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Abstract

In new distributed, key-orientedaccesscontrol systems
sudt as SPKI,accesgight are delegatedby a freelyformed
networkof certificates.We formalizethe concepiof a dele-
gation networkand presenta formal semanticdor the del-
egation of accesgrights with certificates. The certificates
can havemultiple subjectswho mustco-opeateto usethe
authority Somefundamentabropertiesof the systemare
proven, alternative techniquesfor authorizationdecisions
are compaedandtheir equivalencés shownrigorously In
particular, weprovethatcertificatereductionis a soundand
completedecisiontechnique We alsosuggesta new typeof
thresholdcertificatesand proveits properties.

1 Intr oduction

New key-orientedaccesscontrol systemsoffer a fully
distributed alternatve to traditional hierarchical,identity-
orientedschemes. In the new systems,accessright are
boundto a key, not to the identity of the owner of the key.
They are delggatedfrom key to key with chainsof signed
certificates. Thesecertificatesform a network of trust re-
lations betweenthe keys. This way, local authoritiesare
freeto form trustrelationswithout the needfor the kind of
globalhierarchyof trustedsenersas,for example,in X.509
[4].

Thegoalof this paperis to presenenabstracmodelfor
thenetworksof delegationformedby public-key certificates
betweenkeys. We formalize the conceptof a delegation
networkandpresent formal semanticgor thedelegation.

The modelis usedfor proving the equivalenceof sev-
eralmethoddor accessontroldecisions.In particular we
shaw thatthe certificatereductiontechniqueof [5] is sound
andcompletewith respecto ourdefinitionof authorization.
Theoreticatreatmenbf thetopic allows usto focuson the
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essentiafeaturesof the systemdnsteadof lengthytechni-
cal specificationsThis madeit possibleto developefficient
algorithmsfor accessontrol decisionsfrom a databasef
certificatesn [2].

Notable differenceshetweenout model and traditional
capability-basedecuritymodels[9] arethatthe delegation
certificatescanbeissuedby anyonewithout special‘grant”
rightsandevenbeforetheissueritself hasobtainedhe del-
egatedrights. Instead,the delegatedrights are limited to
reflectthelevel of trustto thereceving keys. Moreover, the
compleity of our model arisesfrom joint-delegationand
thresholdcertificatesj.e. certificateghatareissuedo a set
of subjectsvho mustco-operatdo usethe authority

We representthe delegation networks as graphsand
malke accesscontrol decisionsby finding pathsin the
graphs. An alternatve approachcould be to definea log-
ical languagefor describingdeleggationandto make deci-
sionsby proving theoremf thelogic. It appearghatthe
acceszontrol calculusof Abadietal. [1, 6, 10] could be
adaptedor the purpose.However, the calculuswasdevel-
opedbeforekey-basedsystemsandit doesnotdirectly sup-
portanorymouskeysin the certificatechain.

Thethreemostprominentproposalgor distributedtrust
managemenbn opencommunicationsietworks are SPKI
certificateg5] by Ellisonetal., SDSIpublic key infrastruc-
ture[8] by RivestandLampsonandPolicyMaker local se-
curity policy databas§3] by Blazeetal. In thedevelopment
of ourtheory we have mostoftenreferredto the SPKIspec-
ification.

We begin by definingdelegationnetwork anddiscussing
subnetwarks in Sec.2. Sec.3 shovs how the delegation
can be visualizedas trees. The soundnessnd complete-
nessof certificatereductionareprovenin Sec.4. In Sec.5
we suggesaslightly generalizedrersionof SPKIthreshold
certificateghataddsflexibility to certificatemanagement.

2 Delegationnetwork

We start by defining a structurecalled delegation net-
workin Sec.2.1. It consistof keys andcertificatedor del-
egatingauthorizationdbetweerthe keys. The authorization
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arerightsto performsetsof operations.This is detailedin
Sec.2.2.In Sec.2.3we continueby formulatingthe autho-
rizationsproblem,i.e. the questionof who is authorizedo
which operationsin termsof thedelggationnetworks. Sub-
networks and a fundamentalresult on their existenceare
presentedn Sec.2.4.

2.1 Definition of delegationnetwork

We definea delgyation network as a directedbipartite
graph. In a bipartite graph,the nodesaredivided into two
partitionsandall arcsaredravn betweerthe partitions. In
a delggationnetwork, the partitionsare calledkeys (the set
Keys) andcertificatethe set Certs). The certificatesare
annotatedwvith authorizationgthe set Auths). The direc-
tions of arcs(the Flow relation) point from the issuerkey
to thecertificateandfrom the certificateto the subjectkeys.
With thecertificate theissuerdelegatego thesubject(s}the
right to (jointly) requessomeoperationgo beexecuted At
our level of abstractionthe keys are primitive dataitems.
Therelationsbetweerkeys aredeterminedy their connec-
tions to the certificates. This way, we abstractaway the
cryptographythat will make keys and certificateswork in
implementations.The authenticityof the certificatesmust
have beenchecled by verifying signatureon them at the
time the certificatesvereenterednto the databaseThe set
of authorizationspn the otherhand,will be givena struc-
turein in Sec.2.2.

Definition 1 (delegationnetwork) A delgyation network
isa5-tupleDN = (Keys, Certs, Auths, Flow, auth) such
that

1. Keys is asetcalledkeys,

2. Certs is a setcalled certificates

. Auths is a setcalled authorizations

. Flow C Keys x Certs U Certs x Keys is calleda
flow relation

. for eath ¢ € Certs, thereis a uniquekey k € Keys
sudh that (k,c) € Flow. Thiskey is calledtheissuer
of c.

. foreath ¢ € Certs, thereis at leastoneandat mosta
finite numberof keysk suc that{c, k) € Flow. These
keysare calledthe subjectwf c.

. auth : Certs — Auths mapscertificatesnto autho-
rizations.

Accordingto the definition, a certificateis connectedo
two or moreotherkeys. For exactly oneof thesekeys, the
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arcis directedtowardsthe certificate. This key is the is-

suer i.e. signer of the certificate. The otherkeys, subjects,
arethe keys to whom the certificatehasbeengiven. The
function auth attachego eachcertificatethe accesgights
delegatedwith it.

Whena certificatehasmorethanonesubject theideais
thatall of themmustco-operatdo usethe authoritygiven
by the certificate.Normally they do this by furtherdelegat-
ing theauthorityto asinglekey. Hence acertificatels made
wealer by addingsubjects.

We limit thenumberof subjectdor eachcertificateto fi-
nite althoughthe numberof certificatesn the network can
be infinite. This makes sensebecauseepresentingn in-
finite setof cryptographickeys in one certificatedoesnot
seemimplementableout the numberof certificatesretriev-
ablefrom a computemetwork canbe unlimited.

In practice the certificateanay have otherfields suchas
limitations on the propagatiorof the accessightsto other
subjects.Adding a no-redelgationbit to the modelwould
be straightforward but we have chosento leave it out for
simplicity. In ary case,the primary mechanismdor pa-
rameterizingtrustto the subjectis to limit the valuein the
authorizatiorfield of the certificate.

The certificatescould also be definedas a relation be-
tweenkeys. We have choserthegraphapproachpecausét
malkesthetheorymorevisualandwe will draw ideasfor de-
cisionalgorithmsfrom graphtheory It shouldbe notedthat
if all certificateshave only a single subject,the nodesrep-
resentinghemhave only oneincomingarcandoneleaving
arc.In thatcasethecertificatecanbepicturedasannotated
arcshetweerthekeys.

Note alsothatwe allow delegationnetworksto have cy-
cles,i.e. a key candirectly or indirectly delegateto itself.
Thiskind of cyclic delegationnaturallywill notgivethekey
ary new rights. It merelymeanghatthealternatve pathsof
delgyationform loops. To avoid compleity in definitions,
we do notwantto disallowv evendirectdelegationto selfal-
thoughit is neverusefulin practice.We will, however, shov
(in TheoremB) thatin somesituationsit sufficesto look at
partsof delegationnetworks with no cycles. Thereforewe
give thefollowing definition.

Definition 2 (acyclic) A deleggationnetworkwith flowrela-
tion Flow is agyclic iff the networkhas are no cycle, i.e.
loopingchainsof certificates

<k1701)7 (Ch k2)7 <k2702)7 <C27k3)7 LR <Cn—17kn) € Flow
wheek; = k,.

Fig. 1 shavs an exampleof a delggation network. For
simplicity, the certificate nodesare not explicitly drawn.
Thearrowsin thefigurerepresenbothcertificatesandtheir
incoming and outgoingarcs. On the certificateswe have
markedthe accessights delegatedby them. Only onecer
tificate hasmorethanonesubject.The network hasa cycle
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Figure 1. A delegation netw ork

althoughno accessight are actuallydelegatedall the way
aroundthecycle.

The deleggationof accessightswill beformally defined
in Sec.2.3 but we cangive thefollowing intuitive interpre-
tation for the figure. k; could, for example,be the key of
a databasesener. In that case,k; and ks belongto two
trusteesvho cantogetherbut not aloneauthorizeaccesgo
thesener. Key k4 getstheright to operationread(r) from
both trusteesand further delegatesit to k. No otherkeys
have sufficientrightsto accesghesener.

2.2 Set-typeauthorizations

The auth function specifiesthe accesgights delegated
with a certificate. The structureof the authorizationsde-
pendsonwhatkind of accessakesplacein the system.

Often, authorizationsare a setsof operationsthat the
subjectof the certificateis allowedto request.In thatcase,
the result of a seriesof delegationsis given by the inter-
sectionof the operationsetsallowedin the delegationsand
theresultof obtainingaccessightsfrom several sourcess
givenby theunionof the operationsets.

Definition 3 (set-typeauthorizations) Settypeauthoriza-
tionsareformedbya lattice of subset®fa setof opemtions.

Thus,theauthorizationsresetsof operations Auths C
P(Ops) (thepowersetof Ops) for somesetOps. Theword
latticein this context meanghatthe unionandtheintersec-
tion of any two authorizationsnustalsobeanauthorization.

If DN = (Keys, Certs, Auths, Flow, auth) is a dele-
gationnetwork, theset Ops = UAuths is calledthe opera-
tionsof DN.

The set-typeauthorizationshave the advantagethat the
right to perform eachoperationcan be consideredsepa-
rately Certificatescan be presentedogetherto demon-
stratethe right to the union of the accesgsights delegated
by eachof them. This makesthe implementationof the
systemstraightforvard. It would be possibleto defineau-
thorizationswith more complex structure for example,by
allowing arbitrary policy functionsfor combiningthemas
in [3].
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2.3 The authorization problem

We will now definehow the accessights aretransfered
from key to key in a delegation network. This is proba-
bly the moststraightforvardway to definethe semanticof
the authenticatiometworks sinceit raisesdirectly from the
intuitive meaningof thecertificates Accesgightsaretrans-
feredto the setof subjectswho all mustdelegatethe right
to thesamekey, possiblyvia otherkeys. Whenthereis only
onesubjectthatsubjectcanaloneuseor delegatetherights.
Of coursegvery key completelytrustsitself.

Definition 4 (authorizes relation) LetDN = (Keys,
Certs, Auths, Flow, auth) be a delegation networkwheie
the authorizationsare set-type Denoteby Ops the opera-
tionsof DN. Therelationauthorizespy C Keys x Keys X
Ops is thesmallesthree-placerelation sud that

1.if &k € Keys and o € Ops, then {k,k, o)
authorizes pn, and

€

2. if o € auth(c), (k1,¢) € Flow, and (k,k2,0) €
authorizes p for all k sudh that (¢, k) € Flow, then
(k1, k2, 0) € authorizespy .

Lemma5 With theassumptionsf Def. 4, thereis a unique
smallestrelation (with respectto setinclusion) satisfying
thetwo rulesin thedefinition.

Proof Theintersectionof all relationssatisfyingRules1
and?2 is thesmallestsuchrelation. d

Notethatthedefinitiondoesnotreferto the graphtermi-
nologyatall. In Sec.3 wewill giveanequivalentformula-
tion basedntreesin thegraph.

Often we will write authorizes pn(k1, ks, 0) in predi-
catenotationto denote(k, ks, 0) € authorizespy. If ops
is a setof operationsand authorizes pn (k1, k2, 0) for all
o € ops, wewrite authorizes pn (k1, k2, 0ps).

When authorizes p (k1, ko, 0) is true, we saythatkey
k1 delegatesauthorizatiorfor operatioro to key ko in DN .
Thisis the centralquestiorto be queriedfrom adatabasef
certificatescalledtheauthorizationproblem

The authorization problem

In a databaseof certificates,doesa key k; delggate
authorizationfor operationo to anotherkey k-, i.e. is
authorizes pn (k1, k2, 0) truein thedelggationnetwork?

For example, in the network of Fig. 1,
authorizes(ki, kg, ) istrue,but authorizes (k1 , ke, w) and
authorizes(k1, k7,7) are not true becausethe delgyation
path through &k, is missing. It should be noted that the
two pathsdelegating the right » from %, to k¢ partially



overlap. In contrastto modelswhere certificatescorvey
identity insteadof authority(e.g.[11, 7]), independencef
the delegationpathsdoesnot affect the confidencdevel of
the conclusionsn our model.

Usually, the ideais thata clientis entitledto requesian
operationfrom asenerif thereexistsa chainof certificates
in whichtheseneritself authorizegheclientto thespecific
operation. In additionto the certificatechain, the sener
only needsts own authenticpublic key to verify theaccess
rights.

Theideaof minimality in Def. 4 is thatall tuplesin the
relation authorizes shouldhave an explicit reasonfor be-
ing there.A straightforwardconsequencef the minimality
is thatin orderfor atriple {k1, k2, 0) to bein the relation
authorizes, one of the Rules1 and 2 mustbe the reason.
Thatis, eitherk; = ko or thereis a certificateissuedby k;
suchthatall its subjectsauthorizek, for thesameoperation.

In addition, the minimality of authorizes meansthat
looping or infinite chainsof certificatesdo not addto the
relation. A consequences thatin orderto have effect, ary
path of delegation mustendin a certificatethat hasonly
a single subject. This is statedformally in the next theo-
rem. Although the theoremdoesnot dependon ary con-
ceptsotherthanthosepresentedso far and could thus be
proven here,the proof is delayedtill the endof Sec.2.4
wherewe have sometechnicallycorvenientresultsathand.

Theorem6 Let DN be a delggation network sudh that
authorizes pn (k1, ko, 0) for two keysk; # ke. Theeis
a certificatec in DN whoseonly subjects k-.

2.4 Subnetworks

Evenif the delegationnetwork is very large or infinite
in size,decisiongo grantaccessarebasedn finite subsets
of certificates. For this purpose we definethe conceptof
a subnetwork A subnetvork is a part of a delggationnet-
work thathassomeof the keys andcertificatesof the origi-
nal network sothatall the keys connectedo theremaining
certificatesarealsoretained.

Definition 7 (subnetwork) Let DN = (Keys, Certs,
Auths, Flow, auth) be a delegation network. DN’ =
(Keys', Certs', Auths', Flow', auth') is a subnetvork of
DN iff Keys' C Keys, Certs' C Certs, Auths' C Auths,
and Flow' and auth’ are restrictionsof Flow and auth,
respectivelyto Keys' and Certs', andthefollowing condi-
tion is satisfied:c € Certs' A ({k,c) € Flow V {c,k) €
Flow) = k € Keys'.

If DN' is a subnetvork of DN, we saythat DN is a
supernetworlof DN'.

The authorizatiorrelationin a subnetverk is naturallya
subsetof the relationfor a supernetwrk. This is because

therulesin Def. 4 cannotbe disabledby addingnew keys
andcertificatego thedelegationnetwork.

The next theoremis the basisfor mostof the following
theoryandfor developmentf decisiomalgorithms.It shavs
that we only needto considerfinite subsetsf certificates
whendecidingif therelationauthorizes py holdsfor apair
of keys. Theproofis particularlyinterestingoecausds first
partcontainsa constructiorof therelationauthorizes p N

Theorem8 Let DN be a deleggation network sudh that
authorizes pn (k1, k2,0). DN hasa finite acyclic subnet-
work DN’ = (Keys', Certs', Auths, Flow', auth’) whee
authorizes pn' (k1, k2, 0) and,furthermoe,

1. authorizes pn: (k, k2, 0) is true for all the keysk €
Keys',

2. ko istheonlykey in Keys' thatis notan issuerof any
certificatein Certs’, and

3. o € auth'(c) forall ¢ € Certs'.

Proof (including construction of authorizes) In thefirst
partof the proof we follow the flow relationfrom the sub-
ject keys (in particularfrom k) towardsissuersandget a
subseDf certificatesvherethe maximumlengthof delega-
tion pathss boundedln thesecondgart,wefollow theflow
from k; towardsk, andremoveall but oneof thealternatie
delegationpaths. Theresultis afinite subnetvork with the
desiredoroperties.

We first consideran arbitrary operationo anda subject
key k andseewhich keysdelegatetheright for theoperation
o to thekey k. Thesekeys andthe certificatesdelegating
theright to o will becollectedin indexedsetsby increasing
lengthof delggationpathsto k. As aninitial step,definethe
sets

Certsy® = 0,
Keysy” = {k},
Ay = {(k, k,0)}.
Then,fori =1,2,..., define
Certsf’o = {c| o € auth(c) A
(VE': ({c, k") € Flow = k' € U;ZOKeys?’o)
Ak, c) € Flow = k' & Keysf;"l))},
Keyst® = {k}U{K' | c € Certs® A (K, ¢c) € Flow},
AP? = {(K',k,0) | k' € Keysi°}.
Correspondingcumulative collectionsof keys and certifi-
catesare
Certs;™* = UL, Certst®,
Keys;™* = UL Keys™®.

We shaw by inductionthat Keys*° and Certs;*° can-
not form infinite pathsof keys andcertificates.Basisstep:
Themaximumpathlengthof Flow in Keys;*° U Certs;*°
is 0. This is becauseaall pathscontainonly a single key.



Induction step: If the maximum path length of Flow in
Keys:*°U Certs;*° isfinite, thenin Keys s U Certs;yy
it is extendedat mostby 2. Infinite pathscannotbe formed
for two reasonsFirstly, the extensiongo pathsleadto new
keysthatwerenotin the previousset. Hence Joopscannot
beformedwith earlierkeys andcertificates The extensions
only increaselength of existing paths. Secondly the ex-
tensionsthemseles cannotconnectto eachotherforming
loopsor infinite pathsbecausehe subjectsof the new cer
tificatesareall in the earliersets. Only the issueris in the
new set. By induction,the maximumpathlengthfor Flow
in Keys:™° U Certs:** is finite meaningalsothatloopsdo
notexist for any ¢ > 0.

Moreover, (K, k,0) € A% for all k' € Keys)* for all
1 =0,1,2,..., andAf’o C authorizespy. In the basis
stepthis follows from Rule 1 of Def. 4 andlaterfrom Rule
2 of the samedefinition.

We now constructauthorizes py asaunion of the sets
Af’o. Denotethe setof operation®f DN by Ops andlet

A= Uocops UkeKeys Uz?io Ai-c’o.

Basedon the results of the previous paragraph,A C

authorizespn . Also, A is closedin DN with respecto the
Rulesof Def. 4. Rulelis satisfiedbecaus&oc ops Ure Keys

Ake c A, For Rule 2, considerary (k},c) € Flow for

which {c, k) € Flow implies (k,k},0) € A. Sincethe
numberof subjectsk of ¢ is finite, thereis somefinite ¢ so
thatk € Keys'* for all the subjectsk. If k| € Keys'™"°

then (k| , k), 0) € Aflz’o. If & ¢ Keysflz’o it follows

from our constructionof the setsthat k] € Keysf'j’f
(K1, k), 0) € Af};l" In bothcases{k;, k3, 0) € A. Hence,
A fulfills the two closurerules of authorizespy. Since
we alsoknow that A C authorizes py, the minimality of
authorizesp implies A = quthorizespy .

Note that the issuersand subjectsof all certificatesof
Certs;*° arein Keys;*°. Moreover, the setsabove are
constructedn suchaway thatfor all &’ € Keysf"’ except
for k, thereis a certificateissuedby k in Certs!”° andthe
subjectf thecertificateareall in Keys;*,’. Thus,for all ,
kistheonly key in Keys;‘k"’ thatis notanissuerof ary cer
tificatein Certs;*°, andall certificatesof Certs;* allow
operatioro. Thesepropertieswill beretainedn thefurther
reducedsetsof certificatedn the secondoartof the proof.

Since {k1, k2,0) € A, we have k; € Keysz"’ and
(k1,k2,0) € A for somej € {0,1,2,...}. Thisjisthe
maximumlengthof delegationpathsthatneedto be consid-
eredfor authorizes pn(k1, k2, 0) to befoundtrue.

We now getto the secondpartof the proof. The subnet-
work DN’ will beformedby following thedelegationpaths
in Keys">° U Certs"° from thekey k; towardsthesub-
jects. On theway, we selectoneof all alternatve waysin
which therightsreachthe key k. As the pathlengthsare

and
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finitely boundedthe choserpathswill terminateat k- after
afinite numberof steps.

Let Keys; = {ki} andlet Certs; = {c} beasingleton
containing(an arbitrarily chosen)ne of the certificatesn
Certs;@"’ suchthat(ky, c) € Flow. Accordingto the defi-
nition of Keys;“’o, atleastonesuchc mustexist. Otherwise,
k1 would notbein Keys' .

Fori=j—1,j—2,...,1,0define:

Keys, = {k | (c,k) € Flow Ac € Certs;;1}.
Also, build the set Certs; by choosingfor eachk € Keys,
one certificatec € Certsf“’ suchthat (k,c) € Flow.
Again, a c like that mustexist becausetherwisek would
notbein Keys"*°.

The finite and agyclic subnetvork DN’ is con-
structedas follows. Denote Keys' U{ZOKeysj and

Certs' = UJ_,Certs;. The delegationnetwork DN’
(Keys', Certs', Auths, Flow', auth') where Flow' and
auth' arerestrictionsof Flow and auth (respectiely) to
Keys' U Certs', is a subnetvork of DN becausehe is-
suerand the subjectsof eachcertificateof Certs; arein
Keys; U Keys,_; andthusin Keys'.

We now show that DN’ is agyclic andfinite. Sincethe
pathsof Flow in Keys' U Certs' area subsetf the paths
in Keys;-‘k"’ U Certs:*°, the pathslengthsareboundecby
afinite number;j alsoin DN'. Hence the pathsareagyclic.
The numberof keys andcertificatesin Keys; U Certs; is
finite (actually thereis one key and one certificate). For
eachindexi = j — 1,5 — 2,..., thenumberof keys and
certificatesin Keys; U Certs; remainsfinite becausehe
numberof subjectsfor eachcertificateis finite. Sincethe
lengthsof the pathsarefinite, the total numberof keys and
certificateschosento DN is finite. Thus, DN is agyclic
andfinite, assuggesteth thetheorem.

On eachlevel of the construction, ji—1,7j —
2,...,1,0, Keys; and Certs; are non-emptybecauseof
theway in which Keys"° and Certs"** wereconstructed
guaranteethatall certificatesof Certs">° have subjectsn
Keys:*2°. Thus,Keys, = {k2} C Keys'.

We shav by induction that authorizespn: (k, k2, 0)
for all Kk € Keys'. The basisstep: for the single
key ko € Keys,, authorizespn(ka, k2, 0) follows from
Rule 1 of Def. 4. The induction step: assumethat
authorizespn (k,ka,0) for all k € Keys,. The sets
Certsfj’f and Keys"'° were specifically constructedso

i+1
thatall k € Keys>y issueacertificatein Certs;?;” andall

i+1
c € Certsi>y +k2:0 Whenwe above

have subjectsn Keys;
chosesomeof thesekeysto Keys; and Keys,,, andsome
certificatesto Certs;11, this wasdonein sucha way that
all keys of Keys; , still issuea certificatein Certs;;; and
all subjectsof this certificateare still in Keys;. By Rule
2 of Def. 4 it follows that authorizes pn: (k, k2, 0) for all



k € Keys;,,. By induction, authorizes pn: (k, k2, 0) for
all k € Keys'. This sufficesto shav Claim 1 of thetheo-
rem. Naturallyalsoauthorizes pn: (k1, k2, 0).

Theconstructiorguaranteedirectly thatkeys otherthan
ky in Keys' areissuersof certificatesin Certs’. Key ks
cannotbe the issuerof ary certificate,becauseahe issuers
of new certificatesto Certs">° arerequirednot to be in
the previous sets Keys;*3°, andky € Keys;*>° for all
1=20,1,2,.... Thus,Claim 2 holdsfor DN".

Finally, only certificatesc for which o € auth’(c) were
choserto Certs;kZ"’ andconsequentlyo Certs’. Thiscon-

cludesthe proof of Claim 3 andof theentireTheorem3. O

The above theoremis consequencef the requirement
for the subjectsetof a single certificateto be finite. If we
would allow a certificateto have aninfinite numberof sub-
jects,thefinitenessof the subnetverk in the above theorem
would not hold. It is interestingto notethatthe absencef
infinite length pathscould still be proven. In implementa-
tions,we are ,however, interestedn delgyationthatdepends
only on afinite numberof certificates.

Onefurther detail to noteis that the reflexive transitive
closureof theflow relationin anasymmetricelegationnet-
work is a partialorderonthe keys andcertificates.

Next we will prove Theorem6. Thetheoremitself is a
consequencef therequirementor the authorizes relation
to be minimal andit doesnot involve subnetwarksis any
way. Neverthelesswe give the proofatthis point of discus-
sionbecausd is easielto presentvith thehelpof Theorem
8.

Proof of Theorem®6 Let DN beadelegationnetwork such
that authorizes pn (k1, k2, 0) for two keys k; # ko. As-
sumethatall certificatesof DN that have k; asa subject
alsohave atleastoneothersubject.

Accordingto Theorem8, DN hasa finite, agyclic sub-
network DN’ (Keys', Certs', Auths', Flow', auth'),
wherealso authorizes pn (k1, k2, 0). A finite andagyclic
subnetvork hasno infinite chainsof keys and certificates
suchthat(ki, c1), (c1, k), (K3, 65), (¢, k3), - . . € Flow.

Sincethe certificatesin DN’ are a subsetof thosein
DN, andtheirsubjectsarepresered,it followsthatall cer
tificatesin DN’ thathave k, asasubjectalsohave atleast
oneothersubject.

We choosek; = ki. Since authorizespn (k1, k2, 0)
andk; # ko, theremustexist a certificatec] issuedby
k1 for all of whosesubjectsk, authorizespn(k,k2,0).
By our assumption,one of the subjectsis not equal to
k>. We choosethis subjectas k. We already have
authorizespn (kh, ko, 0) and k) # ko sowe take k) as
the next startingpoint andfind a certificatec, andsubject
k%. Continuingthis way, we get an infinite chainof keys
and certificateswherea subjectof the preciouscertificate
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Figure 2. A delegation tree

alwaysissuesthe next certificate. But suchchainscannot
exist in an agyclic delggationnetwork. Thus,the assump-
tion is falseandthereis a certificatein DN’ andin DN
whoseonly subjects k5. O

3 Tree-basedformulation of the authoriza-
tion problem

In this section,we will reformulatethe authorization
problemwith graphterminology If akey k; delegatesac-
cessrightsto anotherkey ko, atreeof keys andcertificates
canbeformedsuchthatk; is attheroot of thetreeandall
branchendto k.. Thetree-basedepresentationf delega-
tion will helpusto visualizethe theoryandto make proofs
moreintuitive (seeSec.4), andit hasplayeda key role in
developmentof graph-searcllgorithmsfor delegationde-
cisionsin [2].

We formally definethetreein Sec.3.1andshaw in Sec.
3.2thatsuchatreeexistsif andonly if the authorizes re-
lation holds.

3.1 Delegationtree

Figure 2 shawvs how part of the delegation network of
Fig. 1 canbe unfoldedinto atree. This treeshavs how the
right to operationr is delegatedirom k; to ks.

Formally, a tree (Nodes, Arcs) is an agyclic directed
graphformed by a setof nodesNodes andarcs Arcs C
Nodes x Nodes connectingthem. If {(n,n'y € Arcs, the
noden is calledthe parentof n' andr' is calleda child of
n. Thereis auniquenode,calledroot node with no parent.
All othernodeshave a uniqueparent. The nodeswith no
childrenare calledleaf nodes A treeis finite if the num-
ber of nodesand arcsis finite. The depthof a treeis the
maximumpathlengthfrom aleafto theroot.

For a setof nodesNodes anda function h, we denote
h(Nodes) = {h(n) | n € Nodes}.

An annotatiorof thenodesf atreewith keysandcertifi-
catesof the network canbeformalizedasa homomorphism
from thetreeto the delegationnetwork.

Definition 9 (homomorphism from tree to delegation
network) LetDN = (Keys, Certs, Auths, Flow, auth) be
a delegation networkand ' = (Nodes, Arcs) a tree A



functionh : Nodes — Keys U Certs is ahomomorphism
fromDT to DN iff for all nodesn, n' € Nodes thefollow-
ing hold:

1. if {n,n') € Arcs then(h(n), h(n')) € Flow,

2. if h(n) € Certs, thereis exactlyonenoden’ sud that
(h(n'), h(n)) € Flow,

3. if h(n) € Certs, thenh is a bijectionfromthe nodes
n' sud that (n,n') € Ares to the keys k sudh that
(h(n), k) € Flow.

According to the definition, A is simply a homomor
phismfrom atreeto a bipartitegraphwherethelocal struc-
ture aroundone of the partitions,certificatesjs presered.
We requirea nodecorrespondingo a certificateto have a
parentcorrespondingo theissuerandchildrenwith 1-1cor-
respondenceo the subjectsof the certificate. (The latter
requirements not essentiafor our theorybut it makesthe
concepif homomorphismmoreintuitive.)

In Conditions2 and3 of theabove definition,we implic-
ity assumethat if a nodecorresponddo a certificate, its
parentandchild nodescorrespondkeys. This follows from
Condition1 andthebipartitestructureof thedelegationnet-
work. The corversealsoholds,i.e. parentsand children
of nodescorrespondingo keys correspondo certificates.
Moreover, the root andthe leaf nodesof thetreemapinto
keys. This is becausevery certificatemusthave anissuer
anda subjectandthey arepreseredin thetree.

Definition 10 (delegationtree) Let DN be a delegation
network. We saythat DT = (Nodes, Arcs, h) is a dele-
gationtreein DN iff (Nodes, Arcs) is afinite treeandh is
a homomorphisnfrom(Nodes, Arcs) to DN.

Whencertificateshave only onesubjectdelegationtrees
reduceinto simplepathsin thegraph.Whentherearemore
subjectsthe pathsbranchinto trees.

3.2 Treesand the authorization problem

We will show that the finite delegationtreessufiice to
completelycharacterizeéhe delegationof accessightsin a
delgyationnetwork. But beforewe canstatethe exactrela-
tion betweendelgyationtreesandthe authorizes relation,
we needthefollowing lemma.

Lemma 11 Let({Nodes, Arcs, h) be a deleyationtreein a
delegyationnetworkD N. Anodeis therootofaneven-depth
subteeiff h mapsit into a key. Also,a nodeis theroot of
anodd-depthsubteeiff A mapsit into a certificate

Proof We obsened earlier that all leaf nodesmap into
keys andthat the nodescorrespondingdo keys and certifi-
catesalternate.Fromthis, the lemmafollows by induction
onthedepthof thesubtrees. O

Finally, we arereadyto show thattheauthorizatiorprob-
lem canbeformulatedasa questiornon the existenceof del-
egationtrees.

Theorem12 Let DN = (Keys,Certs,Auths,Flow, auth)
be a delegation network, o an opemtion in DN, and
k1,ko € Keys. authorizespn(ki1,k2,0) is true iff there
exists a delgation tree DT = (Nodes, Arcs,h) in DN
sud that

1. for theuniqueroot noden of thetreg h(n) = ki,
2. for all leafnodesn of thetree h(n) = k2, and

3. for all nodesn € Nodes, if h(n) € Certs theno €
auth(h(n)).

Proof Wefirstshawv thattheexistenceof adelegationtree
impliestheauthorization.

Let DN = (Keys, Certs, Auths, Flow, auth) beadel-
egation network and DT = (Nodes, Arcs,h) a delega-
tion treein DN such that Conditions 1-3 of the theo-
rem are satisfied. Every node of the tree is the root of
a subtree. We will shav by induction on the depth of
subtreeshat authorizes pn(h(n), k2, 0) holdsfor all the
nodesn that are mappedinto keys by h. Basisstep: Let
n be a leaf nodeof DT. In thatcase,h(n) = ko and
authorizes pn (ko, ko, 0) by Condition1 of Def. 4. Thus,
the claim is true for all nodesthatarerootsof subtreesof
depthO.

Inductionstep:Assumethat authorizes pn (h(n), k2, 0)
for all nodesn that are roots of subtreesof even depth
smallerthan or equalto someeveni > 0. Letn be
the root of a subtreeof depths + 2. Lemmall shows
that n is mappedinto a key. Let n’ be a child node of
n. A child n' exists because + 2 > 0. The child is
mappednto a certificateh(n'), andits childreninto keys.
By Lemmal1, the childrenof n' arerootsof subtreesof
evendepth. This depthis ¢ or smaller Thereforethein-
duction hypothesismplies that for all the childrenn of
n', authorizespn (h(n"), k2,0). By Condition 3 of Def.
9, thereexist childrenof n' mappedby h onto all of the
subjectof h(n'). This meanghat authorizes pn (k, k2, 0)
for all the subjectsk of h(n'). Consequentlyby Condi-
tion 2 of Def. 4, authorizespn (k, k2, 0) wherek is the
issuerof h(n'). But by Condition 3 of Def. 9, the is-
sueris k = h(n). Thatis, authorizes pn(h(n), k2, 0) for
the root n of an arbitrary subtreeof depthi + 2. By in-
duction, authorizes pn (h(n), k2, 0) is truefor all nodesin
n € Nodes thatmapinto keys, alsofor the root nodethat
mapsinto k1. Henceauthorizespn(k1, ka,0). This suf-
ficesto provethe'if * directionof thetheorem.

Next, we shav that the authorizationimplies the exis-
tenceof adelegationtree.



Let DN (Keys, Certs, Auths, Flow, auth) be a
delegation network and authorizes(ky, ka2, 0) true. The-
orem 8 showved that DN has a finite agyclic subnet-
work DN’ = (Keys', Certs', Auths, Flow', auth') where
authorizes(k1, ko,0) for all k& € Keys'. In the finite
agyclic graphformedby the Flow' relationtherearenoin-
finite chains. We will constructthe finite deleggationtree
from thisrelationfrom rootdown.

Let Nodeso = {n_, } andlet Arcso = (. Assign
function h the value h(n_ ,) = k1. Fori = 1,2,...,
let Nodes; = {n;, .,n;,; | n € Nodes;_1 A (h(n),c) €
Flow A {(c,k) € Flow} wherethe nodesn;, . andn;, ;
arenew nodesnotin Nodes;_1. Sincethe new nodesare
namedafter their parent,the pathscannotjoin, anda tree
is formed. Let also Ares; = {(n,n;, ), (ny, ;07 1) |0 €
Nodes;—1 A (h(n),c) € Flow A {c,k) € Flow}. Thecon-
structionfollows certificatechainsin DN’ addingonekey—
certificatestepon eachiteration. Sincethe numberof keys
andcertificatesn DN isfinite andnoloopsexists,thecon-
structionmustcometo anendat someiterationafterwhich
Ares; and Keys,; areempty Let j betheindex of the last
roundwherekeys arefound. Thereis only a finite number
of nodedn all Nodes; becauseVodesy is finite and,on ev-
ery iteration,the numberof nodesattachedo eachone of
the previous nodesis limited by the finite numberof keys
andcertificatesn the network. ,

Let Nodes = U]_oNodes; and Arcs = Ul_jArcs;.
Thesesetsarealsofinite. Assignh thevaluesh(n;, .) = ¢
and h(ny, ) k for all n, .,n, , € Nodes. From
the way the nodeswere addedto the sets, it follows that
(Nodes, Arcs) is a tree,and h a homomorphisnfrom the
treeto DN'. Thisis becausahe nodesmappinginto cer
tificateshave oneparentmappinginto theirissueranda set
of childrencorrespondindo the subjectsof the certificate.
Thus,DT = (Nodes, Arcs, h) is adelegationtreein DN .

Therootof thetreeis n_ 1, thatis mappednto k; by h.
Hence Claim 1 of thetheoremholdsfor thetree DT'. Ac-
cordingto Theorem8 the subnetvark DN’ canbe selected
in sucha way thatthe only key thatis not anissuerof ary
certificatein DN is ko, andthatall certificatesn DN’ del-
egatethe operatioro. Theformermeanghatall leaf nodes
of theconstructedielegationtree DT mapinto k. Therea-
sonis thatour constructiorof the delegationtreeonly ends
atnodesthatmapinto a key andwhosecorrespondingey
doesnotissueary certificatesn DN'. (Def. 1 requiresall
certificatesto have at leastone subject). Thus, Claim 2 of
the theoremholdsfor thetree DT'. Sinceall nodesof the
thetree DT mapinto somekey or certificatein DN, the
latter meansthat the nodescan only mapinto certificates
thatdelegatetheright to operationo. Thus,alsoClaim 3 of
thetheoremholds. O

The treesarefinite becauseave restrictedthe numberof
subjectson a certificateto finite. The sametheoremwould
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Figure 3. Certificate reduction

holdfor infinite setsof subjectandinfinite trees.Thefinite-
nessin the definition of delegationtree (Def. 10) could be
replacedby arequirementhatall pathsfrom theroot of the
treeto theleafshavefinite length.In realsystemshowever,
finite setsof keys aremorecommon,andwe usethe finite
treesasa basisfor terminatingalgorithms.

4 Certificate reduction

The SPKI draft document[5] presentsa certificatere-
ductiontechniquefor authorizationdecisions. (It is called
5-tuplereductionbecausehe SPKI certificatesare defined
as 5-tuples). At the time being, the reductionis defined
only for certificateswith a singlesubjectout we presenbur
own definitionthatwe believe to corvey theideaaccurately
alsofor joint-delegationcertificates.In fact, our definition
is simplerbecauseve do not needto distinguishbetween
certificateswith oneandmoresubjects.

Sec.4.1containsthe definitionandanillustration of the
reductiontechnique.Sec.4.2 shows rigorouslythat certifi-
catereductionis a correctandadequateechniquefor mak-
ing authorizatiordecisionsn our generaframeawork.

4.1 Definition of certificate reduction

In certificatereduction,two certificatesare memgedinto
one. Fig. 3 illustratesthe reductionprocess.The reduced
certificatehasthe samessuerasthefirst of theoriginal cer
tificatesand the combinedsubjectsfrom both certificates,
except for the one key that issuedthe secondcertificate.
This way, two certificatesin a chain can be reducedinto
one.By repeatinghe processary setof certificatescanbe
combinednto one.

Definition 13 (certificate reduction) LetDN = (Keys,
Certs, Auths, Flow, auth) be a delegation network. Dele-
gationnetwork DN’ = (Keys, Certs', Auths, Flow' ,auth’)
is obtainedfrom DN by reducingcertificatec; with co, iff
Certs' = Certs U {c} whee c is a new certificatenot in
Certs and

Flow' ={{k,c) | (k,c1) € Flow} U
{{c, k) | {c2, k) € Flow} U
{{c,k) | (c1,k) € Flow A (k,c2) & Flow}.



It is importantto note that reductionof ¢; with ¢o dif-
fersfrom the reductionof ¢, with ¢;. Whenthe namesof
the reducedcertificatesneednot be explicitly mentioned,
we simply saythat DN’ is obtainedby a single certificate
reductionfrom DN.

The definition allows the reductionof any two certifi-
cates,even whenthey do not form a chain. In practice,
however, reductionsare usefulonly whenthe issuerof ¢,
is asubjectof ¢;.

4.2 Soundnessand completenes®f certificate re-
duction

Soundnesf certificate reduction meansthat the re-
ducedcertificatesdo nothave ary effectontheauthorizes
relationin the delgyation network. Completenessneans
thatthe reductioncanbe usedasa way of decidingthe au-
thorizationproblem. Thatis, it is possibleto reduceary
chainof delegationinto asinglecertificate.Thenext lemma
will beessentiain proving the soundness.

Lemmal4 Let DN' be a delggation network obtained
by a single certificate reduction from DN.  Then,
authorizespn' C authorizespy.

Proof LetDN'beobtainedrom DN by reducingcertifi-
catec; with ¢, wherebyareducedcertificatec’ is obtained.
Assumethat authorizes pn- (k1, k2, 0). Theorem12 says
thatthereexist adelegationtree DT’ = (Nodes', Arcs', h')
in DN' satisfyingthe threeclaimsof thetheorem.

Therearethreepossiblecases(1) no nodesof DT map
into ¢’, (2) oneor morenodesmapinto ¢’ andtheissuerof
¢o is asubjectof ¢;, and(3) oneor morenodesmapinto ¢
andtheissuerof ¢, is notasubjectof ¢;.

Case(1): If noneof the nodesof the tree mapsinto ¢/,
the treeis alsoa delgyationtreefor DN andby Theorem
12, authorizespn (k1, k2, 0).

Case(2): The tree containsone or more nodesthat
map into the reducedcertificate¢’. Let n’ be one of
the nodes. In that casethere exist also nodesn},, and
n;ub’i, i = 1,...,1, mappingonto the issuerand the
subjectsof ¢’. We assumealso that the issuerk of cs
is a subjectof ¢;. We constructa nev delegation tree
by removing n’ and addingtwo new certificatenodesn;,
ny andone key nodens. DT = (Nodes, Arcs, h) and
Nodes = (Nodes' \ {n'}) U {n1,ns2,n3}. The valueof
h is equalto &' for all nodesfrom DT', andfor the new
nodes,h(ni) = ¢1, h(nz) = c2 andh(ns) = k, wherek
is theissuerof ¢;. Denotethe setof keys of DN by Keys.
Thenew setof arcsis
Arcs = ((Ares"\ (Keys x n')) \ (n' x Keys) U

{(nigss n1){n1,n3), (ng, na2)} U

{(n1, ) |6 € {1 1} A er, B(ngys,s)) € Flow} U

{{n2, M) 1§ € {10} Ao, By 0)) € Flow}.
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This constructiongives a delggationtreein DN that still
fulfills the three claims of Theorem12. (The root and
the leafs of the tree remain unchanged.) Consequently
authorizes pn (k1, k2, 0).

Case(3): We still have to considerthe possibility that
theissuerof ¢, is nota subjectof ¢;. In thatcasethe nen
certificatec’ is like ¢; only with extendedsetof subjects.
For all thenodesn for which b'(n) = ¢’ in DT', we define
h(n) = ¢; in DT. Sincethe subjectsof ¢’ area superset
of the subjectsof ¢;, n haschildrenmappingonto all the
subjectsof ¢;. Thechildrenof n thatdo not mapinto sub-
jectsof ¢; andthesubtreesinderthesechildrenareremoved
from thetree. By this constructionye geta delegationtree
in DN for whichthethreeclaimsof Theoreml2 still hold.
Therefore authorizes pn (k1, ka2, 0).

Hence thetheoremholdsin all cases. O

We now have the necessaryools for proving the main
resultof this section.

Theorem 15 (soundnessand completenesf certificate

reduction) Let DNy = (Keys, Certs, Auths, Flow, auth)

be a delgation network.  authorizespn(k1, k2,0)

iff there is a finite sequenceof delegation networks
DNy,DNy,DNs, ... ,DN, sut that DN, is obtained
from D N; by certificatereductionfori = 1, ... , [, andthat
there is a certificatec in DN, sudhthato € auth'(c) and
theissuerof ¢ is k; andtheonly subjectof ¢ is k.

Proof

If DN; has the certificate ¢ describedin the theo-
rem, then by applying conditions 1 and 2 of Def. 4,
we get authorizespn,(k1,k2,0). This must be true
alsoin the original network DN, because€rom Lemma
14 it follows that authorizespn,,, C authorizespn;,
for 4 1,...,1 and consequentlyauthorizespn, C
authorizes pn,. Hence thereductionmethodgivessound
results.

Let DN be a delgation network where
authorizespn (ki1,k2,0). We needto shav that there
always is a finite sequenceof certificate reductionsthat
producethe certificatec.

Theoreml?2 saysthatthereexistsafinite delggationtree
DTp in DNy suchthatthethreeclaimsof thesametheorem
aresatisfied We claimthateither(1) thereis anodemapped
into a certificatein DT suchthatits parentis mappednto
k1 andits only subjectinto k, andthe certificateauthorizes
the operationo, or (2) therearetwo nodesn; andns in
DT, suchthatthe parentof n; is a child of ny. Assume
that alternatve (1) is not true. Then, selectoneleaf node
nieqf Of thetree,andthe parentn of this node.n mapsinto
acertificate.If n hasachildn’ otherthann,s, thischild is
notmappednto k, andthusis notaleafandhasachild n”



itself. In thatcasewe canchooser; = n andny = n'. On
theotherhand,if n hasonly n;..; asachild, its parentnode
cannotbetheroot,becaus¢hatwouldbecasg1). Thus,the
parentrn’ of n hasaparentrn' andwe canchoosen; = n"
andns = n. This shovsthatoneof thealternatves(1) and
(2) holds.

We now reducepairsof certificatesstepby stepandre-
place correspondingwo nodesin the tree by new nodes
correspondingo thereducectertificate. Thisway, we geta
treethatshrinksin every reduction.

We startfrom D N, andits delegationtree DT, andfor
i = 0,1,2,..., dothefollowing. If alternatve (1) does
not hold but is true (2) instead we canreducethe two cer
tificatesh(ny) andh(n2) wheretheissuerof the latteris a
subjectof the former. The reductionresultsin a new dele-
gationnetwork DN;; with anaddedcertificatecye,, . We
constructa delegationtree DT;; by removing the nodes
ny, ng and the node nz correspondingto the issuer of
h(n2) from the treeandby insertinga new noden ¢, in-
stead.n,,, hastheissuerof n;, andall thechildrenof n;
andns exceptfor ng. We alsoassignh(nnew) = Cnew-
The resultingtree DT}, is a delegationtreein DNy,
becausehe newv node correspondgo the reducedcertifi-
cate. Furthermore,DT;,, alsofulfills the threeclaims of
Theorem12 since the root and leafs do not changeand
0 € auth(Cpew) = auth(h(ny)) N auth(h(ns)).

This way we get a sequenceof delgyation net-
works DNy, DNy;,DN,,... and trees in them
DTy, DT,,DTs,.... Since DTy is finite and in ev-
ery reductiontwo nodesof the previous tree are replaced
with onein the next tree, the processhasto end at some
point in alternatve (2) becomingfalse. This happensat
latestwhen thereis only once certificatenodeleft in the
tree. Hence for somel > 0 thealternatve (1) will betrue
andthedesiredc existsin D N,.

Whenalternatve (1) holdsin thetree D N;, we have the
desiredresult. Thatis, thereis a singlecertificatec in DT;
asdescribedn thetheoremabove. O

5 Thresholdcertificates

In this sectionwe describecertificateswhere a suffi-
ciently large subsetof the subjectsof a certificatecandel-
egateor usethe authoritygiven by it. Sec.5.1 introduces
thresholdvaluesand Sec.5.2 describeshow thresholdcer
tificatescan be mademore flexible by dividing theminto
subcertificates.

5.1 (k,n) schemes

A (k,n)-thresholdcertificateis consideredsalid if & of
its n subjectsco-operatén usingor further deleggatingthe

accesgights. Joint-delgationcertificateswith & subjects
correspondo (k, k)-thresholdcertificates. The threshold
valueis simply a corvenientshort-handnotationfor a set
of joint-delggationswhereall subjectsare requiredto co-

operate. Thatis, a (k,n)-thresholdcertificatecan be ex-

pandedo (}) joint-delegationcertificateswith £ subjectsn

each.Therefore we have not complicatedhetheoryabove

with thresholdvalues.

5.2 Openthresholdcertificates

In the SPKI-typejoint-delegationand thresholdcertifi-
catedescribedbore,thesetof subjectkeys hasto befixed
atthetime of certificatecreation. This is becausehe keys
areexplicitly listedin thecertificate.lt is, however, possible
to leave the setof subjectopen.We cangive eachsubjecta
separateertificate(subcertificatg thatincludesthe thresh-
old value and a unique identifier of the certificategroup.
A setof certificatesis consideredvalid only if the thresh-
old numberof subcertificatesvith the samegroup identi-
fier are presentedogether This way, the setof subjectss
openfor lateradditions. Moreover, the division of the cer
tificatesinto several subcertificatesaddsflexibility to cer
tificate managemenandthe holdersof the certificatescan
remainanorymousuntil they wantto further delegatetheir
shareof theaccessights. We call thiskind of schemeopen
thresholdcertificates The propertiesof the openthreshold
certificateanake themanattractive alternatve to fixed sub-
jectssets.Thisis especiallysobecausét appearshatmost
implementationsvould be simplified by the transition.

In this section,we will shav thatopenthresholdcertifi-
catescansimulatethefunctionality of normalthresholdand
joint-delegationcertificatesandthatthe securityof the sys-
temis notendangereth thetransformation.

First, openthresholdcertificatesmust be formally de-
fined. We do this by adding“dummy” operationsto the
delegationnetwork andby redefiningthe authorizes rela-
tion.

Definition 16 (open-threshold-typeauthorizations)
Open-threshold-typauthorizationsare triples (id, [, a) €
Ids x Zv x Auths whee Ids is a setof identifiers, Z*
are positiveintegers called thresholdvaluesand Auths are
set-typeauthorizations.

Theauthorizationsof the form (id, 1, a) with any value
of id are identifiedwith eadh otherfor everya andthe sym-
bol a is usedto representhem.

The set of operations for a delegation network with
open-threshold-typauthorizationsOAwuths is definedas
Ops = U{a | (id,l,a) € OAuths}. Thenew fieldsid and!
in thecertificatesareusedto corvey informationaboutjoint
delgyationandthefield a givesthe setoperationgor which
rightsarebeingdelegated.



We needto definethe authorizes relationfor the new
typeof authorizations.

Definition 17 (authorizes relation) LetDN = (Keys,

Certs, OAuths, Flow, auth) be a delgation network
wheee the authorizationsare open-theshold-type De-
note by Ops the opemtions of DN. The relation
authorizespn C Keys x Keys x Ops isthesmallesthree-
placerelationsud that

1.if k € Keys and o € Ops, then (k,k,o)
authorizespy, and

€

2. if for someid € Ids, | € Z* andk, € Keys
there exist at least! pairs of keys k£ and certificates
csudthat(k, ka2, 0) € authorizespy, {c, k) € Flow,
(k1,¢) € Flow and auth(c) = (id,l,a) whero € a,
then(k:, k2, 0) € authorizespn.

In practice, there should be a single thresholdvalue
matchingeachidentifierandonly onekey shouldissuecer
tificateswith a givenidentifier Sincetheserulescannotbe
enforcedin a distributed systemof issuers,the definition
above treatscertificateswith equalidentifier but differing
thresholdvalue or issuerasbelongingto differentgroups,
just asif they haddifferentidentifiers. The equality of is-
suersandthresholdvaluesmustalsobe checled by imple-
mentations.

Finally, we are ableto give a transformationfrom del-
egationnetworks with joint-delegationor thresholdcertifi-
cateso oneswith openthresholdcertificates Theresulting
network simulatesa joint-delegation certificateby issuing
to all subjectsseparatecertificatesthat containa common
identifier.

Definition 18 (transformation Open) Let DN =(Keys,
Certs, Auths, Flow, auth) be a delegation network with
set-typecertificates.Open(DN) = (Keys, Certs' ,O Auths,
Flow', auth') is a delegationnetworkdefinedby

Certs' ={cl., | c € Certs A {c, k) € Flow},

Flow' = {(K',c.;) | ¢, € Certs' A (k',c) € Flow} U

{{ctrr k) | ¢t € Certs'},

OAuths = Certs x Z x Auths.
Forall ¢, ;, € Certs',auth'(c,, ;) (c,1, auth(c)) whee
1 is thenumberof subjectof the certificatec.

It shouldbe carefully notedthatthe certificatesc,, , are
just plain itemsin the certificateset. In implementations,
they will not containary identification of the original ¢
and k. The new authorizationson the other hand, have
anexplicit field containingthe nameof the original certifi-
cateor otheruniqueidentifier for the group of certificates
in Open(DN) thatis derived from onecertificatein DN.
Sincethe original certificatenamesdo not have ary struc-
ture and they are forgottenin the transformationprocess,
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thisfield doesnot carryary hiddenknowledgeof the struc-
ture of the original network, exceptfor groupingthe nen
certificatesaccordingto their origin.

Wewill shav thatthetransformatiorOpen preseresthe
authorizes relation. Thismeanghattheopenthresholdcer
tificatescanexpressary kind of deleggationthatthe set-type
authorizationgould.

Theorem 19 Let DN beadelegyationnetworkwith set-type
authorizations.Then,
authorizespN = authorizes open(DN)-

Proof Let DN (Keys, Certs, Auths, Flow, auth)
be a delegation network with set-typeauthorizationsand
let Open(DN) = (Keys, Certs', Flow', OAuths, auth').
We noticethat a certificatein DN correspondso a setof
certificatesin Open(DN). This setis the certificatesthat
werenamedc], , for the subjectsk of c.

If we considerthe authorizes relationsin the two net-
works,we seethatDefs.4 and17 bothdefineauthorizes as
aclosureof thesetdefinedby Rule1, onwhichthetwo def-
initions agree with respecto Rule 2, which differsin the
definitions. We will compareRules2 andseethatthey ac-
tually areequivalent. Assumethatauthorizespn (k, k2, 0)
andauthorizesopen(pny(k, k2, 0) for all keys k in some
setK.

Assumealsothat(k;,c) € Flow, thato € auth(c) and
thatall the keys k for which (¢, k) € Flow arein K. The
ideaof the assumptions that the conditionsof Rule 2 of
Def. 4 are met. By Def. 18, the numbern of certificates
correspondindo ¢ in Open(DN) is equalto the numberof
subjectf c¢. Thisn is alsothethresholdnumbervisible in
theauthorization®f all then the certificates Then certifi-
cateshave all k; asissuerandthe subjectsof ¢ assubjects.
Sinceall thesesubjectsarein K, the conditionslisted in
Rule2 of Def. 17 arealsomet.

Ontheotherhand,assumehatin Open(DN) for some
id € Ids andn € Z7 thereexist at leastn pairsof cer
tificatesc andkeys k € K suchthat (k1,c) € Flow',
(¢, k) € Flow' andauth'(c) = (id,n,a) whereo € a. This
assumptiorhasthe meaningthat the conditionsof Rule 2
of Def. 17 are met. Again, Def. 18 requiresthat thereis
at leastonecertificatein DN with the sameissuerk; and
the samen subjects.Thereasonis thatthe valuesof id in
Open(DN) uniquelyidentify a groupof certificatescorre-
spondingto one certificatein DN. Sinceall the subjects
k arein K, the conditionslisted in Rule 2 of Def. 4 are
fulfilled.

Hence,Rule 2 in oneof thedefinitionsis applicableto a
key k, if andonly if it is applicablein the otherdefinition.
Astheclosurerulesareequalandthestartingsetsareequal,
theresultingclosuresarealsoequal. O



We will denotethe issuersof a set of certificatesby
issuers(C) = {k | c€ C A {k,c) € Flow}.

Next we wantto shav thatadditionandremoval of cer
tificatesin DN canbesimulatecdby additionandremoval of
certificatesy the samessuersn Open(DN). This proves
thatthetransformationOpen preseresthe functionality of
thedelggationnetwork.

Theorem 20 Let DN; be a delegation networkwith cer-
tificates Certs; and with set-typeauthorizationsand let
DN, with certificates Certs; be its subnetwork. De-
note the certificatesof Open(DN;) by Certs; and of
Open(DN>) by Certsy. Then, Open(DNs) is a subnet-
work of Open(DNy), and

issuers(Certsy \ Certsy) = issuers(Certsy \ Certs,).

Proof ThatOpen(DN>) is asubnetvark of Open(DN;)
is adirectconsequencef themonotonicnatureof thetrans-
formation Open. Addedcertificatesn DN resultin added
certificatesn Open(DN). Theissuersof the addedcertifi-
catesarealsothesame. d

In orderto seethatthe transformatioris securewe still
mustshaw thatary additionsto the authorizes relationthat
canbeachieredby a setof keysin Open(DN) couldalso
be causedby the samesetof keysin DN. Whenissuing
new accessightsin Open(DN) canbe simulatedin DN
by the sameissuerswe know thatthe transformatiordoes
notendangetheaccesgontrolpolicy.

Theorem21 Let DN; be a delggation networkwith set-
typeauthorizationsand certificatesCerts;, and denotethe
certificatesof DN, = Open(DN;) by Certss. Let DN3
be a supernetworlof DN, with the sameset of keys and
authorizations.Then,DN; hasa supernetworkD N, with
certificatesCerts, sud that

authorizes pn, = authorizespy, and

issuers(Certsy \ Certsy) = issuers(Certss \ Certss).

Proof Wefirstincludein DN, all thecertificatesof DV;.
Let thenC = Certss \ Certss be the setof addedcer
tificatesin DNs. If auths(c) = (id,n,a) for a certificate
c € C, thenwe addto DN, a certificatefor every setof n
certificatesn D N3 whoseidentifieris id, thresholdvaluen
andissuerthe sameasthat of ¢. The subjectsetsof these

certificatesareformedby the subjectsof then certificates.

Clearly, theissuersof the certificatesCertss \ Certs, will
bethesamekeys astheissuersof thecertificatesC.

If we now computeOpen(DNy), the resultis almost
equalto DN3. One differenceis that the identifiers of
certificategroupsmay have changedandthat somegroups
may have beenduplicated. Another differenceis that if
new certificateswere addedwith an identifier alreadyex-
isting in DN3 thus exceedingthe thresholdvalue n as-
sociatedwith the identifier (this is a (k,n) schemewith
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k < n), the subsetsof size n of the certificate group
have beenenumerateds groupsof sizen with new iden-
tifiers. The changef identifiersand duplicationof cer

tificates naturally doesnot affect the authorizes relation.
Also, thesplitting of certificategroupsto all theirthreshold-
size subsetdoesnot causeary changedo the situations
whereRule 2 of Def. 17 canbe applied. As in the proof
of Theorem19, closure of the same base set with re-

spectto the samerule resultsin the sameauthorizes re-

lationin DN3 andOpen(DNy). Hence authorizes pn,
authorizes open(pn,) = authorizespn, -

O

Similarly, it is possibleto shav that removal of certifi-
catesfrom Open(DN) can be simulatedor surpassedn
DN by removal of certificatesssuedby the samekeys [2].
This meanghatthe transformatiordoesnot openary nen
lines of denial-of-serviceattackby expiring or revoking of
certificates.

It shouldbe notedthat Theoremsl9—21andthe proofs
of this sectiondo not only shav propertiesof our proposed
certificateschemeThey canbegenerallyusedasguidelines
asto whatkind of propertiesmustalaysbe shovn when
we wantto replacea certificateschemeby anothemwithout
changinghesecurityproperties.

6 Conclusion

We presentedh formal modelof accesgight delegation
with certificates. The modelmadeit possibleto shav the
equivalenceof differenttechniquedfor accesscontrol de-
cisionsin distributed, key-orientedtrust managemensys-
tems.In particular we provedthe soundnesandcomplete-
nessof certificatereductionwith respecto the model. The
model can also be usedas a basisfor developmentof al-
gorithmsfor managingcertificatedatabasesMoreover, we
suggestedh simple way for representinghresholdcertifi-
catesandprovedit to have desiredfunctionaland security
properties.
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