Practical invisibility in digital communication *

Tuomas Aura

Helsinki University of Technology
Digital Systems Laboratory
FIN-02150 Espoo, Finland
Email: Tuomas.Aura@hut.fi

Abstract. This paper gives an overview of cryptographically strong
mass application invisibility in digital communication. It summarizes
principles and methodology, clarifies terminology, and defines some new
concepts. A new algorithm for hiding bit selection in digital images is
proposed and an experimental implementation of the algorithm is de-
scribed. Finally, the paper closes with a discussion of the implications of
the availability of invisible communication.

Keywords. Information hiding, invisibility, hiding bit selection in ran-
dom access covers, pseudorandom permutation.

1 Introduction

The aim of encryption is to conceal the contents of secret messages. Invis-
ibility goes yet further, it attempts to hide the fact that any messages even
exist. The secret messages are hidden in ostensibly harmless data (cover)
that can be casually stored and communicated without raising suspicion.
While the designers of encryption algorithms assume that a resourceful
enemy will do anything to decrypt the messages, the designer of an in-
visibility algorithm takes it granted that an enemy will try to reveal the
existence of the secret message. Invisibility algorithms should be based on
principles not unlike those of the encryption algorithms:

— Messages are hidden using a public algorithm and a secret key.

— Only a holder of the correct key can detect, extract or prove to a third
party the existence of the hidden messages. Nobody else should be able
to find any statistically significant evidence of their existence.

— Even if the enemy knows or is able to select the contents of the hid-
den messages, this should be no advantage in detecting other hidden
messages.

* An early version of this paper was presented at the HUT Seminar on Network Security
in November 1995 [1].

— The algorithm must be cryptographically strong. That is, it is theoret-
ically impossible or computationally infeasible to detect hidden mes-
sages.

There are several well-known methods for hiding secret messages in
digital signatures and other well defined but scarce components of digital
communication. In this paper, we look at similar techniques for bulk data,
photographs and audio and video signals that are routinely transfered in
large quantities. There are few references to such algorithms in literature,
but a body of knowledge exists in the cryptographic community. Our goal
is to survey the methods that are best suited for mass application, and to
present a new algorithm.

In Section 2 we will overview hiding techniques and related terminology.
Sec. 3 will go deeper into the the kinds of data that can have secrets hidden
into it and the hiding algorithms. In Sec. 4 we present a practical algorithm
for hiding data in digitized images. This is the main contribution of the
paper. Sec. 5 briefly describes an implementation of the algorithm. We
conclude with a brief discussion of the implications of the technology on
organizations and society in Sec. 6.

2 Hiding data in digital communication

Practical invisibility algorithms are based on replacing a noise component
of a digital message with a pseudorandom (usually encrypted) secret mes-
sage. We call the noisy message cover and the bits carrying the noise cover
bits. The bits of the pseudorandom secret message are secret bits. The cover
bits actually substituted with the secret bits will be called hiding bits. We
call this kind of a system substitution method of invisibility.

The cover data must be sufficiently noisy in order for a slight increase
in its randomness not to be noticeable. The cover bits are typically the
least significant bits (LSBs) of some inexact values. These can be results
of a series of measurements. A digitized image or a sound track is, in
fact, a huge array of measurement results, all with a significant random
error component. The hiding bits can also be coded in the cover in more
complicated ways than simply by replacing the LSBs. For instance, [3]
describes how to find the least significant differences between data values
in a palette colored image.

The least significant bits can, although they are noise from a measure-
ment accuracy viewpoint, have some special statistical characteristics. Fig.
1 shows how the run lengths of LSBs in a signal from a low quality digital
video camera differ from those in purely random noise. It has been often

suggested that the encoding of the secret message should mimic the char-
acteristics of the cover bits, a goal not easily achieved. One possibility is
to generate a large number of alternative cover messages all in the same
way and to choose one that happens to have the secret code in it. This
is called selection method of invisibility. For example, we can digitize the
same photograph again and again, every time producing a slightly differ-
ent digital image. These images are then reduced with a message digest
algorithm to, say, 8 bit numbers. If we want to hide an eight bit num-
ber, we pick the first scanner file that incidentally produces the particular
number as a digest. This image has exactly the statistical properties that
any other digitized image has. Selection invisibility can be viewed as the
ultimately secure method, tantamount to one-time pad in encryption. The
only problem with this approach is that, even if optimally organized, it can
hide only small quantities of data with lots of work.

Another approach is to model the characteristics of the cover bit noise.
A mimic function should be built that not only encodes the secret mes-
sage, but also respects the model of the original noise. In the extreme
case, the entire message is constructed according to the model. We call
this constructive invisibility. The strategy has inherent dangers. Modelling
the noise or an error component in data is not easy. Building the model
requires significant effort, creative work to be done again for every commu-
nication channel or cover data source. It is likely that someone with greater
resources and more time will be able to develop a better model of the noise
and still differentiate between the original signal and the replacement. Fur-
thermore, the patterns created by the model may reveal the secret message
instead of increasing security. If the adversary knows the model, he can
with little investment find flaws in it. The model of the noise is a part
of the hiding algorithm and keeping the algorithm secret is in violation
of good cryptographic practices as it is likely to leak to the hands of the
unfriendly in any case.

Since attempts at mimicking the original noise either result in question-
able security or far too low bandwidth for most applications, it is best to go
back to the basic substitution procedure. Select a class of sufficiently noisy
messages, cover messages, and identify the bits that carry the noise, cover
bits. Then, approximate how large portion of the cover bits can be replaced
with pseudorandom data without significantly changing the characteristics
of the cover.

For instance, if the cover message is a digitized photograph, the cover
bits are naturally the least significant bits of the grayscale or RGB values,
or the Fourier coefficients in a JPEG compressed image. One might want

20000

[[[

1 L Camera (0%) ©—
8000 Hidin, Es%i —+—
16000 + Random (100%) &—
14000 .
12000 .

Bits10000 | .
8000 -
6000 .
4000 + ‘ .
2000 - i s D

- \ A S— |
0 ' A
2 4 8 10 12 14
Run length

Fig. 1. Deviation of bits to runs of consecutive 0s or 1s.

to play safe and alter only every 100th pixel of the image. In that case, a
one megabyte uncompressed image can hide about one kilobyte of secret
data. In Fig. 1 we see that replacing as much as 5 % of the LSBs with
pseudorandom bits does not significantly change the run length distribu-
tion. On the other hand, it is obvious that the popular practice of simply
replacing all LSBs with secret bits is no option for serious cryptographers.
As a consequence, secure invisibility inevitably depends on covers being at
disposal in quantities.

The secret message should be encrypted with a strong cryptographic
algorithm in order for it to look like random data. Substituting pseudo-
random bits for a few of the noisiest bits of the cover will only slightly
increase its noise level. On the other hand, inserting bits of a plaintext
could drastically change the character of the cover. In theory, encryption is
not essential to security if the invisibility algorithm is reliable. The pseu-
dorandomness of the secret message could be achieved in other ways such
as effective compression. The random permutation method presented in
Sec. 4 does not even require pseudorandom secret bits, only ones with
equal frequency of zeros and ones. In any case, we suggest that it is a
good idea to both compress and encrypt the secret message before hiding.
Compression decreases the number of secret bits thus improving security,
and strong encryption will protect the contents of the secret message even
if the much less mature invisibility techniques fail. This should be kept in

mind because there is always a risk involved in cover selection, no matter
how strong the invisibility algorithm is.

Moreover, the hiding bits must be selected in a pseudorandom fashion
as a function of a secret key. Otherwise, an enemy having hold of the
algorithm will be able to extract the secret bits. If these bits in a suspect
message are completely random looking, as the products of encryption, but
a similar selection of bits in another message has a some sort of statistical
deviation different from purely random data, the enemy can conclude that
the suspected image most probably contains a hidden data.

3 Covers and hiding bit selection

The cover messages can be divided into two types. The cover can be a
continuous data stream, like a digital telephone connection, or a file, like
a single bitmap image. We call the former a stream cover and the latter a
random access cover.

In a stream cover, it may not be possible to tell in advance when the
cover message begins, when it ends, or how long it will be. The cover
may be continuous or very long, so that several secret messages need to
be hidden in the same cover message. Furthermore, one may not know in
advance what the next bits of the cover will be, but the secret message has
to be inserted into the stream as it is transmitted, before the next bits of
the stream have even been produced. The hiding bits have to be selected
with a keystream generator that gives the distance between consecutive
bits in the stream [6]. We call this random interval method of hiding bit
selection.

In a continuous data stream, it is difficult for the receiver to tell when a
hidden message begins. There can be no visible (or audible) synchroniza-
tion sequence. Still, the receiver has to synchronize its keystream generator
with the hidden message in order to pick the correct hiding bits from the
stream. If the data stream has some inherent synchronization signals or
packet boundaries, the hidden message should start right after one of them.
The receiver will then try to synchronize its random number generator to
the hidden message after those points. Usually, only garbage is found, but
at times, an encrypted secret message is revealed. In the easiest case, if the
data stream is of a finite length and reopened often, like telephone conver-
sations, the secret message may always start at the opening of the session.
For the sender, it may be a problem if he cannot trust the cover stream
to be long enough for the entire secret message. With stream covers, it is
also difficult to evenly spread the hiding bits all over the cover.

Invisibility in stream covers has a close relation to spread spectrum
techniques, where the message is spread pseudorandomly over a large
bandwidth. Spread spectrum communication is used mostly because of
its resistance to interference and jamming but the same techniques can be
used to hide that there is any communication at all [2].

Fixed length files as cover messages do not have the same disadvan-
tages as stream covers. The sender knows in advance the size of the file
and its contents. The hiding bits can be evenly selected with a suitable
pseudorandom selection function from all parts of the message. Random
access to the cover bits can be utilized to achieve this. Because of the ran-
dom access, it is not necessary to insert the secret bits into the hiding bits
in any particular order. For example, header info can be written after the
secret message, whereas in a stream cover, the header has to be sent first.
The main drawback of random access covers is that the cover size is often
much shorter than a data stream, and it cannot easily be adjusted to fit
the needs.

Despite us not giving much value to statistical models of cover noise
above, they may still be helpful in detecting abnormally bad covers. Since
random access covers are known in full before they are chosen for data
hiding, good covers can be selected. For instance, in a series of digitized
images well fit for hiding, there might be some that are completely black,
not so noisy etc. These should be recognized and discarded. If covers are
produced automatically in large quantities, statistical tests or visual in-
spection should be applied to ensure their quality before sending.

It should be noted that the the random interval method is not especially
well suited for a hiding bit selection in random access covers. First of all,
even distribution of hiding bits is only achieved probabilistically. That is,
one cannot know in advance if all the secret bits will fit in the cover.
Therefore, one has to play safe and make the average interval between bits
so short that they will be all written before the file ends. Normally, the
secret message will end far before the end of the message. It is then nec-
essary to pad the secret message with random bits in order to cause an
equal change in randomness in the beginning and end of the cover. An-
other disadvantage is that the distances between hiding bits are uniformly
distributed between the shortest and longest allowed distances, while true
random noise would have exponential distribution of interval lengths. It
is, of course, possible to generate pseudorandom exponentially distributed
numbers but this is usually too laborious. It is debatable whether the dif-
ference between exponential and uniform distribution of interval lengths
will make any difference in the statistical characteristics of a noisy cover

message. We tested the effect on run lengths in digital image data. When
the hiding bit density is low enough compared to the run lengths, so that
at most one bit in any run is likely to be altered, there is no difference in
the resulting run length distribution. There are, however, other selection
functions for random access covers that both escape the question of secret
message padding and produce a random distribution of hiding bits: pseu-
dorandom permutation functions. These will be discussed in detail in Sec.
4.

An interesting alternative to simple replacement of pseudorandomly
selected cover bits with secret bits is to alter the parity of bit sequences.
In a stream cover, the length of the next bit sequence is determined with
a keystream generator, and in random access cover, a set of bits is picked
with a selection function. If the parity of the selected bits is not the same
as the next secret bit, the parity is changed by flipping any bit in the set.
The bit to be altered can be chosen to cause minimum deviation from the
original statistical characteristics of the cover. This approach has the same
disadvantage as the constructive invisibility systems. Namely, the model
according to which the choice of the altered bit is made may not be good
enough, and the enemy might detect the secret message by looking at the
places where a bit is most likely to be altered. Still, we believe that the
parity method can be as strong as any of the pseudorandom substitution
strategies if the model-based choice of the altered bit is made only to avoid
the worst cases of random selection.

4 A secret key algorithm for hiding bit selection in
random access covers

In this section, we describe a secret key method for pseudorandom selec-
tion of the hiding bits. The basic idea is to use a pseudorandom permuta-
tion of the cover bits. We have no knowledge of any previous invisibility
algorithm or program where the choice of hiding bits is based on pseudo-
random permutations. Let N be the number of cover bits available and let
P’ be a permutation of the numbers {0,... , N — 1}. Then, if we have a
secret n-bit message to hide, we can simply insert the secret bits into the
cover bits P¥(0), PiV(1),... ,PY¥(n — 1). The permutation function must
be pseudorandom, i.e. it has to select bits in an apparently random order.
Consequently, the hiding bits will be evenly spread all over the cover bits.
No padding of the secret message with random data or other trickery is
needed to assure even spreading.

For our purposes, the permutation function also has to depend on a

secret key K. Therefore, we need a pseudorandom permutation generator
PN a function which for every parameter K (secret key) produces a dif-
ferent pseudorandom permutation of {0, ... , N —1}. We denote by PIJ(V the
permutation generator instantiated with key K. If the permutation P¥ is
computationally secure, that is, nobody can guess or reason the permuta-
tion without having access to the secret key K, it is impossible for anyone
to guess which cover bits were chosen for hiding bits.

A secure pseudorandom permutation generator can be efficiently built
from a pseudorandom function generator [5]. A pseudorandom function
generator is like a pseudorandom permutation generator in that it produces
a different unpredictable function for each secret key value, but the range of
the function does not need to equal the domain. A pseudorandom function
generator is easily constructed from any secure hash function H, such as
SHS, by concatenating the argument i with a secret key K and feeding the
resulting bit string to H.

fr(i) = H(K o i),

where K o ¢ is the concatenation of the bit strings K and i. The result
fK (i) is a pseudorandom function of 4 that depends on the parameter K.

The pseudorandom permutation generator of Luby and Rackoff [5] is
constructed as follows. a @ b denotes the bit-by-bit exclusive or of a and b
and the result has the same length as a. Let ¢ be a binary string of length
2[. Divide ¢ in two parts, Y and X, of length [and the key K into four
parts K1, Ko, K3 and K4. Compute

Y =Y & fk,(X);
X=X fr,(Y);
Y =Y & fk,(X);
X=X fx,(Y);
return Y o X;

For every key value K, the algorithm gives a pseudorandom permutation of
{0,..., 22 _ 1}. Luby and Rackoff show that the permutation is as secure as
the pseudorandom function generator. They also give a similar algorithm
for permutation of {0, ... ,2%+! — 1}. If the values of the function ff are
long enough bit strings, the same effect could be achieved simply by letting
Y be the [first bits of 4 and X be the last [+ 1 bits.

The above construction produces a permutation Pf(k of {0,...,2F -1}
for an arbitrary k. However, when the number of cover bits is IV, we need

a permutation P& of {0,... ,N — 1}. Our advantage here is that we can
restrict ourselves to feeding arguments to PJ in the order 0,1,2,....
Let k& = [log(N)]. Then, 2¢=1 < N < 2*. Simply compute the values
PIQ(k(O),PI%k(l), PIQ(k(Q),..., discarding from the sequence any numbers
above N — 1, and take the remaining values for P¥ (0), P¥ (1), P¥(2),....
This is feasible when the permutation function is evaluated for increas-
ing argument values starting from 0, as in our case. Thus, a permutation
generator PV for arbitrary N can be constructed from the Luby-Rackoff
algorithm.

However, when N is known to be composite, there is a more convenient
way to construct the pseudorandom permutation generator. The following
algorithm is based on a block cipher with arbitrary block size [4]. The
number of cover bits has to be a composite number with two factors of
almost equal size, that is, N = z *y for some = and y. When data is being
hidden in the least significant bits of a digitized photograph, the factors z
and y are, naturally, the dimensions of the image. To get the index of the
ith (1 € {0,... , N —1}) hiding bit, compute

Y =i div x;

X =i mod z;

Y = (Y + fk, (X)) mod y;
X = (X + fk,(Y)) mod z;
Y = (V + fiey (X)) mod y;
return Y x z + X;

The two first rounds of the algorithm are needed for even spreading of
hiding bits amongst the cover bits. Figure 2 illustrates how the first round
randomizes the Y-coordinates of the hiding pixels and the second round
randomizes the X-coordinates. The third round is necessary because of a
chosen plaintext attack. With only two rounds, let 1 = B x x + A and let
PY (i) be the permuted value. If the cryptanalyst can guess A and can
obtain a plaintext—ciphertext pair (i’ = C * z + A, P¥(i')) for some C,
he is able to deduce B. Even though we believe the algorithm to be secure
with three rounds, it may well be that adding a fourth round would still
significantly increase strength of the algorithm, at least when employed as
a cipher.

Example. Assume that we have a grayscale image of size 800x 600, an
encrypted secret message of 1 kilobytes and a key 123, 456, 789. We want to
hide the secret message to the least significant bits of the image. x = 800,

s

(a) Naive hiding bit selection (b) Round 1, vertical spreading

(c) Round 2, horizontal spreading (d) Round 3, vertical spreading

Fig. 2. Spreading the hiding bits evenly all over the image

y = 600, and the number of cover bits equals the number of pixels in the
image, N = 800-600 = 480000. There are 1024 -8 = 8096 secret bits. Less
than 1 % of the pixels will be altered. The hiding pixels are selected with
the above algorithm, starting from secret bit number 0. We now show how
to compute the hiding pixel for the 1001st secret bit. (The values of the
secure hash function H have been arbitrarily chosen.)

Y = 1001 div 800 = 1,

X = 1001 mod 800 = 201,

Y = (14 H(123 0 201)) mod 600 = (1 + 7377) mod 600 = 178,

X = (201 + H(456 o 178)) mod 800 = (201 + 3854) mod 800 = 55,
= (178 + H(789 0 55)) mod 600 = (178 + 1124) mod 600 = 102.

The result is 102 % 800 4 55, meaning that the 1001th secret bit is inserted
into the least significant bit of the cover pixel whose x-coordinate is 102
and y-coordinate 55.

This procedure for selecting the hiding bits is best in accord with dig-
itized photographs as covers. In other file types, such as audio files, the
number of cover bits may not always have a suitable factorization. Then,
one is forced to go back to the previously described system of discarding
some of the permutation function values.

In addition to a reasonable noise level, the algorithm makes some as-
sumptions about the covers. The same cover message must never be used
again. The original cover file must be completely destroyed. With two dif-
fering copies of the file, it is easy to see which bits are the hiding bits. This
makes it plain and clear to the enemy that messages are being hidden.
It would be best if the original cover message is never saved anywhere,
but the secret message is inserted immediately after the cover has been
produced.

Another question arises when the algorithm is applied in practice. If the
secret key and cover size remain unchanged, the hiding bits will always be
the same. Obviously, the same key should never be used for more than very
few images. Fortunately, one can get around this problem by making the
key dependent on the cover message. Let K, be the secret key of the user
and H' a random function on the user keys and cover messages that does
not change when the hiding bits are altered. Then, take the key K to be

K = H'(K, o cover).

The function H' has to depend so heavily on the cover that two different
covers will not produce the same value, but it has to be independent of
the choice and contents of the hiding bits. For example, in a bitmap image
where the cover bits are the least significant bits, the function H' can be
a message digest of the user key and the image after all LSBs are set to
zero. It is extremely unlikely that there will ever be two digitized images
only differing in the LSBs. By making the key K a function of the cover,
the same user key K, can be used for as many covers as needed. The same
key cannot, of course, used again for the same cover, since the covers must
never be reused.

One more practical concern is that the secret message length must be
short compared to the cover size. What is the maximum ratio of secret
message size to the cover size, remains to be determined separately for
each cover source and application. We do advice to choose covers that are
so abundant that there is not reason to exploit more than a few percent of
the cover bits for hiding.

The strength of an invisibility algorithm will always depend heavily on
the properties of the cover. If we select cover bits with a random error

component and keep the hiding bits to cover bits ratio low, the security of
the presented algorithm depends on the random function fx being compu-
tationally secure. We are rather safe here since the pseudorandom nature of
the secret message makes a brute force attack infeasible: The enemy would
be trying to identify a pseudorandom bit sequence, but almost any choice
of a key will give one. What the attacker can do is to erase the hidden
message by adding his own noise to the cover. It is not even necessary
to erase all random bits but only alter some of them, and the encrypted
secret message cannot be recovered.

5 An experimental implementation

The algorithm of Sec. 4 was implemented to hide files in PGM grayscale
bitmap images. The reasons for the choice are that the PGM is a widely
accepted standard format that is easily converted to other non-lossy com-
pression image formats. Masses of grayscale images are at hand, for in-
stance, from surveillance cameras. Nonetheless, there is no reason why the
algorithm could not be implemented on other file formats or color images.

The least significant bits were chosen as the cover bits. The secret
message is encrypted with the IDEA cipher to make it pseudorandom. fx
is constructed from the secure hash function SHS. An SHS message digest
is computed on the user key and the 7 most significant bits of the image.
The digest is used as the encryption and hiding key K.

A magic number, and the name and length of the secret file are hidden
along the secret message. It is important to note that they all are encrypted
and hidden into the cover bits the same way as the secret message itself. The
secret key is needed for extraction and decryption. If the secret message is
short in comparison to the image size, it is impossible to detect or prove
the existence of the secret message without the key.

An advantage of our algorithm in comparison to the random interval
method is that it is very easy to implement. A disadvantage is the speed.
The algorithm requires three evaluations of a random function per hidden
bit, while the random interval method manages with one. SHS with its
160 bit range is not an optimal choice for the random function since only
around 10 bits are needed. Computational costs of the algorithm are hidden
in the random function, it being thus the most promising part for further
optimization. Nevertheless, the implementation of the algorithm proved
to be efficient enough for interactive hiding of data into persistent image
files. It is questionable whether the speed is sufficient for on-the-fly hiding
in a stream of images. As expected, the hiding does not change the visual

appearance of digital photographs at all. When only a few percent of the
image pixels were utilized for hiding, the run length distribution of the
LSBs did not change significantly in comparison to the natural variation
between images. The assumption that more advanced statistical methods
cannot spot the hidden data remains to be tested.

6 Conclusions and discussion of the implications of
invisibility

We have given an overview of mass application invisibility and proposed a
new method for pseudorandom hiding bit selection in random access cov-
ers. An experimental implementation of the algorithm on grayscale images
was described. All along, we have stressed cryptographic strength of the
invisibility techniques. Apart from optimization of the algorithms, future
research should concentrate on statistical methods for detecting the in-
creased noise in real covers. A concrete measure would be needed for how
much data it is safe to hide in a given cover. We still need to make some
conclusions on how the described technology can be applied and what kind
of effect it has on the society.

The availability to effective data hiding has serious practical implica-
tions. Any type of information can be saved and transfered invisibly where
there is a sufficient storage or flow of noisy digital data. The most common
types of data transfered in volumes, digital audio and video signals and
digital image files, are exactly the ones most apt for hiding secret messages.

The establishments that are perhaps most dramatically affected by the
danger of uncontrollable information flows are military organizations. Mili-
tary security is traditionally based on keeping secret or confidential data in
physically controlled locations, so that even the trusted personnel cannot
move anything more than they can memorize over the physical boundaries.
Special rules have been established for reviewing and formally downgrad-
ing data before it can be moved to a lower security area. The possibility
of automatically hiding confidential documents in unclassified data flows
presents a new challenge to the military information infrastructure. These
organizations must, nevertheless, take full advantage of new information
technology. On the bright side, information hiding can be utilized to frus-
trate traffic flow analysis attacks.

The inability to control the types of data transfered also has a profound
influence on the commercial communications service providers. It would
be in the interest of telecom operators to charge an optimum price for all
different types of data. Bulk rates would apply when data is transfered in

large quantities, as in video conferencing. Low bandwidth communication,
such as electronic mail, would be more expensive per bit. It is, however,
impossible to differentiate between the forms of communication. Where
digital video is regularly transmitted, any amounts of mail can be hidden
into the signal. This implies that the pricing of communication resources
has to be based on bandwidth, and availability and reliability of the service,
not the types of data transfered.

Probably the most controversial issue about widely available secure
communications is that the same technology can be employed for legally
and morally questionable purposes. It has been claimed, for example, that
free application of cryptography enables drug traffickers and terrorists to
communicate in secret, without the law enforcement officials being able to
intercept their messages. In some countries, strong encryption has been
banned or the keys have to be escrowed for government officials. With in-
visibility readily available to anyone with moderate programming skills, it
is obvious that any such measures are ineffective. Restrictions on encryp-
tion cannot stop criminals from using it, but only hurt the law-abiding
businesses and individuals who would greatly benefit from mass applica-
tion of cryptographic techniques.

References

1. Tuomas Aura. Invisible communication. In Proceedings of the HUT Seminar on
Network Security ’95, Espoo, Finland, November 1995. Telecommunications Soft-
ware and Multimedia laboratory, Helsinki University of Technology.

2. Hannes Federrath and Jirgen Thees. Schutz der Vertraulichkeit des Aufenhalt-
sorts von Mobilfunkteilnehmern. Datenschutz und Datensicherung, (6):338-348,
June 1995.

3. Maxwell T. Sandford II, Jonathan N. Bradley, and Theodore G. Handel. The
data embedding method. In Proceedings of the SPIE Photonics East Conference,
Philadelphia, September 1995.

4. Paul C. Kocher. Personal communication, October 1995.

5. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing, 17(2):373-386, April
1988.

6. Steffen Moller, Andreas Pfitzmann, and Ingo Stierand. Rechnergstiitzte Steganogra-
phie: Wie sie funktioniert und warum folglich jede Reglementierung von Ver-
schliisselung unsinnig ist. Dateschutz und Datensicherung, (6):318-326, June 1994.

Other sources are the steganography mailing list archive at
http://www.thur.de/ulf/stegano/ and documentation and source files
of several invisibility programs. Kaisa Nyberg made some helpful com-
ments on the session key generation.

