Delegation-based access control for intelligent
network services

Tuomas Aura, Petteri Koponen, Juhana Rasdnen
Helsinki University of Technology FIN-02015 HUT, Finland
{Tuomas.Aura,Petteri.Koponen,Juhana.Rasanen }@hut.fi

Abstract

Delegation with public-key certificates appears to be a natural technique for ac-
cess control between intelligent network (IN) service providers. It supports strongly
the IN business model and fits well to an object-oriented design. In the Calypso
project, we are implementing access control to Java-based IN services with SPKI
delegation certificates.

1 Introduction

The Calypso IN service architecture [5] is based on flexible distribution of service and
network control functions among service clients, servers and network nodes. This is
achieved by providing a Java-based, thin service platform, on top of which a dynamically
configurable set of services can be executed. In the Calypso architecture, a service is
implemented as a Java package. A service may use other services by calling methods
of the classes that belong to them. The service platform manages most of the access
control between the services.

In this paper, we argue that delegation with key-oriented certificates is an excellent
choice for access control between IN service providers (SPs). The concept of delegation
directly supports the business model for IN service production. It allows free evolution of
relations between the producers of the services. Key-oriented certificates enable flexible
and completely distributed access control without central authorities. Moreover, when
services are implemented as modules of an object-oriented programming language, these
modules provide a natural level granularity for authorizations.

2 Calypso architecture

The Calypso architecture is designed for ATM-based access networks. In the ATM
networks, a workstation running the Calypso service platform controls an ATM switch.
We adopt here the broad definition of a service by Magedanz and Popescu-Zeletin [6]:
the Calypso services include both the network services (bearer services such as audio,
video, and data transmission and signalling services) and the services offered by the IN
platform to the end users (value-added services). Thus, in the Calypso architecture, also
the traditionally static network services can be configured according to the needs.

2.1 Business model

Calypso is based on a business model where the network operator who owns the infras-
tructure offers network resources to service providers. These resources are implemented
as low-level of Calypso services. Thus, the SPs purchase from the network operator
access rights to certain Calypso services. For example, if one or more services of an SP

Servicel SP1

Delegate
Service2 Delegate
7 Servi<

Service2 spy Delegate
/t\ Servllces
Service3 m Delegate SP3 SP4

ServlceS
Service5 SP5
Delegate
Services
Delegate Delegate
Services Services
\ /
(a) [Low-level network services j (b) Network operator

Figure 1: Service composition and delegation of access rights between SPs.

need to create ATM connections, the SP buys the right to use the connection service.
After this, access rights to the connection service are granted to the correct services of
the SP.

Service providers can either market the right to use their services to end users or they
can sell them to other service providers for reselling or for use as building blocks of more
sophisticated services. Because all the services are implemented as Calypso services,
the service provision mechanism of network operators and service providers is the same.
Consequently, the same access control mechanism can be used for services at all levels.

2.2 Implementation issues

The service platform will be implemented with Java. However, some of the services
may include native libraries that are implemented with C language. For example, in the
current implementation, the ATM switch service includes native parts for communicating
with device drivers. These services are considered trusted and they are usually provided
by the network operator or equipment manufacturer.

The Calypso architecture should enable the execution of untrusted services, i.e. Java
classes coming from the service providers, at all networks nodes. This is because some
services benefit from the possibility of directly controlling the network node or from
being located near the end users (in the nearest network node, for example); see the [5]
for details. Hence, the network nodes must have an access control system that facilitates
execution of code from mutually distrusting SPs and contracting of services between
them.

3 Service structure

A typical intelligent network service is built on top of other IN services. The layered
structure of services frees designers of high-level services of low-level considerations, thus
making it possible to implement a wide variety of specialized services at reasonable cost.
For example, a video conferencing service can make use of point-to-multipoint services
if they are available but it cannot implement the multicast routing itself.

The composition of a service can be depicted as a tree. In a service call tree, the
service is placed at the root of the tree, the lower-level building blocks utilized by the
service are drawn as its children, and their building blocks as their children, etc. (Fig. 1
(a)-

A service may access building blocks produced and marketed by other service providers.
These relationships between service producers are a key to successful IN operation. The

architecture should encourage innovative content and value-added service development
by independent producers. It is essential that contracting building blocks from other
service providers is easy and safe for both parties. Thus, a mechanism for access con-
trol and secure distribution of access rights between SPs must be integrated into the IN
architecture.

Traditional telecom models of access control, however, cannot provide the flexibility
needed in distributed IN services. The IN access control mechanisms should facilitate
free formation of relations between service producers and merchants distributing access
rights to the services. The entities involved in the value chain should be able to specialize
as service developers, content providers, service brokers or consumer-oriented service
providers. In particular, competition from the fast-advancing Internet services sets high
requirements for the ease of purchasing and selling IN services.

Delegation, in a natural way, allows complex relations between entities without forc-
ing too much pre-define structure on the service market. Fig. 1 (b) shows how access
rights to services are delegated by the producers to the clients whose services need them.

4 Delegation-based access control

In the Calypso project, we have chosen to build access control on delegation. Certificates
signed with public-key cryptography are used to delegate access rights to services between
service providers. In practice, the certificates follow the SPKI draft standard [3].

4.1 Delegation certificates

Cryptographic signatures are written with a private key and verified with a public key.
The owner of the key keeps the private part of the key secret. The public part can
be distributed freely and it is used for verifying the signatures. Certificates are signed
documents with which the signer conveys its beliefs or decisions about some other entity
to those who accept the signer as an authority in the matters stated in the certificate. For
example, a certificate signed by the owner of a file can grant file access rights to another
entity. This type of certificates that delegate authority from one entity to another are
called delegation certificates.

We take a key-oriented point of view where a cryptographic signature key represents
the entity holding the private part of the key. The access rights are delegated directly
from key to key without need to explicitly mention the names of the involved entities in
the certificates.

With key-oriented certificates, redelegation is simple. If Alice’s key authorizes Bob’s
key to use a service and Bob’s key authorizes Charlie’s key to use it, this is considered
equivalent to Alice’s key delegating directly to Charlie’s key. Certificates forming a chain
can be recognized and reduced in this way into a single certificate.

After the access rights have been delegated from key to key, the last key in the chain
must be able to use the service. Normally in delegation systems, it simply signs a service
request with its signature key and sends the chain of certificates to the server along with
the request. The server checks that the request is signed by the key to which the last
certificate of the chain has been issued, that the issuer of the first certificate is the owner
of the service requested, and that the certificate chain properly reduces into a single
certificate. If the check succeeds, access is allowed.

The Calypso system differs slightly from this standard scenario. In Calypso, the last
key in the chain writes one more certificate to delegate the access rights to the service
code that will use them. In practice, the certificate is issued to a cryptographic hash
value of the code module. The service platform acts as a trusted entity that checks the

Service Delegation certificate Service
provider 2 —(Keyl may access Servicez.—’é- provider 1
holds pri\(ate Key2. Signed: Key2 holds private Key1.
| |
i
i

|

I

Delegation certificate !

author or hash(Servicel code) |
may access Service2. !

I

I

I

’

owr\er Signed: Keyl

|
|
N

Service2 | [Servicel

access

owned by Key2.

Service platform
owned by Keyl.

Figure 2: Delegation to another service provider

Service Service

|
|
N

provider 2=~~~ """ mistrust= === ==~~~ = provider 1
holds private Key2. holds private Key1.
| |
i Delegation certificate i
author or hash(Servicel code) |
owner Y AEEESS Signed Key2 |
I
|

,
Service platform § I

Service2 | [Servicel
owned by Key2. acce owned by Key1.

Figure 3: Delegation directly to code

certificates before allowing the code to access its building blocks or their proxies on the
same platform.

SPKI certificates support both types of delegation: to public keys and to object
hashes. In our system, the chains of delegation always end at code hash values.

In the certificate chain, the rights can be restricted at every step by delegating only
a subset of the rights. It should be noted that although the authority appears to flow
through the certificate chain from the beginning to the end, the certificates can be created
and updated in any order. Also, expired certificates can be replaced by certificates from
other issuers so that a complete chain is formed again.

4.2 Delegation in Calypso

Figures 2-4 show three ways of implementing the delegation from SP2 to SP1 in Fig. 1.

The most common scenario for delegation from one service provider to another is
presented in Fig. 2. SP2 owning Service2 delegates the right to use it to SP1. This
further delegates the right to a code module implementing Servicel. Both certificates
are passed to the service platform with the code of Servicel. The platform verifies the
certificates and notes that there is a complete chain of delegation from the key Key2 of
SP2 to the hash of Servicel code. Consequently, it will allow access from Servicel to
Service2.

Fig. 3 has a different scenario where SP2 does not trust code written by SP1 and
wants to review it before granting access. After the review, it delegates directly to
Servicel code. However, since the certificate to the code must be renewed every time the
code is updated, it is usually preferable to follow the model of 2 and to give this task to
the service provider responsible for the code.

The delegation between SP2 and SP1 does not need to be direct. Fig. 4 shows how

Service
broker

holds private KeyB.

/ Delegation certificate
Delegation certificate Feyl may access Servicezw
PeyB may access Service% Signed: KeyB

Signed: Key2
Service Service
provider 2 provider 1
holds private Key2. holds private Key1.

Figure 4: Delegation through a service broker

the right to access a service may be passed through a service broker.

Between IN service providers, the delegated authorizations are always rights to access
a service. Since services in the Calypso architecture are encapsulated into Java classes
and packages, this is also the granularity level of the access control. In some cases, the
certificates may contain parameters that limit the scope of the delegated service.

This means that every time the delegated service is restricted in some way, a new
handle class must be created to act as a proxy between the full-rights service and the
client. If the restriction is of a new type, the handle class must be implemented by
the service provider and distributed to the networks nodes. On the other hand, handle
classes for standard restrictions, such as limiting access to a subdirectory of a document
tree, can be created automatically at the service nodes. In practice, the mechanism
is controlled by a modified Java class loader and it resembles the idea of name space
management in [9].

At the moment, we do not have any secure accounting mechanisms for service usage.
In the future, some secure mechanisms must be added for accounting and enforcing
quantitative limits on the delegated rights. This requires some more experience with
applications and the preferences of service providers. We are investigating the use of the
SPKI on-line testing feature and accounting servers.

5 Comparison to related work

Key-oriented access control is a relatively new concept [3, 2| and there are few theoret-
ical treatments of it [1]. Key-oriented systems do not need any central trusted entity.
This their main advantage compared to traditional, identity-oriented systems where cer-
tificates and access control list (ACL) entries list entity names instead of their public
keys.

In fact, the system presented in this paper does not have any ACLs. Each service
has exactly one key associated with it: the key of the service author or owner. This key
distributes the access rights by signing delegation certificates. The decisions to delegate
depend on the business relations between the entities possessing the private keys.

Moreover, we avoid using identity certificates completely. The certificates are always
issued to public keys or code hashes. Certificates written to object hashes are included
in SPKI and similar ideas have been used earlier at least in the Taos operating system
[11]. In the future, we may add support for SDSI-style linked names [7].

In most capability-based access control systems there is some control for redelegation
of access rights [8]. Although it is possible to forbid redelegation in SPKI certificates,
we have avoided using this feature. Instead, the access rights can be limited in each step
of delegation to reflect the level of trust in the client. The purpose is to allow free and
completely distributed formation of trust relations between entities.

Although the high-level services in Calypso are implemented in Java, the Java (JDK

1.2) security model [4] does not support the business relations between IN service providers
as well as delegation. In particular, we make no use of X.509 certificates or stack inspec-
tion [10]. The delegated rights are rights to use a service which always implies indirect
access to lower-level service building blocks. This way, if all services have acquired access
rights to their direct building blocks, service calls will always succeed. In the standard
Java security model, the top level service would usually have to possess rights to all
building blocks even several layers below it.

The main reason why we have been able to design a simple and elegant access con-
trol system based solely on delegation is that the players in the system are IN service
providers. Unlike typical applet users, they are able to make policy decisions when sign-
ing certificates and creating handle classes with limited rights. However, the service
producers in our system do not actually need to think about access control policies.
Instead, they sell and buy the certificates with business relations in mind.

6 Conclusion

In this paper, we discuss techniques for access control between service providers in an
intelligent network. The main observation is that delegation with key-oriented certificates
is naturally suited for the purpose. It fits well together with the business model for IN
service and with object-oriented implementation techniques. We emphasize that the
access control mechanisms should be designed to support business relationships between
service producers.

References

[1] Tuomas Aura. On the structure of delegation networks. In Proc. 11th IEEE Computer Security
Foundations Workshop, Rockport, MA, June 1998. IEEE Computer Society Press.

[2] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In Proc. 1996 IEEE
Symposium on Security and Privacy, pages 164-173, Oakland, CA, May 1996. IEEE Computer
Society Press.

[3] Carl M. Ellison, Bill Franz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tatu Ylonen.
Simple public key certificate. Internet draft, IETF SPKI Working Group, March 1998.

[4] Li Gong. Java security architecture (JDK1.2) draft document revision 0.8. Technical report, Sun
Microsystems, March 1998.

[5] Petteri Koponen, Juhana Risinen, and Olli Martikainen. Calypso service architecture for broad-

band networks. In Proc. IFIP TC6 WG6.7 International Conference on Intelligent Networks and
Intelligence in Networks. Chapman & Hall, September 1997.

[6] Thomas Magedanz and Radu Popescu-Zeletin. Intelligent Networks — Basic Technology, Standards
and Evolution. International Thomson Publishing, 1996.

[7] Ronald L. Rivest and Butler Lampson. SDSI — A simple distributed security infrastucture. Tech-
nical report, April 1996.

[8] Lawrence Snyder. Formal models of capability-based protection systems. IEEE Transactions on
Computers, C-30(3):172-181, March 1981.

[9] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible security architectures
for Java. In Proc. 16th ACM Symposium on Operating System Principles, Saint-Malo, France,
October 1997. ACM.

[10] Dan S. Wallach and Edward W. Felten. Understanding Java stack inspection. In Proc. 1998 IEEE
Symposium on Security and Privacy, Oakland, California, May 1998.

[11] Edward P. Wobber, Martin Abadi, Michael Burrows, and Butler Lampson. Authentication in the
Taos operating system. ACM Transactions on Computer Systems, 12(1):3-32, February 1994.

