients attempt to connect to the server, its storage space
becomes exhausted and new connections must be refused. In the worst case, the
connected clients do not consume the full capacity of the server, and the server
remains partially idle while the refused clients are waiting to connect.

An unintentional mistake or a communication error may also leave a connec-
tion in an eternally open state. The client can forget to close the connection, lose
its connection table data, or it may be unable to reach the server for the closing
commands. In the end, the stale connections must be purged from the server
table but it is difficult do this without sometimes closing valid connections.

One way to describe the problem with stateful servers is that their behavior
under stress is unideal. Fig. 1 compares the quality of stateful and stateless
service when the number of clients or connections to the server increases. The
service quality in stateful server shows sharp fall at a certain threshold while in
the stateless server it declines slowly.

2.2 Attacks exhausting connection limit

In a denial-of-service attack, an attacker can exhaust the connection limit of a
server. If an open connection does not obligate the client to actively use the
service, the malicious party needs to sacrifice only little of its capacity to con-
tinually block other clients’ access to the service. Connection state maintenance
becomes a critical resource, which it normally would not be. The attack is par-
ticularly disturbing because the attacker is not utilizing the service but merely
consuming a secondary resource that is needed for the service access.

Of course, the attacker tries to keep the connections in a state where the
number of simultaneous clients is as limited as possible, the effect of blocking
maximally harmful, and its own efforts minimal. Furthermore, the attacker would
prefer not to reveal its own identity to the server. Therefore, the danger of this
type of attacks is usually greatest at the beginning of connections.

3 Making connections stateless

In Sec. 3.1, we show how to make protocols stateless by passing the state infor-
mation between the protocol principals along the messages. Sec. 3.2 and 3.3 add

integrity check to the state data and to the entire connection. Sec. 3.4 compares
the behavior of stateful and stateless protocols under denial-of-service attacks.

3.1 Transformation from stateful into stateless

Assuming that the communication channels are reliable and flooding attacks the
only concern, we can transform any stateful client/server protocol or communi-
cation protocol with initiator and responder into a stateless equivalent. This is
done by sending state information from the server to the client with every mes-
sage. Along the next message from the client, the state information is returned
to the server. A stateful protocol and an equivalent stateless protocol:

L. C— S: Msg1 g gtores States:. 1.C— S: Msg
2.8 — C: Msg 2.8 — C: Msga, States:
3.C — S: Msgs S stores Stategs. 3.C — S: Msgs, States:

4.5 — C: Msga 4. 8 — C : Msga, Statesa

Usually the server or the responding principal is the primary target of the
denial-of-service threats and it is sufficient to make this principal stateless. In
a symmetric protocol it is also possible to make both principals stateless by
passing the states of both principals between them. Similar transformations are
possible for multi-party protocols if the messages travel suitably. There one must
take care that the state information is returned to the stateless principal in time.

The main reason for the stateless transformation is that it makes the system
behavior more ideal. When there is no limit on the number of clients, the limit
cannot be exploited by denial-of-service attacks. The ideal protocol properties
also simplify quantitative analysis of system behavior under stress.

Moreover, the stateless protocol moves the responsibility of saving the state
information from the server to the client. The client, who has requested the
service, is better motivated to maintain the information and to recover from error
conditions and data loss. The server does not have to reserve its resources for a
single client for the indefinite time that may pass between protocol messages.

Another application for stateless protocols is information services that divide
the server load between several identical machines. The servers can be geograph-
ically distributed or clustered in one place. When the servers are stateless, client
requests can be routed to an arbitrary server without giving any consideration
to where the previous messages were processed. Routing decisions and reply ad-
dresses can be changed dynamically in order to level the load on the servers and
to minimize communication costs.

As a drawback, the stateless protocols require additional bandwidth for trans-
ferring the state data. If the states are large, the cost may be too high. File or
document servers are therefore examples of promising applications for stateless
protocols while intensely interactive sessions most often are not.

Although stateless protocols implemented in the above way resist denial-of-
service attacks by server flooding, we still have to address other security issues.
This is the topic of the next sections.

3.2 Integrity and confidentiality of the state data

When the state data is repeatedly transferred through insecure channels, its
integrity and confidentiality become an important security concern. Since the
state messages are sent and eventually received by the server itself, we can protect
their integrity with message authentication codes that are relatively short and
inexpensive to compute.

Also, the freshness of the state data should be checked in order to limit the
number of times the data can be replayed. Timestamps can be applied liberally,
because they are checked by their creator against the same clock that is used
for the timestamping. Expired messages can be simply ignored. (The client is
responsible for taking any corrective steps after such error conditions.) It is,
however, necessary to allow long lifetimes for the states so that the data does
not expire before the client wants to continue the message exchange and succeeds
in sending its next request. Hence, the timestamp lifetime should be longer than
the expected duration of a denial-of-service attack, usually on the order of several
hours or a few days.

One consequence of timestamping is that distributed servers that accept state
data packets created by each other must have synchronized clocks. Fortunately,
the accuracy does not need to be very high if the timestamp lifetimes are long.

The improved transformation of a stateful service into a stateless one is illus-
trated by the protocol schema below. Every message leaving the server contains
a timestamped state of the connection, authenticated with a key K¢ known only
by the server. The state is then returned to the server along the next message
from the client.

1.C— S: Msg:

2.8 — C: Msga, Ts1, Statesi, MACKE (Ts1, Statesi)
3.C — S: Msgs, Ts1, Statesi, MACKE (Ts1, Statesi)
4.8 — C: Msga, Tss, Statess, MACKE (Ts2, Statess)

There is often redundancy in the actual message and the state information.
In that case, it is not necessary to repeat the redundant data. The MAC can be
computed over all state information that is explicitly or implicitly returned to
the client in the next step.

Another method for checking freshness is to change signature keys periodi-
cally. A few of the newest keys should be kept in the server’s memory for accept-
ing fresh messages. State information signed with older keys is then discarded as
invalid. A key identifier should be added to the messages. The period of generat-
ing new signature keys becomes thus the resolution of message expiration times.
The period of validity is the period of key generation multiplied by the number
of newest keys accepted. Keys with different lifetimes can be used for different
purposes. The computation required for maintaining the keys is independent of
the number of clients or of the amount of traffic in the system.

Also, any secret state data is easily concealed by encrypting it with a secret
key K¢ known only by the server. The mechanism is illustrated below.

. C — S : Msg;, Ts,i,EKg, (States,:), MACKE (Ts,s, States,;).
i+1. S — C: Msgi+1, Ts,i,EKg (States,i), MACK% (TS,i, States,i)

3.3 Integrity and confidentiality of the connection

So far, the described stateless protocols have not addressed the integrity or con-
fidentiality of the actual protocol messages in any way. In this section we will
describe a technique for authenticating and encrypting stateless connections. We
have an additional reason for the security enhancements. Namely, the stateless-
ness opens a new line of attack against connection integrity: replay of connection
states. The stateless principals have no means for detecting replays, because they
cannot remember which messages have already been received and processed. An
integrity check that links the state data to the actual messages will limit the
ways in which third parties can utilize recorded server states in attacks.

In the following protocol schema, the client and the server have a shared
secret key Kcog for signing and encrypting connection data. The server passes
the key to the client along with all other state data.

i.C— S Msg;, Ts., EKE (Kes), States,;, MAC;
1+1.5 —C: Msg;_,,_l, Ts,i, EKté (KCS), States,i, MAC;

The message authentication code is M AC; = M AC; (Ts,i, Kcs, States,;)
and the protected messages Msg;, = Ex,s(Msgy), MACk(k, Msgi, M AC;)
for k=1d,¢+ 1.

It is necessary to encrypt the messages only if their contents are secret. Au-
thentication codes, on the other hand, should be used in in all systems where
replay attacks are considered a threat, even on anonymous connections. Binding
the state data together with the corresponding messages in this way effectively
shields the system against third-party replay attacks that attempt to manipu-
late the logic of the protocol. (Replay flooding attacks will be discussed in Sec.
3.4.) Replays to the server still can result in multiple processing of requests and
duplicate responses to the client. The protocol designer should ensure that the
client is able to detect the duplicates or is not affected by them.

A dishonest client, on the other hand, cannot be stopped from replaying state
data from earlier stages of the protocol run. By replaying old states, the client
can return to any previous point in the protocol run. Consequently, the client
can execute parts of the protocol several times, or go through several alternative
branches of the protocol run. In some protocols, the possibility of collecting in-
formation from several alternative execution paths is catastrophic. For example,
in many zero knowledge proofs, allowing two choices for the prover or verifier
could result in a false proof or disclosure of secret knowledge, respectively. Also,
stateless protocols cannot be used when accounting of service use is needed,
for example, for billing the clients. Therefore, not all protocols can be securely
made stateless. The stateless transformation is not suitable for protocols where
the client is not entitled to the combined benefit from a small number of al-
ternative protocol runs. Luckily, most communication protocols do not account
resource usage and are deterministic enough so that the client will not gain any
advantage by replaying the states.

3.4 Replays and denial of service

An attacker with access to the communication channel between the server and
its clients might try to exhaust a stateless server by continuously sending replays
of old messages. In this section, we compare the replay-flooding attack against
stateless protocols to the connection-limit-exhaustion attack against stateful
ones and show that the stateless protocol performs better.

We first consider the stateless server under a replay flooding attack. The best
the attacker can do is to replay messages at the maximum throughput rate of
the server so that no service capacity remains for honest clients. (This is the
worst case scenario. In most communication systems, some legitimate messages
will still get through.)

Another danger is that the legitimate connections start breaking because the
time stamps on the state data expire while the attacker blocks the service. This
can be avoided by making the timestamp lifetimes longer than it takes to detect
the attack and to take countermeasures. After the attack, the clients can continue
the connections without delay. This is the reason why the time stamps should last
days rather than seconds or minutes. The timestamp lifetime, however, should
not be infinite, because we want to limit the amount of replayable material in
circulation.

Next, we consider the behavior of a stateful server when an attacker is cre-
ating new connections and leaving them open. If the attacker opens connections
at the maximum rate C allowed by the server, no other clients can access the
service. The stateful server must purge the idle connections from its memory af-
ter a certain time to make space for new ones. If the server has enough memory
to save the state of M connections, each connection will remain in the memory
at most time M/C. In a typical system, this time will be much shorter than the
duration of an average attack. Thus, the attacker is able to break the existing
connections.

Comparing the stateless and stateful protocols under their characteristic at-
tacks, we observe that an equal rate of replays against the stateless server and
connection openings against the stateful server have approximately the same ef-
fect on the service quality during the attack. Both servers can be clogged by the
attacks. The stateless server, however, recovers automatically after an attack.

Another major advantage for the stateless server is that the described worst-
case scenario is less likely to happen for it. We assumed that the attacker can
record enough messages for the replay attacks. On a large network, most nodess
never see any such messages. Hence, the number of parties that can mount the
replay attack against the stateless server is very small in comparison to the
group that can open false connections to the stateful server. For example, on the
Internet, anyone in the world can open connections to almost any public server
but very few hosts can record connections to a particular server.

We conclude that stateless protocols are, in general, more robust against
denial-of-service attacks than their stateful counterparts. Stateless protocols
make recovery after an attack easy and dramatically reduce the number of po-
tential attackers.

4 Partially stateless protocols

Often the benefits of statelessness are biggest at certain specific parts of the
protocol. Sections 4.1 and 4.2 discuss stateless connection opening and idle peri-
ods. In Sec. 4.3 we consider stateless layers in protocol stacks. Sec. 4.4 discusses
optimizations based on state caching.

4.1 Stateless handshake

When abuse of the service is expected, the obvious solution is to authenticate
the clients at the beginning of the connection. Attackers usually do not want to
reveal their identity. Furthermore, authentication helps the server administration
in resolving problems off-line. In this section, we show how statelessness improves
robustness of the protocol at the beginning of the connection, before sufficient
client authentication has taken place.

The level of authentication may vary from strong cryptographic identifica-
tion to anonymous verification of access rights or electronic payment. In any
case, the first few steps of the protocol before the client has been authenticated
are vulnerable to the same kinds of denial-of-service attacks as the completely
unauthenticated connections. The attacker may start the authentication proce-
dure and then leave the server waiting at an intermediate state. Therefore, we
suggest that authentication protocols should always remain stateless until the
client authentication is complete or the client has in some other way clearly
shown its commitment to honest use of the service. After the authentication,
the server can change to stateful mode. Especially in pay-per-use services this is
most natural because the server must save accounting information.

We now demonstrate the importance of authenticating the client before the
server becomes stateful. In the three-way X.509 authentication protocol [5], an
attacker can replay a large number of old copies of the first message. This could
exhaust the space that the principal B has reserved for saving the state of the
protocol between sending Message 2 and receiving Message 3. (Note that the
three-way X.509 protocol uses nonces for verifying freshness of the messages.
Hence, principal B only knows that Message 1 is fresh after receiving Message
3.)

1.A— B:S4(Na,B,Ep(Kag))
2.B— A:Sp(NB,A,Na,Ea(KBa4)),
3.A— B:S4a(Ng,B)

In the following modification of the X.509 protocol, the responding princi-
pal B does not need to save the state of the protocol until it has positively
authenticated A.

1.A— B: Sa(Na, B,Eg(KaB))
2.B—> A: Sp(NB,A,Na,E4(Kpa4)),
Ts,Exe (Kap,Kpa), MACks (T, N, A, Kap,Kpa)
3.A— B: SA(NB,B),TB,EK%(KAB,KBA),MACK% (TB,NB,A,KAB,KBA)

The above protocol is deterministic in the sense that there is only one ex-
ecution path. Its runs differ only in that fresh nonces and keys are generated
every time. Therefore, an attacker could not possibly collect any interesting in-
formation by replaying old states and thus causing the principals to re-execute
steps. Luckily, most cryptographic protocols have a similar deterministic nature.
The biggest benefit attackers can sometimes gain from repeating protocol runs
or steps is a little more material for cryptanalysis, but this should not endanger
the security of strong cryptographic algorithms.

Most key exchange protocols aim at producing unique keys for every session
and purpose. For the stateless principals, however, there is no difference between
one and many sessions with the same parameters. Furthermore, the branching
of the key exchange process can lead to the generation of several alternative
end results. Thus, one-to-one correspondence between session and keys may be
partially lost in the stateless protocols.

In anonymous services that are free to everyone, the return address of the
client may be the only available identifier, but it is often enough. If the client
responds to a message from the server, the server at least knows how to reach
the client, which can be construed as a level of authentication. In the following
protocol schema, the server is stateless only during the first roundtrip from it to
the client and back. This is sufficient to prevents attacks like the SYN-flooding
against the TCP protocol [2].

1.C — S: Msgl

2.8 — C: Msg2, Ts, States, MACK:;, (Ts,States)

3.C — S: Msg3, Ts, States, MACks (Ts, States)
Return address valid. S moves to stateful mode.

4.5 — C: Msg4

4.2 Statelessness during idle periods

In long-lived protocol runs, activity often ceases and is resumed later. In a state-
ful protocol, the server will have to maintain connection state data such as
session keys throughout the idle periods. The server can be relieved of this duty
by sending the state information to the client for temporary storage. The client
has the responsibility for saving the data and recovering from data losses.

Depending on the protocol, the server can send its state to the client with
every message, after certain messages, or after the connection has been idle for
a threshold time. The client can either automatically return the state in its next
message or check first whether the server still has the state in its cache.

The session parameters are usually known to both principals. Hence, it is not
necessary to send everything to the client. Often only the session key needs to
be encrypted with the server’s secret key and sent over the channel along with a
message authentication code for the key and the rest of the session parameters.
The client knows the parameters and can return them with the message authen-
tication code in its next message. If necessary, the client can encrypt confidential
session parameters with the session key.

S — C: Msgl,Ts, EK?J (Kses), MACKE (Ts, C,sespar, Ksgs)
Possibly long idle period follows.
C — §: Msg2,Ts, C,sespar, Exe (Ksps), MACks (Ts, C,sespar, Ksgs)

When the session keys are transfered in this way, the server’s key encryption
keys must be treated with as much care as any master key and preferably changed
periodically.

4.3 Stateless layers in protocol stacks

Communication protocols are organized in stacks where each layer uses the ser-
vices of the layer below and provides services to the layer above. The stateful
and stateless protocols should be viewed in this context. It seems that stateless-
ness offers most benefits at the transport and application layers of the protocol
stack. For example, in the TCP/IP protocol stack, denial-of-service attacks are
usually targeted either at the TCP protocol [2] or at the application layer. In
UDP based protocols, the application layer protocols are the natural target [3].
When an application layer protocol on the top of the stack is stateless, it usually
makes sense to have all layers down to the network layer equally stateless.

A protocol can have more than one upper layer protocol accessing it. Then,
regardless of whether the upper protocols are stateless or not, it is beneficial to
make the lower layers stateless. The reason is that the alternative upper layer
protocols should be able to operate independently of the resources consumed by
each other and attacks against each other. To accomplish this, it is not always
necessary to send the state data to the other end of the connection. The lower
layer could also pass the information to the upper layers for storage.

4.4 State caching

The main disadvantage of fully stateless protocols is the hit on protocol perfor-
mance. Fortunately, most performance benefits of stateful servers can be retained
in stateless protocols by caching state data in the server.

The stateless server can cache state information as long as its memory ca-
pacity is not exhausted. Under normal server load, a caching server can behave
just as a stateful server except for the cost of transmitting the state data. It
can, for example, detect lost and duplicated messages, report the errors to the
client, collect statistics on the channel characteristics, and dynamically adjust
the transfer rate and packet size for optimum performance. Windowing tech-
niques can be applied to avoid waiting for acknowledgements from the other
party after each request. If server memory becomes scarce or the maintenance of
the state data too burdensome, the server can immediately purge the data from
its memory. In this way, the system can have nearly the performance of stateful
servers while being resistant to denial-of-service. Although it may be difficult to
design state caching servers with optimal performance, it should be feasible to
find reasonable compromises. State caching has been succesfully applied in the
stateless Sprite file server [9].

5 Application examples

In Sec. 5.1 we improve both robustness and performance of a key exchange
protocol from the ISAKMP specification. Sec. 5.2 describes how the statefulness
of the TCP protocol leads to the SYN flooding attack.

5.1 Stateless ISAKMP /Oakley

We show how to make stateless a version of the Oakley key exchange [4] used in
the Internet Security Association and Key Management Protocol (ISAKMP).

The initiator A and the responder B start by exchanging nonces in order
to to ensure that the initiator has given a correct reply address. The protocol
uses public key signatures and Diffie-Hellman key exchange with reusable secret
parameters and nonces for freshness.

1.A— B: Ny

2.B—> A: Np,Nyu

3.A—s B: Na,Ng,Sk, (9%, A, B,NY)

4. B—+ A: Np,Na,Sky(g9¥,B,A, Ny, N}y)
5 A—B: NA,NB,SKA(QE,A,B,NA,NE)

The responder knows the initiator’s key generation parameter to be fresh
only after receiving Message 5. This leaves the protocol vulnerable to attacks
where someone initiates a connection, executes Steps 1, 2 and 3 of the protocol,
and then leaves the responder waiting forever.

We enhance the protocol by making the responder stateless until the receipt
of the last message. The initial cookie exchange may be unnecessary, because the
stateless responder is not as greatly affected by opening messages with forged
return address. Thus, the protocol is more robust and has less messages than
the original one.

1.A— B: Na,g°, A, B,N,
2.B— A: Ng,Na,Sky(g%,9°, B, A, N, NYy),

MACKk;, (Tr,g",9", Ng, Na, Ng, N}), Exke (v)
3.A— B: Na,Ng,Sk, (g% g%, A, B, Ny, Ng),

MACk:, (TB,9",9°, N8, Na, N5, N4), Exce (y)

5.2 TCP resistance to SYN flooding

Recently, attention has been paid to the so called SYN flooding attack against
the TCP/IP Transmission Control Protocol (TCP). In the TCP connection es-
tablishment, the parties exchange message sequence numbers in the so called
SYN and SYN ACK messages. After receiving the first message, the responder
creates a state called Transmission Control Block (TCB). In the SYN flooding
attack, the attacker fills up the responder’s TCB table by sending SYN messages
to the server with forged IP return adresses.

Several people have independently suggested versions of this protocol where
the server does not create a state initially. Instead, the responder can compute a
message authentication code of the initiator sequence number and other session
parameters. It sends the MAC to the client and receives it again in the next
message.

The original and enhanced protocols are shown below. The MAC plays the
dual role of functioning as ISNg and the MAC for the server’s state. (M AC =
M ACks (ISNc, parameters))

1.C — S :ISNg,SYN 1.C — S:ISNg,SYN
2.8 — C: ISNs,ISNg + 1, SYN|ACK||2. S — C : MAC,ISN¢ + 1, SY N|ACK
3.C — S :ISNc +1,ISNs +1,ACK ||3.C — S: ISN¢ +1, MAC + 1, ACK

After these changes, the server avoids creating the TCB before it knows the
initiator’s IP address to be valid. Early experiments by the present authors indi-
cate that the TCP protocol could be futher enhanced by making the responder
completely stateless.

6 Conclusion

We described weaknesses in stateful protocols and showed how they they can
be avoided by making the connections stateless. The stateless protocols behave
more ideally under overload or denial-of-service attacks than their stateful coun-
terparts, they recover faster from the attacks, and they effectively limit the
number of potential attackers. In particular, stateless protocols resist attacks
that leave connections in a half-open state.

References

1. Tuomas Aura and Pekka Nikander. Stateless connections. Technical Report A46,
Helsinki University of Technology, Digital Systems laboratory, May 1997.

2. TCP SYN flooding and IP spoofing attack. CERT Advisory CA-96.21, CERT,
November 1996.

3. UDP port denial-of-service attack. CERT Advisory CA-96.01, CERT, August 1996.

4. D. Harkins and D. Carrel. The resolution of ISAKMP with Oakley. Internet draft,
IETF IPSEC Working Group, June 1996.

5. Recommendation x.509 (11/93) - the directory: Authentication framework. ITU,
November 1993.

6. P. Janson, G. Tsudik, and M. Yung. Scalability and flexibility in authentication
services: The KryptoKnight approach. In IEEE INFOCOM’97, Tokyo, April 1997.

7. David M. Kristol and Lou Montulli. HTTP state management mechanism. Internet
draft, IETF HTTP Working group, July 1996.

8. Louis Perrochon. Gateways in globalen Informationssystemen. PhD thesis, ETH
Ziirich, 1996. Diss. ETH Nr. 11708.

9. Brent Welch, Mary Baker, Fred Douglis, John Hartman, Mendel Rosenblum, and
John Ousterhout. Sprite position statement: Use distributed state for failure recov-
ery. In Proc. 2nd Workshop on Workstation Operating Systems WWOS-II, pages
130-133, September 1989.

