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Abstract. Time Petri nets are Petri nets extended with a notion of time,
where the occurrence time of a transition is constrained by a static inter-
val. The objective of this work is to give time Petri nets a partial order
semantics, based on the nonsequential processes semantics for untimed
net systems. A time process of a time Petri net is defined as a tradition-
ally constructed causal process that has a valid timing. This means that
the events of the process are labeled with occurrence times which must
satisfy specific validness criteria. These criteria are obtained by analyz-
ing how the timing constraints interact with the causal ordering of the
events in the net. An efficient algorithm for checking then validness of a
given timing is sketched. Interleavings of the time processes are defined
as linearizations of the causal partial order of events where also the tem-
poral ordering of events is preserved. The relationship between the firing
schedules of a time Petri net and the interleavings of the time processes
of the net is shown to be bijective. Also, a sufficient condition is given for
when the invalidity of timings for a process can be inferred from an initial
subprocess. An alternative characterization for the validness of timings
then results in an algorithm for constructing the set of all valid timings
for a process. This set of all valid timings is presented as sets of alterna-
tive linear constraints, from which the existence of a valid timing can be
decided.

Keywords: time Petri nets, processes, timing analysis, partial order se-
mantics, causality, net theory

1 Introduction

Petri nets [16,11] are a formalism for modeling and analyzing distributed and
concurrent systems. They are characterized by fine grained control over con-
currency and synchronization, and equal emphasis of state and actions. Petri
nets describe the causal behavior of systems, thus making them a natural can-
didate for the modeling of distributed systems, because one of the distinctive
characteristics of distributed systems is the lack of global time. In practical sys-
tem, however, timing of events is often just as important as the causal order,



as most distributed systems have non-ideal features like timeouts and alarms.
Furthermore, performance aspects force designers of distributed systems, such
as communication protocols, to maintain synchrony between concurrent subsys-
tems with local clocks. The difficulties in designing time dependent distributed
systems are likely to increase the demand for formal methods with timing ca-
pabilities. Consequently, time extensions are being planned, for example, to the
LOTOS specification language [12].

Also many time related extensions of Petri net formalisms have been introduced
to facilitate performance analysis. Some of them attach the timing information
on top of the systems, without having any effect on the causal relations between
events (eg. [15]). Recently, more attention has been given to net classes where
time constraints restrict the causal behavior of the system and limit its state
space (eg. [6]). Of these time Petri nets [10] are perhaps the simplest formalisms
for modeling systems where time limits can force events to occur and keep others
from happening.

In time Petri nets, there is an upper and a lower bound for the time an event
can remain enabled without occuring after its preconditions are met. This can be
used to model time limits in system specifications and imprecise timing like skew
of local clocks, as well as asynchronous timer interrupts. The upper time bound
of one potential event can limit the time when another conflicting event can
occur, creating dependences not seen in the simple causal view of the system.
Furthermore, the timing limits can be used in a way giving the net class the
expressive power of a universal computer [13]. This is a strong indication that the
analysis on time Petri nets is more complicated than it is for untimed net classes.
Even though timing constraints reduce the number of reachable markings of the
net they, instead, increase the cost of examining the state space. In addition to the
causal state, clock information has to be carried along throughout the analysis. In
reachability graphs of time Petri nets [2], the states of the net contain a marking
and intervals of possible firing times of all enabled transitions. The states are
grouped into state classes where the possible firing times are presented with
sets of inequalities. Complex rules are given for transforming the state classes
in firings and for checking their equivalence. A more comprehensible reachability
graph has been proposed by [14]. In it, a state contains both the marking and the
readings of the local clocks of enabled transitions. Thus state changes are divided
in two types: either time passes, ie. the clocks are advanced or a transition fires,
ie. the marking is changed.

An alternative approach to inspecting the behavior of concurrent systems is to
use a partial order semantics, like nonsequential processes [4] and branching
processes [7]. The research on branching processes has lately lead to efficient
model checking algorithms for net systems [8]. It is rather obvious that the benefits
of the partial order approach to the analysis of systems should be assessed also
with regard to the analysis of timed systems. Processes have been defined and
successfully utilized for some net classes with time [18,9,17], but in these cases



the timing does not interfere with the causal order of events. We aim to show
that nonsequential processes can be successfully used in presenting the behavior
of time Petri nets. Although the occurrence times of events seem to put even
causally unrelated events in a sequential order, the concurrent parts of the process
develop independently within the specified time limits. In a causal system, the
relative speed of concurrent events can be arbitrary and order results only from
synchronization by shared events. In time constrained systems, the speeds are
given some bounds, but the events are not forced into a fixed sequence. Instead,
the order of events arises from synchronizing events, or from the time limits of
enabled events representing potential interactions. Thus, the seemingly global
dependences created by the timing derive from local causes.

In this paper, we propose a notion of time process for time Petri nets, examine
the relation between the time processes and the firing schedules of the nets,
and sketch algorithms for verifying validness of timings and constructing valid
timings for a given process. The basic idea is that under time constraints, not
all processes or timings of the events are possible. We find out which processes
have a valid timing and which do not, and what kind of timings a process can
have. The paper is a summary of [1].

2 Time Petri nets

The following section recalls the basic definitions of time Petri nets. The domain
of time values T is the set of natural numbers. We denote by [r1,72] the closed
interval between two time values 71,75 € T, and by I the set of such intervals.
Infinity is allowed at the upper bound. An interval can be of zero length (71 = 72),
containing only a single time value.

Definition 1. A time Petri net is a five-tuple TPN = (P, T, F, SI, M), where
P is a set of places, T is a set of transitions, PNT =0, F C (PxT)U(T'xP)isa
flow relation, SI : T — 1 is a function called static interval, and My C P is the
initial marking of the time Petri net. The tuple (P, T, F, My) is the underlying
net. The boundaries of the static interval are called earliest firing time E ft and
latest firing time Lft. The preset of z € PUT is *z = {y | yFx} and postset
is z* = {y | xFy}. It is assumed that the initial marking is finite, |My| < oo,
and that there is some constant branching factor 8 < oo such that |*z| < 8 and
|z®| < B for all z € PUT. Moreover, the presets and postsets of transitions must
be nonempty, |*t| > 0 and |[t*| > 0for allt € T.

Time Petri nets were introduced in [10]. The above definition defines time Petri
nets as elementary net systems enriched with the static intervals on transitions,
and with some finiteness requirements. As noted in [14], for finite nets, rational
intervals can be converted to integers by multiplying the boundary values by the



least common multiple of their denominators. The fundamental concepts of net
behavior like enabledness and firing will defined next.

Definition 2. A transition ¢ of a time Petri net is enabled at marking M iff *t C
M. The set of all enabled transitions at marking M is denoted by Enabled(M).

In time Petri nets, a marking is not sufficient information to describe a complete
state of the system. The state must also include timing information. This is given
as a clock function that, for each enabled transition, gives the amount of time
that has passed since it has become enabled.

Definition 3. A state of a time Petri net TPN = (P, T, F,SI, M) is a pair
S = (M, I), where M is a marking of TPN, and I : Enabled(M) — T is called
the clock function. The initial state of TPN is So = (Mo, Iy), where Iy(t) = 0
for all t € Enabled(Mp).

For the firing of a transition to be possible at a certain time, four conditions must
be satisfied.

Definition 4. A transition ¢ may fire from state S = (M, I) after delay § € T
iff

t € Enabled(M), (1)
(M\*t)nt* =0, (2)

Eft(t) < I(t)+6, and (3)

Vt' € Enabled(M) : I(t') + 0 < Lft(t'). (4)

A transition satisfying Equations 1,3 and 4 but not Eqn. 2 is said to be in contact.
The set of all transitions that may fire from state S is denoted by Fireable(S)
and the set of all transitions in contact is Contact(S). From the definition we see
directly that Fireable((M,I)) C Enabled(M). Not all enabled transitions can
fire because of timing constraints. The new marking after a firing is calculated
as follows:

Definition 5. When transition ¢ fires after time 6 from state S = (M, ), the
new state S’ = (M",I') is given as follows:

M'=M\"t, ()

M" =M'ut®, and (6)
It)+ 46 if t € Enabled(M'),

I't)=<0 if t € Enabled(M") \ Enabled(M'), (7

undefined else.



In time Petri nets, the firing sequence is enriched with timing information, and
it is called firing schedule [3].

Definition 6. A firing schedule of a time Petri net is a finite or infinite sequence
of pairs of transitions and time values

o= (tlaol)a(t2702)7(t3703)7"' (8)

where the ¢; are transitions and 6; € T are their firing delays. The firing schedule
is fireable from the initial state Sy if there exist states Si,S2,S3,... such that
the transition ¢; may fire from state S;_1 (according to firing condition in Def.
4) and the firing leads to new state S; (according to the firing rule in Def. 5)
for i =1,2,3,.... A state of a time Petri net is reachable if some fireable firing
schedule leads from the initial state of the net to that state. A marking is reachable
iff there is a reachable state with that marking.

We want to exclude from our class of nets the ones where Eqn. 2, is needed to
prevent a second token from being inserted to a place.

Definition 7. The time Petri net is contact-free iff in every reachable state S of
the net, no transition is in contact, Contact(S) = 0.

Assumption 1. From now on, all time Petri nets will be assumed contact-free.

Another anomaly that we need to exclude from the class of nets under considera-
tion is the possibility of infinite firing schedules that consume no time. Moreover,
in infinite nets there can be infinite firing schedules where transitions consume
nonzero amounts of time, but the the total time is bounded by a finite constant.

Definition 8. The time Petri net T PN has divergent time iff for every infinite
firing schedule (¢1,61), (t2,02), (t3,63),... of TPN, the series 6y + 60 + 63 + - - -
diverges.

Assumption 2. From now on, we assume that all time Petri nets have divergent
time.

3 Time processes

The firing schedule presentation of system behavior forces causally independent
events in the system into a linear order. In this section we will define a presenta-
tion that retains both causal dependence and concurrency. Time processes of time



Petri nets will be constructed by labeling traditionally defined causal processes
with time values and giving validness criteria for them.

We recall the definitions of a causal net and homomorphism from the literature.
The definition of homomorphism from time Petri nets to causal nets is a straight-
forward adaptation of the usual net homomorphism. A causal process of a time
Petri net is then defined as a causal net together with a homomorphism.

Definition 9. A causal net CN = (B, E,Q) is a finitary, acyclic net, where
Vb e B:|b*| <1A|*| < 1. Places B of a causal net are called conditions and
transitions E are called events. Preplaces are called preconditions and postplaces
postconditions.

Finitary means that every z € BUFE has only a finite number of G-predecessors.
We denote by < the partial order G* on B U E and by < the corresponding
strict partial order. Event e is said to causally precede e’ if e < e'. We write
Min(CN) for the <-minimal elements of a causal net and Maz(CN) for the <-
maximal events, and call these initial elements and final elements, respectively. In
a nonempty net where G is finitary, there is always at least one minimal element.
In a contact-free causal net, the minimal elements are places. In a causal net, we
identify the preset and postset of a condition with the unique events in them and
use the notations *b and b* to mean a single event.

The relation between time Petri nets and causal nets is be stated using a homo-
morphism, a mapping from the causal net to the underlying net of the time Petri
net that preserves the local structure of the net.

Definition 10. Let TPN = (P, T, F,SI, My) be a time Petri net and CN =
(B, E,G) a causal net. A mapping p: BUE — PUT is a homomorphism if
p(B) C P, p(E) CT, Ve € E : the restriction of p to ®e is a bijection between ®e
and *p(e) and the restriction to e® is a bijection between e® and p(e)®, and the
restriction of p to Min(CN) is a bijection between Min(CN) and Mp.

For a downward closed set of events E', we define a function Cut by Cut(E') =
(E'* U Min(NS))\ *E'. The intuition of a cut is that it represents a state of the
system.

Definition 11. Let TPN = (P,T,F,SI,M;) be a time Petri net. A causal
process of TPN is a pair (C'N,p), where CN is a causal net and p is a homo-
morphism from CN to TPN.

If Vb, € B' : p(b) = p(b') = b =1, we say that B’ maps injectively to places.
In processes of 1-safe untimed net systems, sets Cut(E') are guaranteed to map
injectively to places for all downward closed sets E'.



The notion of a time process for a Time Petri net can now be defined. This is done
by adding timing information to the causal processes of the time Petri net: time
values depicting occurrence times are attached to the events of the process. Since
time constraints imposed by the earliest and latest firing times of events restrict
the set of possible timings the events of the time process can have, validness
criteria are defined for deciding if the process with the time values is a time
process of the time Petri net. As a result not all timings are possible and some
causal processes may even have no valid timings at all, being thus impossible in
the system.

In order to motivate the definition of valid timing, we demonstrate the depen-
dences between events of a time Petri net. Figure 1 shows a segment of a time
process of a time Petri net, that is a segment of a causal process of the time net,
where the occurrence times are written next to the events. The dashed transitions
are not part of the process, instead they denote transitions whose occurrence is
not known yet, ie. the corresponding events have not been added to the process
yet. Assume that the global clock has advanced to time = 8, and that we want
to consider, whether we can add the event e with timing 8 to the process. The
darker grey area is the causal past of e, and the light grey area contains the
events with an earlier occurrence time than e. The upper black line intuitively
marks the two possible global states at which event e can occur depending on
the interleaving of concurrent events. The lower black line marks the global state
before the clock was advanced the last time. Let us denote the state of the system
on the lower line by C,. Below, we will argue that the possibility of event e and
its occurrence time should be determined based on the state C, rather than the
causal past of e or the global state at which e occurs.

S0

Earlier
than e

Fig. 1. Events and occurrence times



We want to show how dependences arise between causally unrelated parts of the
process. Look at transition ¢; which is enabled at the global state where also e is
enabled. It became enabled at time 4 and has to fire before or at time 4 +3 = 7.
Therefore, event e cannot occur at time 8. However, if event es would have a
timing of 5 it could disable ¢; thus again making it possible for e to occur. In
this way, events e; and es and their timing can affect the occurrence of e. Thus,
it is not enough to look at the local state where e is enabled, but one must also
consider causally unrelated parts of the process in order to know if e can occur
at the given time. This would indicate that we have to consider the global state
where e is enabled. However, the state is not uniquely known, as demonstrated
by the branching upper black line in the figure. Even though ¢ is enabled at
the global state at which e is enabled, it cannot prevent e from occurring. This
is because one of the conditions enabling t5 is not in C, and, consequently, the
latest firing time of ¢ cannot be earlier than the occurrence time of e. Thus, when
assessing the possibility of event e, it is not necessary to consider all conditions
in the global state where e occurs, but only those in C,. Transition t3 is enabled
at C, but not at any of the possible global states where e occurs. It can still stop
e from occuring, because it does not allow e3 to occur and e depends causally
on e3. Now consider transition t4: it has to fire at time 6 or earlier. But unlike
the other transitions, ¢4 does not have causal relation to e through its preset.
Therefore, one might think that ¢4 cannot in any way affect e. But this is not
true! Indeed t4 does stop e from occurring because its successor, the transition
ts inevitably disables e. We might not know that there is a transition ¢5, but to
be on the safe side, we must require all transitions enabled at C, to have latest
possible firing times greater than or equal to the occurrence time of e. Otherwise,
we cannot know that the occurrence time of e is possible. Events e, e3 and ey
have the same occurrence time and C, = C,, = C¢,. If we check that one of the
events is not kept from firing by transitions enabled at C,, it implies the same
for all of them. Thus, all events with the same occurrence time can be processed
together. The preceding discussion is now summarized in the following definition.

Definition 12. Let TPN be a time Petri net and (CN,p) its causal process,
where CN = (B, E,G). A timing function 7 : E — T is a function from events
into time values. The values of 7 are called occurrence times of the events. If B
is a set of conditions and transition ¢ is enabled at p(B'), the time of enabling
for ¢ in B' is defined as

TOE(B',t) = max({r(*b) | b € B'\ Min(CN) Ap(b) € *t} U{0}). (9)
The set of earlier events for an event e is
Earlier(e) ={e' € E | 7(e') < 1(€)} . (10)
A timing function 7 is a wvalid timing of the causal process iff

Vee E:7(e) > TOE(®e,p(e)) + Eft(p(e)), and (11)
Ve € E : Vt € Enabled(p(C.)) : 7(e) < TOE(C.,t) + Lft(t), (12)



where C, = Cut(Earlier(e)).

A time process of TPN is a triple (CN,p,7) where (CN,p) is a causal process
of TPN and 7 is a valid timing of the causal process.

The definition of valid timing has been derived from the firing condition of time
Petri nets (Def. 4). The two criteria (Eqn. 11 and 12) impose the earliest and the
latest firing times on the events (like Eqn. 3 and 4, respectively). The auxiliary
function TOE gives the time when a transition becomes enabled at a set of
conditions, i.e. the occurrence time of the last of the previous events. When there
are no previous events (t is enabled at the initial marking), the time of enabling is
naturally zero. The lower bounds of occurrence times (Eqn. 11) are easily checked
as they depend only on the previous events. The upper bounds (Eqn. 12) are more
complicated because they create dependences between causally unrelated parts
of the process, as seen in the example above. Thus the latest firing times of all
transitions enabled at the set C, = Cut(Earlier(e)) must be considered. This
is the set depicted by the lower black line in figure 1. By utilizing the above
definitions, it is possible to derive an algorithm that checks the validness of a
timing function in time O(N log N + 32N|P|), where N is the number of different
values of the timing function in the process, 3 is the branching factor and |P|
the number of places in the net (cf. Sec. 3.3 in [1]).

In Figure 2, there is a time Petri net and its time process. (w = 0c.) The values
of the timing function have been printed next to the events. The timing in Fig.
2(b) is valid. All different sets Cut(Earlier(e)) are shown in grey. There are only
three such sets because two are equal: 7(e2) = 7(e3) implies Cut(Earlier(es)) =
Cut(Earlier(es)). The transitions enabled at the sets have been drawn with
dashed lines. On the other hand, the timings in Figure 3 are not valid. The sets
and enabled transitions that conflict with Eqn. 12 are shown. In (a), transition
to should fire before e3 and disable it. The timing is clearly not in accordance
with the firing condition. Net (b) demonstrates a more surprising requirement
for validness. In Fig. 2(b) we already saw that the firing times of the transitions
are completely legal. Nevertheless, the timing is not valid. This is because the left
side of the process has not been generated far enough to make conclusions about
the possibility of the firing times. We will see in Section 5 that it is essential
for all parts of the process to be complete up to same time value. Otherwise,
validness cannot be determined.

4 Processes and firing schedules

In this section, we will look more closely at the relation between time processes
and firing schedules. A time process is a partial order that can be sorted into
several different linear orders. The linear orders that respect the occurrence times
of the events will be called interleavings of the time process. We will show that
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Fig. 2. A time Petri net and a process with valid timing

in a time Petri net, there is one-to-one correspondence between interleavings of
time processes and firing schedules that are fireable from the initial state of the
net.

We want to define interleaving of a time process as a linearization of the partial
order of events where the events are ordered also by their occurrence times. In
order for this to make sense, we have to prove that the causal and time order
never conflict with each other.

Lemma 13. Let (CN,p,7) be a time process of a time Petri net, where CN =
(B,E,G). Let also e,e' € E be two events of the process. Then,

e<e = 7(e) <7(e) (13)
It is now possible to give the definition of an interleaving of a time process. A

function from interleavings to firing schedules will also be defined. Interleavings
and the function will link time processes to firing schedules.

Definition 14. An interleaving of a time process is a finite or infinite sequence
p = e1,ea,es,... consisting of the events of the process, such that every event is



Fig. 3. Two invalid timings

in the sequence exactly once, and both causal and time order are preserved,

(ei <e; V 1(e;) <7(e;)) = i< jforalli,j. (14)

The function F'S maps interleavings to firing schedules of the net.

FS(p) = (p(e1),7(e1) — 0), (p(ez2), T(e2) — 7(e1)), - - (15)

To summarize, we have now three different order relations on the set of events:
causal order (e < €'), time order (7(e) < 7(e')) and a linear order in an inter-
leaving (e; < e;+1). The orders do not conflict with each other. Causal and time
order both imply order in interleavings.

In the rest of this section, we will give theorems that state that the function F'S
is a bijective mapping from the interleavings of the processes of a time Petri net
to the firing schedules fireable from the initial state of the net. For details of the
proofs we refer to [1].

The first important property of F'S is that interleavings of a time process are
mapped to firing schedules that are fireable from the initial state of the net.

Theorem 15. If p is an interleaving of a time process of a time Petri net,
then the firing schedule F'S(p) is fireable from the initial state of the net. The
markings in the intermediate states of the firing schedule are My = p(Cut(Ey))
fork=1,2,3,....



Proof. See Thm. 21 [1], p. 29.

We know now that there is a fireable firing schedule corresponding to every
interleaving.

Theorem 16. Let TPN be a time Petri net with divergent time. Every time
process of TPN has an interleaving.

Proof. See Thm. 22 [1], p. 32.

The firing schedules in the range of the function F'S are known to be fireable
from the initial state of the time Petri net in question. We still have to show that
the function is a bijection. The next theorem will show that it is surjective.

Theorem 17. Given a firing schedule o of a time Petri net TPN, it is possible
to construct a process of TPN with interleaving p, such that o = FS(p).

Proof. See Thm. 23 [1], p. 34.

So far, we have shown that there is a surjective mapping F'S from the interleavings
of time processes to the firing schedules fireable from the initial state of the net.
The next theorem will complete the proof that the F'S is bijective.

Theorem 18. Let o be a firing schedule of o time Petri net TPN . The process
of TPN with interleaving p, such that o = FS(p), is unique up to renaming of
elements.

Proof. See Thm. 24 [1], p. 37.

The results in this section tell us, that in a contact-free time Petri net, the relation
between firing schedules fireable from the initial state and interleavings of time
processes is bijective. These results are not surprising, but they assure that the
time processes correctly represent the behavior of the system.

5 All valid timings of a process

It would be desirable to somehow characterize the set of all valid timings for
a given process. The definition of valid timing only gives a way to check the
validness, but it does not help much in constructing timing functions. Still, the



need of having the entire set of valid timings is obvious. From the set, one can
answer questions like, what is the longest time that can pass between two events,
can an event occur after another, and so on. We will see that the set of all timings
can be computed in a fairly general setting, but that the cost of the computation
may be high.

We will start by giving an alternative characterization of valid timings. It is based
on the idea that in a process a decision has to be made about the firing or the
disabling of all potentially enabled transitions and that this decision is observed
in the process as the occurrence of an event in the system. As the approach
of this section is aimed at computing the set of all of valid timings, it cannot
take advantage of the structure of a single timing function like the definition of
validness does.

In processes of untimed net systems, all antichains of conditions represent subsets
of reachable markings. This is not the case in processes of time Petri nets, but the
antichains are still useful, because all reachable markings are represented by some
of them. Antichains are traditionally called co-sets, co meaning a concurrency
relation between process elements [4].

Definition 19. A set B’ of conditions in a causal net is a co-set if no two
conditions in the set are causally related.

Vb,b' € B': (=(p < q) A (g < p)) (16)

A maximal co-set is called a cut.

Recall that a transition in a time Petri net may be enabled but not fireable
(cf. Def. 4). When a transition becomes enabled in a time Petri net, it will
eventually fire by its latest firing time, unless it is disabled by the firing of
another transition. However, it is also possible for the disabling to occur before
the transition becomes fireable. Since our definition does not require a processes
to continue infinitely or until all enabled transitions have been fired, a process is
not necessarily maximal. The first transitions left out at the end of the process, ie.
whose corresponding events have not yet been added to the process, are naturally
enabled at the marking corresponding to Cut(E). In the next definition, these
transitions are called extension transitions. Whether an extension transition ¢ is
fired or not depends on whether it is in conflict with some other transition ¢', in
which case there is a choice between ¢ or ¢'. This choice is resolved or decided
by an event e, because when we add the event e to the process, we know which
one of the transitions was fired.

Definition 20. Let (CN,p) be a causal process of a time Petri net, where
CN = (B, E,G). Transition t is a choice transition at B' C B iff B’ is a co-
set that maps injectively to places and *t = p(B'). Transition ¢ is an extension
transition iff B' C Cut(E).



Let e be an event and ¢ a choice transition at B’ with B’ N *e # () and
7(e) <TOE(B',t) + Lft(t). (17)

Then, e decides t at B, or e is a deciding event of t.

The deciding event of choice transition ¢ at B’ is either a firing of ¢, or it is the
firing of another transition that disables t. In Figure 4, there is a time Petri net
and its process. At the initial marking, 1 and #2 are choice transitions. Both
are decided by the event el; t1 is fired and ¢2 is disabled. ¢3 is an extension
transition and remains undecided. In this case, t2 never becomes fireable, since
it is disabled before its earliest firing time.

O

Es 0,1 '3 _E
O O O
01| 1 [2,3]
(®) @

Fig. 4. Choice and extension transitions

Definition 21. A causal process (CN,p) of a time Petri net, where CN =
(B, E,G), is complete with respect to timing function 7 iff for every extension
transition ¢ of the process,

max {7(e) | e € E} < TOE(Cut(E),t)+ Lft(t). (18)
When the process is complete, none of its concurrent parts “are left behind in
time”. That is, if there is some event in the process with time 7(e), all potential

events with smaller value of 7 must be included in the process. This property is
also implicit in the definition of valid timing.

It is computationally more efficient to state completeness in terms of the final
conditions of the process.

Lemma 22. If Eqn. 11 holds, Eqn. 18 is equivalent with
Vee E : ((e**=0 A eg*B') = 1(e) <TOE(Cut(E),t) + Lft(t)). (19)



where B' C Cut(E) is the set of conditions at which t is enabled.

Proof. When Eqn. 11 holds, the causal order of events implies time order, e’ <
e = 7(e') < 7(e). Then, the maximum value of 7 is obtained for some of the
the causally maximal events in the causal order. Hence, it is enough to examine
only those events in the causal order, for which e®*® = (). Moreover, if e € B’ C
*Cut(E), then 7(e) < TOE(Cut(E),t), and the inequality holds automatically.

Before discussing how to construct the set of all valid timings, we state the main
theorem of this section. It characterizes the validness of a timing in an alternative
way. While the definition of validness is optimized for checking known timing
functions, this formulation of the validness criteria makes it possible to talk
about sets of timings.

Theorem 23. Let TPN be a time Petri net and (CN,p) a causal process of
TPN. A timing function 7 is valid iff the validness criterion on the earliest
firing time (Eqn. 11) holds, the process is complete with respect to the timing,
and every choice transition is either an extension or decided by some event in
the process.

Proof. See Thm. 30 [1], p.41.

A closer look at Theorem 23 reveals that all the properties required by the theo-
rem from valid timings can be presented with inequalities. The three sources for
inequalities are:

1. validness criterion on the earliest firing time (Eqn. 11),
2. deciding events of choice transitions (Eqn. 17),
3. completeness of the process (Eqn. 19).

Source 1 gives a set of inequalities on occurrence times that must be satisfied by
all valid timings. Source 3 produces inequalities with the function TOFE in them.
Since TOE is defined as a maximum over a set of events, these can be expanded
to sets of alternative inequalities with only occurrence times as variables. At
least one of the alternatives in each set must hold in every valid timing. The
same applies to Source 3, but these inequalities have to be instantiated with all
the events satisfying the left side of the implication in Eqn. 19.

The existence of a valid timing for a causal process can be determined by an
algorithm that nondeterministically chooses elements from each set of alterna-
tive inequalities. If any one of the nondeterministic choices results in a set of
inequalities with a feasible solution, the solution is a valid timing. The resulting



inequalities are all linear and there are up to (|T||B|® + 8)|E| of them. In addi-
tion, all variables 7(e) are nonnegative. The existence of a feasible solution for
the set of a polynomial number of linear inequalities is decidable in polynomial
time [5]. There exists a valid timing for the process iff the set of inequalities IE
in one of the nondeterministic execution paths of the algorithm has a solution. If
the branching factor 3 is constant for a class of Petri nets, then it is possible to
decide in nondeterministic polynomial time the existence of a valid timing. We
state this as a theorem.

Theorem 24. In a class of time Petri nets where the branching factor 8 is
bounded by a constant, the existence of a walid timing can be decided by an
algorithm that is NP with respect to the size of the process.

Let us now turn to the question of when an invalid timing can’t be extended to a
valid one. (CN',p') is an initial subprocess of (CN,p) iff B'UE' is a downward
closed (with respect to G) subset of BU E and G' and p' are restrictions of G
and pto B'UE'".

Theorem 25. Let (CN,p), where CN = (B, E,G), be a causal process with
timing function 7. Assume that there is a choice transition t at a set B; that
is neither an extension nor decided by any event of E. If (CN,p) is an initial
subprocess of another process (CN,ﬁ) such that B;® is equal in both processes,
then (CN, p) does not have any valid timing function whose restriction to E
equals T.

Proof. Tt is easy to see that the candidates for deciding events are the same in
both processes. If none is added, the process remains invalid.

The most common case where B;® is equal in both processes is the one where
b* € FE for all b € B;. This is because when all conditions of the set B; are
consumed by some events in the smaller process, there is not room to add any
new deciding events in the larger one. Consequently the invalid situation cannot
be corrected by extending the process. This is the case for the process of Fig.
3(a).

In Figure 5, there is a causal process of the time Petri net of Fig. 2(a), with all
choice transitions. We are interested in the set of valid timings for this process.
The set of inequalities is given in figure 6. The first four constraints are the
earliest firing times of the events. The next two guarantee the completeness of
the process. Then come the alternative reasons why each choice transition does
not reach its latest firing time. Four of the choices are decided by events that are
firings of the choice transition.

These inequalities have a solution and, thus, there exists a valid timing. We
can, for instance, find the maximum of 7(e3) — 7(e2). The maximum is 5, at
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Fig. 5. Computing all timings of a process

T(e1) = 3, 7(e2) = 1, 7(e3) = 6,7(eqg) = 4. We can also find maximum firing
time of event e4. The result is 7, at 7(e1) = 2, 7(e2) =6, 7(e3) = 4,7(eq) = 7.
The latter result may appear surprising, but in order for 7(e4) to be higher, other
parts of the process should be extended. Thus, these results are only a maximum
in this process, not necessarily in larger processes.

The set of constraints can be reduced by keeping only those constraints that are
true in all larger processes. The reduced set of constraints is given in figure 7. In
this set, the maximum of 7(e3) —7(ez) is still 5. The result indicates that it is the
maximum in all processes having the process of Fig. 5 as an initial subprocess. On
the other hand, the maximum of e4 differs considerably from the previous result.
It is now 20, obtained for example at 7(e;) = 1, 7(ea) = 10, 7(e3) = 2, 7(eq) = 20.
In order to learn the maximum firing time of event e4, we would have consider
all different ways in which the process can be extended. The value obtained from
the reduced set of inequalities, 20, is only an upper bound for 7(ey).

6 Conclusions

The objective of this work was to give time Petri nets a partial order semantics.
As the main contribution, we introduced time processes for representing the
causal behavior of contact-free time Petri nets. Time processes were defined as
causal processes with a valid timing on the events. The relationship between time
processes and the firing schedule semantics was examined with the conclusion



(r(e1) > 1) Eft
A ((es) —7(e1) 2 1)
A (T(e2) 2 1)
A (r(es) — T(e2) > 1)

A (T(ea) — T(e3) < 3) Lft: extensions
A ((es) — 7(ea) < 10)
A ((e1) < 3) Lft: events

A (r(e3) — 7(e1) < 3)

A (1(e2) < 10)

A (7(es) — 7(e2) < 10)

A (T(e1) €2 V 7(e2) < 2) Lft: other choices
A(r(ez) —71(e1) <2 V 71(ez) —7(e2) <2 V 7(ea) —7(e1) <2 V 7(esa) — 7(e2) < 2)
A(r(e1) —1(e2) <2 V 7(eq) — 7(e2) < 2)

A(7(es) —7(e1) <2 V 7(e2) —7(e1) < 2)

A(r(e3) —71(e1) <2 V 7(e3) — 7(eq) < 2)

A(7m(es) —m(e2) <2 V 7(esa) — 7(e3) < 2)

A (r(e2) — 7(es) < 2)

A (1(e1) — 7(eq) < 10)

Fig. 6. The set of inequalities generated by the process in 5

that the approaches are compatible. We then sketched algorithms for checking
validness of known timings and for constructing the set of all valid timings of a
process. The complexity of timing analysis lies in dependences between causally
unrelated events, created by the latest firing times of transitions. With the partial
order approach, these dependences must be explicitly dealt with. They forced us
to look at other enabled transitions, not only the causal past of an event, when
assessing validness of the occurrence time of the event.

The definition of valid timing was optimized for checking validness of known
timings. As such, it did not give any direct way for constructing time processes.
Therefore, an alternative characterization for validness was presented. With the
alternative formulation of the validness criteria, the existence of a valid timing
for a given process can be decided in nondeterministic polynomial time. The
algorithm can also be used for constructing the set of all valid timings. This set
is presented as sets of alternative linear inequalities, and with these, one can
answer questions like, what is the maximal time separation between two events.

The presented techniques could be improved with various optimizations, for ex-
ample, in solving the sets of linear inequalities. In a net class with restricted
forms of synchronization, eg. extended free choice time Petri nets, the validness
criteria could be simplified significantly. Also, other restricted net classes could



(r(e1) > 1) Eft
A (r(ez) —7(e1) 2 1)
A (7(e2) 2 1)
A (7(eq) — T(e2) > 1)
A ((e1) < 3) Lft: events
A (r(e3) —7(e1) < 3)
A (7(e2) < 10)
A (1(es) — 7(e2) < 10)
A(r(e1) €2 V 7(e2) < 2) Lft: other choices
A (T(63) — T(el) <2V T(63) — T(ez) <2V T(€4) — T(61) <2V T(€4) — T(ez) < 2)
A(r(e1) — 7(e2) <2 V 7(eq) — 7(e2) < 2)
A (T(63) — T(E1) <2V T(ez) — T(e1) < 2)

Fig. 7. The reduced set of inequalities

be considered. Interesting topics for future research include incorporating the
timing analysis with process generation to compute properties of whole nets, not
only single processes, and extending the presented methods to time stream Petri
nets. Also, the idea of branching processes for time Petri nets is intriguing, al-
though it is difficult to see how the different time processes could be embedded
into one partial order.
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