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Abstract

Network inhibition is a denial-of-serviceattadk whele
the advesary attemptsto disconnectnetwork elements
by disabling a limited numberof communicatiorlinks or
nodes.We analyzea commorwvariation of networkinhibi-
tion whete the links haveinfinite capacityand the goal of
the attadker is to denyconnectiondrom a single serverto
as manyclients as possible The problemis definedfor-
mally and shownto be NP complete Neverthelesswe de-
velopa practical techniquefor network-inhibitionanalysis
basedon logic programmingwith stable-modesemantics.
Theanalysisscaleswell up to modeate-sizenetworks.The
resultsare a steptowards quantitativeanalysisof denial of
serviceandthey canbe appliedto the designof robustnet-
worktopolagies.

1 Intr oduction

Networkinhibition is a denial-of-serviceattack where
the attacler disablesnetwork elementsn orderto discon-
nectcommunicatingparties. We discussa variation of the
attackwherethe goalis to cut a single sener (or a group
of replicateseners)apartfrom asmary clientsaspossible.
This is a commonscenariofor analysisbecausenostsys-
temshave only few mission-criticalservicesandthe analy-
sisis initiatedby theconcerrabouttheir availability. We as-
sumethenetwork to have adaptie routingandlinks with in-
finite capacitysothatanodeis fully connectedo thesener
aslong asatleasta singlegoodrouteexits.

Network inhibition is one of the rare instanceswhere
there are well-defined quantitatve measuredor security
againstdenial-of-serviceaattacks. The goal of this paperis
to addto this body of knowledgeandto shav that quanti-
tative measure®f robustnessanbe implementedn prac-
tice. We encodethe networks aslogic programsand use
ageneral-purposmodelfinder smodelg413] for evaluating
the seriousnessf theattacks.
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Most modelsof denialof servicedefinethe availability
formally andthen eitherattemptto prove that a particular
systemis fairin thepresencef any maliciousadwersarie®r
proposean accessontrol policiesthatguaranteg¢he avail-
ability underall circumstance$18, 1, 12]. Thesemodels
have beendesignedvith the multi-useroperatingsystemof
a single computerin mind. We arguethat a more fruitful
approactfor distributedsystemsuchasopencommunica-
tionsnetworksis to evaluatethe degradatiorof the services
asafunctionof thecostto theattacler. It shouldbepossible
to comparedegreesof securityevenif availability cannotbe
guaranteedinderall circumstancesThatway, the analysis
methodswill benefitreal communicationsystemssuchas
the Internetthatcannever be madeprovably secureagainst
denialof service.

Sec.2 overviews relatedwork. Sec.3 definesthe net-
works and attacksagainstthem. In Sec.4, the problemof
finding an optimal attackis shovn to be NP complete.The
following Sections5 and 6 shov how to encodethe net-
worksasa logic programsandhow to find optimal attacks
from the programs. Sec.8 reportson an implementation
andpracticalmodellingtechniquesThe generalprinciples
for quantitatve analysisof denial-of-serviceesistancere
summarizedn Sec.9. Sec.10 concludeghepaper

2 Background and relatedwork

Although inhibition attacks on communicationsnet-
worksarea computersecurityissue they have mostlybeen
studiedin graph-theoreticapapers. In the graph model
of a network, the edgesof the graph representcommu-
nicationslinks and the verticesof the graphare network
nodes. The edgesmay have capacitieghat limit the flow
of datathoughthem. Representinghe network asan ab-
stractmodelhasbeenadwantageousor the constructiorof
mathematicatheoriesandalgorithms.

An attackagainstthe network is definedasremoval of
edgedrom thegraphor reductionof their capacity In prac-
tice, oneshouldbe equallyworried aboutthe possibility of

[ 2000IEEE. Originally appearedn the proceeding®f the 13thIEEE ComputerSecurityFoundationdNorkshop.



verticeg(network nodespeingremoved. However, destruc-
tion of nodescanbereducedo attacksagainstinks to and
from them.

Thegoalof theattacler is to disconnectommunicating
partiesor, in somemodels,to reducethe maximaltransfer
capacityof betweenthem. In the time of widebandcom-
municationsand adaptve routing, ary single good route
betweentwo network nodesis often sufficient to carry all
high-priority traffic until the failed componenthave been
repaired.This is particularlytrue for military communica-
tionswherethe systemsaredesignedo be survivablewith
redundantapacityandstrict prioritiesfor critical data. The
reductionof capacitymight be moreseriousfor acommer
cial operatorof an opennetwork whosecustomerswill ex-
perienceadropin servicequality.

Naturally, anattacler with unboundedesourcesande-
featary network. We areinterestedn the caseswvherethe
attacler'sresourcesrelimited. The limitations arerepre-
sentedn the modelsby a costfor disablingeachcommuni-
cationlink (or node)anda fixedbudgetfor theattacks.The
maliciousadwersarywill, assumingit hasenoughknowl-
edgeof the network structure,useits resourcesn a way
thatmaximizesthe damage.This is differentfrom statisti-
cal modelsof network reliability wherenetwork elements
are assumedo fail randomlyand independentlyand the
worstcasescenarids unlikely to occur

In orderto measurehe damagewe alsoneedto know
thevalueof thelost connectiongo the defender The mod-
elsfrom theliteraturementionedelow differ mostlyin the
way the damageis evaluated. Otherwise,all the models
build on the sametheoryof minimal graphcutsand maxi-
mum flow.

Thesimplestproblemis to dery the connectiorbetween
two givennodes.An optimalattackcanbefoundin polyno-
mial time with ary MIN CUT algorithm. The bestknown
algorithmis by StoerAnd Wagner[16]. Cutting all con-
nectionsbetweertwo groupsof nodesis equallyeasy It is
reducedo theminimal cutproblemby memgingbothgroups
into singlenodes.

Cunningham([4] solves anotherpolynomial problem:
how to partitiona network into separateomponentst the
lowestcost. Eachedgehasanassociatedost. Optimality is
definedasthe lowestcostper creatednetwork component.
Cunninghamalsodiscusseshe optimal reinforcemenbf a
network againsthe attack.

A morecomple problemis the multi-waycut. Thegoal
is to disconnect3 or more given nodesfrom eachother
Dahlhaus& al. [5] shaow this problemto be NP complete.
It follows that the more generalproblemof disconnecting
threeor morearbitrarypairsof nodeds alsointractable.

Phillips [15] introducesthe networkinhibition problem
thatis like MIN CUT but thelinks canbe partially disabled
with linearly increasingcost. Rathersurprisingly it turns
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outthatfinding anattackthatminimizestheresidualcapac-
ity of the network betweenthe two nodesis NP complete.
Like[4], thispaperisinterestingoecaus& modelsthedam-
ageto the network asa function of the investmentby the
attacler.

In the reminderof this paper we will analyzeanother
variationof the network inhibition problemthatwe find to
be especiallyrelevantin protectinglnternetservices. We
will try to determinehow many communicationinks or
network nodesneedto be remwed from the communica-
tions networkto disconnect givennumberof nodesfrom
a singlecenternode calledthe source Theideais to an-
alyze the damageto the connectity from a single host's
pointof view. Whenthenetwork is modelledasa (directed)
graph, this translatego the questionif finding a minimal
weight cut thatreduceghe size of the graphpartition with
the sourcenodein it below a given threshold. Despiteof
the similaritieswith the othernetwork inhibition problems,
thisappeardo beanindependenguestion.We have named
this the single-servemetworkinhibition problemalthough
it might alsobe called minimummulticastcut sincethe at-
tacker might betrying to minimize the numberof recevers
for a multicast(or broadcasttransmission.The links and
nodesin our model may have have two kinds of weights:
a costof disablingand a value of being connectedo the
source. The links are assumedo have infinite capacities.
Partial destructiorof anedgeis thusnot possible.Thefol-
lowing sectionformalizesthe network andattackmodels.

3 Network and attack models

We model the communicationsetwork as a directed
graph. To accommodateommunicationgerminology the
verticesare callednodesandthe directededgesare called
links. The nodesandlinks canbe givenweightsto denote
theirrelative importanceandrobustness.

Definition 1 (communicationsnetwork) A communica-
tionsnetworkis aquadrupleCN = (N, L, s, ¢, d) where

1. N issetof nodes
2. L C N x N isasetof links,
3. s € N U {e} is calledthesourcenode,
4. ¢c: NUL — Z4 U {oc} is calledacostfunction,and
5. d: N — Nis calleddamage function.
O

The sourcenodeis a sener or a client from whoseper
spectve the analysiswill be done. The sourcecanalsobe
€ whichmeanghatthe sourceitself hasbeendisabled.The



costfunction givesthe costof disablingnodesor links for
theattacler. Disablingthesecomponentsvill be modelled
by remaoving verticesand edgesfrom the directedgraph.
Thecostsarepositive integers,or infinite meaninghatpar
ticular network componentgannotbe disabled. The dam-
agefunctiontells how valuableit is to the defendetto have
eachnodeconnectedo the source.The damagevaluesare
nonneativeintegers.

In an attack, somenodesand links are disabled. For-
mally, anattad onanetwork is a setof disablednodesand
links. For networkswhereall links arebidirectional,an at-
tack that succeedsn partitioningthe network corresponds
to acutof thegraph(V, L). Thetotal costof theattackfor
theattacleris the sumof the costsof disablingtheindivid-
ual nodesandlinks.

Definition 2 (costof attack, remaining network) Let
CN = (N,L,s,c,d) be a communicationmetwork and
A C N U L anattackonit. The costof theattackis

Costn(4) =) {c(x) | = € A}.

Denotethe disablednodesby Ay = A N N, thedisabled
links by A, = A N L, andthe reverselinks by Ail =
{{n,m) | (m,n) € Ar}. Theremainingnetworkafteran
attackA is

CN4 =
(N\ Ay, L\ (AL UAT' U ApxL U LxAy), s, ¢, d')

wherec’ andd' are,respectiely, therestrictionsof ¢ andd
to thenodesandlinks of CN4. s' = €if s € Aands’' = s
otherwise. O

The communicationslinks are modelled as directed
edges.However, mostreallinks arebidirectional. We have
choserto represenbidirectionallinks astwo unidirectional
edges.The above definition ensureghat both directionsof
a bidirectionallink fail at the sametime. It is enoughto
include one of themin the attack becauséancluding both
links in the attackwould increasehe costof the attackbut
not affect connectity. Thisis a practicalchoiceandit has
no bearingon the generalityof the model:two independent
links in oppositedirectionscan be representedby adding
dummynodeswith zerodamagevalueson thelinks.

Our model of the network assumeshe useof adaptve
routingalgorithmsandit ignoresthe capacitylimitations of
thecommunicatiorinks. As long asthereatleastonegood
routefrom thesourceto anode theserviceis available. The
serviceis deniedwhenthe lastconnectionfrom the source
fails. Thelack of capacityboundsis probablythe greatest
limitation of themodel.

We saythat a nodeis connectedo the source if there
is a pathin the directedgraph (N, L) from s to the node.
Thatis, the nodesthat are available for the source(or for
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which the sourceis available), are in the closureof the
sourcenodewith respecto thelink relation. Thenodeghat
arenot connectedo the sourcearedisconnectedWhenall
links arebidirectional,the network canbeinterpretedasan
undirectedgraph.In thatcase nodesbecomedisconnected
whenthenetwork is partitioned.Only thenodesn thesame
partitionwith the sourceareconnectedo it.

In practice all nodesn the original network will becon-
nectedto the source.Whensomenodesandedgesaredis-
abledin an attack,the disablednodesand possibly some
other nodesbecomedisconnectedrom the source. The
succes®f the attackis measuredy the numberandim-
portanceof the nodesthat it managego disconnectfrom
thesource.

Definition 3 (damage) Let CN = (N, L,s,c,d) be a
communicationgsietwork and A anattackonit. Thedam-
age causedy A is definedas

Damagecn (4) =
Y {d(n) | n € N andn is disconnectedom cin CN*}.

O

Obviously, if the sourceis disabledin anattack(i.e. the
sourceof CN4 is €), all nodesbecomedisconnectedThe
costof disablingthe sourceshouldusuallybe very high or
infinite.

In orderto find thebestattacksor to assesthereliability
of the network, we needto find an attackthat causesnaxi-
mal damagewith agivencost.

Problem4 Maximize Damagecn (A) overall attacksA C
N N L for whichCostn(A) < C. O

In the graphterminology this meansminimizing theto-
tal weightof thenodegeachabldérom the source(or theto-
tal weightof the sourcepartitionfor undirectedcasesywith
agiventotal weightof disablededges.

An equallyinterestingproblemis to minimize the cost
for adesireddamage:

Problem5 Minimize Cost:n(A) overall attacksdA C NN
L for whichDamagegn (A) > D. |

Since the allowed cost or damageis a parameterwe
would actuallywant to plot the optimal solutionsfor dif-
ferentparametewnalues. Thatis, we wantto computethe
damagecausedy optimal attacksasa function of the cost
to theattacler.

4 Complexity of computing the cost-damage
curve

In this section,we will shav thatthe problemof deter
mining whethera given attackcausesnaximaldamageor
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its costis an NP completeproblem. Theproofis doneby a
reductionfrom the minimal graphbisectionproblem. This
is not surprisinggiven similar resultson other closely re-
latedgraphproblems(seeSec.2). Furthermorethe prob-
lemremainsNP completeevenif all links arebidirectional,
only links canbe disabled the costof disablinga compo-
nentis constanandthe damagevalueof a nodeis constant.
SinceNP completenesis provenfor decisionproblems
(onesthat returnansweryesor no), we have to restatethe
optimizationproblemin thefollowing way.

Problem6 Let CN = (N, L,s,c,d) be a communica-
tionsnetwork. DoesanattackA C N N L exist suchthat
Costny(4) < C andDamayecy (4) > D? O

If we canfind an optimal solutionfor a fixed C' or D,
clearlywe cananswerthe decisionproblem. Thus,the op-
timizationis atleastashardasthedecision.

Theorem7 Problem6 is NP completewith the sizeof the
network evenif all links arebidirectional,d(n) = 1 for all
n € N,ande(n) = oo for alln € N ande(l) = 1 for all
leL. O

Proof First, the problem is in NP. A nawve non-
deterministicprogram could guessthe state of eachlink
(disabledor not), countthedisabledinks to checkthatthere
areat mostC' andto checkby depth-firstsearchfrom the
sourcethatatmost|N| — D nodesemainconnectedo the
source.

To shawv NP hardnesswe will describea polynomial-
time reductionfrom the minimal graph bisectionproblem
(i.e. minimumcut into boundedsetsor bisectionwidth) [7,
8, 14] thatis known to be NP complete.The goalin graph
bisectionis to divide a graphinto two equal-sizepartitions
so that the numberof edgesbetweenthe two partitionsis
lessthansomeB.
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LetagraphG = (V, E) with someevenn = |V| be
givenfor the bisectionproblem.We addto the grapha new
nodes (source)and connectit to eachof the the original
verticesv throughn? routes.Notethatn? is largerthanthe
numberof edgesn ary bisectionof G. (Actually, n?/4 + 1
routeswould suffice but it will not hurt to be generous.)
Eachroute consistsof a new auxiliary nodea?, an edge
from the sourceto the auxiliary node, and an edgefrom
the thereto the original vertex. The resultinggraphwill
be consideredas network and, therefore,it is denotedby
(N, L). Formally,

N=VuU{stU{d, | veVandi=1...n%}

veVandi=1...n"}.

(E includesboth (v, v") and{v’, v) sincetheoriginal graph
isundirected.XN, L) hasn® + 1 new verticesand2n?® new
edges. This may seemlike a lot but it is, neverthelessa
polynomialincrease.

To define a communications network CN
(N,L,s,c,d), let ¢ be 1 for all links and infinite for
all nodesandlet d be 1 for all nodes.

We claim that the original graph G hasa bisectionof
sizeB, 1 < B < n?/4 < n?, orlessif andonlyif thenew
network C N hasanattackwith damageatleastn®/2+n/2
andwith costnot higherthann®/2 + B. The situationis
illustratedin Fig. 1.

(only if) Assumefirst that sucha bisectionexists. In-
cludein the attackthe B or lessedgesof the bisection(the
onesthat crossbetweenthe two partitions). Moreover, se-
lect oneof the partitionsandincludein the attackthen?/2
edgesthat connectthe auxiliary nodesof that partition to
the source This disconnects? /2 auxiliary nodesplushalf
(n/2) of theoriginal verticesfrom the source.

(if) Assumethat an attack satisfying the conditions
Damagecn (A) > n®/2+n/2andCosty (A) < n3/2+B
exists. It is impossiblefor the attackto disconnecimore
thanhalf of theverticesV from thesource.Thisis because
to disconnech vertex, all n? routesthroughauxiliary nodes
mustbedisconnecte@ndn?®/2 + B < (n/2 + 1)n?. Sup-
posethenthatthe attackwould disconnect < n/2 of the
verticesV. We will seethattheattackcannotcause=nough
damageTheroutesto the k verticesthroughcorresponding
auxiliary nodesmust be cut thus disabling kn? links and
disconnectingatno extracost,upto kn? auxiliary nodesin
additionto the k vertices.At least(n?/2 + n/2) — (kn? +
k) nodesmuststill be disconnectedy disablingat most
(n®/2+ B) — kn? <n3/2 — kn? + n?/4 links.

Since no more original verticesmay be disconnected,
thesenodesmustall be auxiliary nodeswhosecorrespond-
ing vertex in V is still connected. Therefore,links on
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Figure 2. A simple comm unications netw ork

bothsidesof theseauxiliary nodesmustbe disabledwhich
would costa total 2 - ((n®/2 + n/2) — (kn? + k)) =
n3/2 — kn? + (n/2 — k)(n? + 2). Butsincen/2 — k > 1
andn? + 2 > n?/4, thisis morethanwe canafford. The
conclusionis thatthatto getthe desireddamagethe attack
mustdisconnecexactly n/2 original verticesV'.

Disconnectingthe routesto the n/2 verticesthrough
their auxiliary nodescostsn?/2 disabledlinks, leaving a
budgetof only B for furtherwork. However, then? /2 aux-
iliary nodesbecomedisabledat no additionalcost. All that
still needsto be doneis to separatehe n/2 disconnected
verticesof V' from the n/2 connectednes. If this canbe
doneby disablingat most B edgesof the original graph,
thereis a bisectionof weight B or lessin G.

This sufficesto shaw thatthereis anattackwith thegiven
propertiesexactly whentherea bisectionmeetingthe given
budget. Hence,ary algorithm for decidingthe existence
of the attackcanalsodecidethe existenceof the bisection.
Sincethetransformatiorwaspolynomial,Problem6 is also
NP complete. m|

Theorem7 remainstrue also in networks where the
nodesbreakandlinks areunbreakable This caneasilybe
shavn by addinga breakablenodein the middle of each
link.

5 Networks asa logic programs

In this sectionwe shav how a communicationsietwork
canbe describedwith a logic program. Considey for ex-
ample,the (artificially small) network in Fig. 2. The net-
work hasthree unidirectionallinks and one bidirectional
link. The costof disablingthe links is marked on them.
Nodescannotbreak(i.e. their costis infinite). Thedamage
valuesof the nodesare also marked on them. (The dam-
agevalueof the sourcenodes doesnot matterbecausehe
nodesherecannotbreakandthesourcewill thereforenever
bedisconnected.)

The correspondindogic programis in Fig. 2. Lines1-
10describahenetwork structure.Theotherlinesgiverules
abouthow nodesare connectedo the source. Theselines
will bethesaméfor all networks. This simpleprogramis all
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it takesto modelthe behavior of the network with breaking
components.

The ruleson Lines 12-15 force eachnodeand link to
be eitherbrokenor ok but not both. As we will explainin
Sec.6, without theserules,the programcould have models
wheresomenetwork componentsreneitherbrokennorok.

Lines 17-190f the programgive the basicrulesof con-
nectednessFor ary link, if the nodeat the beginning of
thelink is connectedthelink is notbrokenandthe nodeat
the endis not brokenitself, thenthe endnodeis alsocon-
nected.Theserulesforcethe predicateconnect ed to be
true for all the nodesthatare connectedo the source.We
will choosea semanticdor the logic programsin sucha
way thatthe predicatewill betrueonly for this minimal set
of nodesandnot for any otherones. Thus,we don't need
ary specialrulesfor sayingwhenanodeis disconnected.

Notethatourformal definitionallowsabidirectionallink
to be brokenin oneor both directions. On the otherhand,
theconnectednessile (line 18in Fig. 3) saysthatbreaking
in onedirectionis enoughto disablecommunicatiorin both
directions. It may seemthat one could mistalenly double
the costof disablingthe link by putting both directionsof
thelink in theattacksetA. Thisproblemis avoidedbecause
we areinterestednly in attackghatwith minimal costfor a
givendamageAn optimalattackplannevertriesto disable
thesamdink twice.

The logic-programrepresentatiorof any communica-
tionsnetwork cancanbe constructedn the sameway. The
structureof the network is describedwith the predicates
node, | i nk andsour ce, andthe lines 12-19 of Fig.3
arecopiedassuch.

6 Stablemodelsasattack scenarios

Wewill interpretthelogic programsaccordingo thesta-
ble modelsemanticof Gelfold andLifschitz [9]. The sta-
ble modelsaredefinedfor a groundlogic program,i.e. one
without variables.Therefore we have to first remove vari-
ablesfrom the programby substitutingthemwith all possi-
ble constanwaluecombinationsOur programsarestrongly
range-restricted the possiblevaluesof all the variablesare
thoselistedin the node andl i nk predicates.Suchpro-
gramscanbe groundedefficiently. In the experimentswe
usedanimplementatiorby Syrjanen17]. After grounding,
the programhasgrown in sizebut it is variable-free. The
predicateswith only constantargumentsare called atoms
Atomsandnegatedatomsarecalledliterals.

Thedifferentsemanticdor logic programdiffer mostly
in theway they interpretthe negation. (For example,a neg-
ative literal in Prologis true if Prolog’s resolutionstrateyy
failsto provethatthepositiveliteral is true.) A stablemodel
is a setof atomsthatpasseshefollowing test: (1) For each
atomin the model,remove from the programall rulesthat
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, not link&(N, M.

onnected(N), not nodeBroken(M,
en(N,M, not linkBroken(MN).
ot nodeBr oken(N).

Figure 3. Logic program representation of the network in Fig. 2

have a negative literal for thatatomin their bodies(on the
right side of the implication). The ideais thattheserules
do not apply to this model. (2) Remaove all negative liter-
als from the bodiesof the remainingrules. The resultis a
programwithout ary negative literals. Sucha programhas
a uniqueminimal Herbrandmodel(a setof atomsthat sat-
isfiesthe implicationin eachrule of the program)that can
be computedsimply asa closureof an emptysetof atoms
with respectto the remainingrules. To passthe test, that
uniguemodelmustbe exactly the samesetof atomsasthe
original stablemodel. Thus,a stablemodelis a fixpoint of
this processof computingwhatis calledthe reductof the
programand its unique minimal Herbrandmodel. A pro-
grammay have severalstablemodels(e.g.a : - not b.
b :- not a.)ornone(e.g.a :- not a).

The stable models are a natural way of defining the
meaningof alogic program.For mostapplicationsthey are
the possiblesetsof conclusionghata rationalagentmight
malke from theprogram.The stablemodelsof our programs
correspondo all possibleattacksagainstthe protocol. The
atomsin eachstablemodeldescribeaccuratelythe stateof
the network (disabledcomponentsconnectechodes)after
the correspondingttack.

We will formulatethis asa somavhatinformal propo-
sition. A morerigoroustheoremand proof would require
aformal definition of the transformatiorfrom communica-
tion networksto thelogic-programrepresentationwWe find
theexampleabove to be moreillustrative.

Proposition8 Let CN = (N, L, s, ¢, d) beacommunica-
tions network. Thereis a 1-1 mappingbetweenthe stable
modelsof the logic-programrepresentationf C N andthe

possibleattacksA C N U L againsthe network. The sta-
ble modelcorrespondindgo an attack A containsthe atom
connect ed( n) for eachnoden if andonly if thenoden
is connectedo the sourcein the remainingnetwork CN4.

m|

Proof LetII bethelogic-progranrepresentatioof C N
andlet A C N U L beanattack. Define M 4 to be a set
containingexactly the following groupsof atoms:

1. node(n) for eachnoden € N,
l'i nk(n, m for eachlink {n,m) € L, and
sour ce(s) for thesourcenodes

. nodeBr oken(n) for nodesn € A4,
nodeCk( n) fornoden € N\ A,
I i nkBroken(m n) forlinks (m,n) € A, and
l'i nkOk(m n) forlinks (m,n) € L\ A

3. connect ed(n) for nodesthatareconnected
to thesourcen CN4.

We claim that M 4 is stablemodelfor II. Thereductof
IT with respecto M 4 hasthefollowing rules:

a. all thefactsaboutthe network structure
(likelines1-10in Fig. 3).

b. nodeCk(n) :- node(n). forallne N\ A4,
nodeBr oken( n) node(n). foralln € A,
i nkOk(n, m l'ink(n, m.
forall {(n,m) € L\ A, and
I i nkBroken(n, m [ink(mn).
for all (n,m) € A.
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c. connected(m : -
[ink(n, m, connected(n).
for all links (n, m) suchthat
(n,m) € L\ A, {m,n) € L\ A
andn € N \ 4, and
connected(s) :- source(s).
for thesourcenodes if s € N\ A.

The next stepis to find the unique minimal Herbrand
model M of the reduct. The rulesof Type a causeM to
containall the atomsof Groupl. Thesearenode( n) for
allnodesn € N, i nk(n, m for all directedlinks from a
noden to m, andsour ce(s) for thesources. No other
atomsfor thesepredicatexanbein M.

Sincenode( n) € M for all nodestherulesof Typeb
addto M atomsnodeCk( n) andnodeBr oken(n) for
all nondisabledinddisablednodesrespectrely. Similarly,
they addto M the correctatomsfor nondisabledand dis-
abledlinks. Hence all the atomsof Group2 arein M. No
otheratomsfor thesepredicatexanbein M becausehese
aretheonly rulesthathave the predicate®n theleft side.

The third group of atomsrequiresa bit more thought.
As Def. 2 says,C N4 is obtainedrom the original network
CN by removing the disablednodes,disabledlinks, and
ary links attachedo theremorednodes.Thus,anoden is
connectedo s in C N4 iff thereis adirectedpathfrom s to
n in CN thatdoesnotincludeary of thelinks or nodesin
A. It is not difficult to seethatthe rulesof Type ¢ induce
connect ed( n) tobetruefor exactlythesenodesn. This
can be formally shavn by induction on the length of the
pathandonthelengthof the proof with therulesof Typec.
Hencethemodel M containsall the atomsof Group3 and
no otheratomswith predicateconnect ed. This suffices
to shawv that M = M 4 passeshetestfor astablemodel.

We now know thatII hasat leastone stablemodelcor-
respondingto eachA C N U L. We still needto shav
thatit hasno otherstablemodels.Every stablemodelof II
musthave all the atomsof Group 1. Becauseof the lines
12-150f Fig. 3, every stablemodelmustalso have either
nodeCk( n) ornodeBr oken(n) foreverynoden € N,
andeitherl i nkOk(n, n) orl i nkBr oken(n, m forev-
erylink (n,m) € L. This choiceof brokennodesandlinks
definesa uniqueattackA’. As above, it canbe shovn by
inductiononthelengthof the proofthatthe closureof these
atomsincludesconnect ed( n) for all nodeghatarecon-
nectedo s in CN4'. Thereforeary stablemodelof II will
have at leastall the atomsof M4 for someattack A. But
it is not possiblefor the stablemodelto be propersuperset
of M 4 becausstablemodelsarealwaysminimal Herbrand
models[9]. Thisallows usto finally concludethatthemod-
els M 4 aretheonly stablemodelsof II. O
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7 Optimal attacks

The previous sectionshaved that the stablemodelsof
thelogic programrepresentatiolf a communicationset-
work accuratelydescribethe different attackson the net-
work. This makesit possibleto usea general-purposgic
programmingsystemto find optimal attacksandto answer
Problems4-6. We have usedsmodels an efficient sta-
ble modelsimplementationby Niemeldand Simons[13].
While the programof Fig. 3 is a standardogic program,
the additionsthatwe make to it in this sectionare specific
to smodels

The simplestway to find the optimal attackwould beto
enumeratehe attacks,to computethe closureof the con-
nectednodesin eachremainingnetwork, andto selectone
with costbelow the budget B and highestdamage. This
approachwill work well for small networks like that in
Fig. 3. It will notwork for evenmoderatelylarge networks
asthe numberof possibleattacks2!V|+Z! grows exponen-
tially with thesizethethenetwork. Branch-and-bountéch-
niguesandheuristicsthatfind good(althoughnot necessar
ily optimal) solutionsquickly canimprove the efficiency.
However, it may be difficult to develop heuristicsthat are
suitablefor a particularproblemdomain.Theideain using
ageneral-purposkgic programmingsystemnto find the so-
lutionsis thatsuchsystemsalreadyhave efficientandwell-
testedmplementation®f the search.

The additionalrulesthat smodelsneedsfor the taskare
listedin Fig. 4. Therule on lines 20—24tell which attacks
aretoo expensve: if the total costof the disabledcompo-
nentsin amodelis 151 or more,theatomf al se will also
beincluded. (Heref al se is anatom,nota keyword with
ary specialmeaning.) This rule is simply a shorthando-
tation and could be expandedto a standardogic program
by replacingit with all combination®f brokencomponents
whoseweight exceedsthe budget150. The shorthandho-
tationis not only more corvenientfor the programmetbut
alsosavestime andspacein finding the solution. Line 25
simply createsa contradictionif theatomf al se is in the
model. Thereforetheprogramcannothave ary stablemod-
elswith f al se in them.

Lines 27-29 are directivesfor smodels They askit to
considerall stablemodelsandto find onewith the minimal
sumof theweightsof theconnect ed atoms.

8 Implementation

We haveimplementednexperimentatool for analyzing
therobustnes®f anetwork topology Theuserinputsanet-
work structureinto a grapheditor, the network is translated
into a logic programrepresentationsmodelss invoked to
find the optimal attackfor a givenbudget,andthe resultis
shovn onthegraph.



20 false :- 151 [ |inkBroken(s,nl)=100, I|inkBroken(s, n2)=60
21 | i nkBr oken(nl, n3) =50, I|inkBroken(n2, n3)=100
22 I'i nkBr oken(n3, n2) =100,

23 nodeBr oken(s) =1000, nodeBr oken(nl)=1000,

24 nodeBr oken(n2) =1000, nodeBr oken(n3)=1000 ].
25 f :- not f, false.

26

27 compute 0 { }.
28 minimze { connected(s)=0,
29 connect ed(n2) =1,

connect ed(nl) =1,
connected(n3)=3 }.

Figure 4. Finding optimal attacks with smodels

Somegeneralguidelinescan be given for creatingthe
network model:

e A subnetvork behinda single gatevay router should
berepresentethy a singlenode. Theweight (damage
value)of thenodecanbeusedto encodehesizeof the
subnetverk. Thiswill greatlyreducethe modelsize.

e A LAN with a broadcastrchitecture(e.g. Ethernet)
should be modelled as an auxiliary node that may
breakitself but is connectedo thestationsonthe LAN
by indestructibldinks. Thatis, thebroadcast. AN ei-
therfunctionsor fails for all stations.

e It isimportantto distinguishbetweera singlebidirec-
tional link andtwo unidirectionallinks. The former
is representetby two link predicatesaindthe latter by
two auxiliary nodes(SeeSec.3.)

e A group of replicateseners can be either combined
into a single sourcenode or declaredseparatelyas
sourcesn thelogic program.This canbeusedto com-
pare different choicesfor the placementof replicate
seners.

The analysismethod was testedwith random sparse
graphsandatrtificial network models.Resultsfrom random
graphsof upto 100nodesareencouragin@lthoughtheper
formancedepend$eaily onthedensityof thegraph.Tests
shouldstill be donewith actualnetworks. We expectthe
resultsfor real communicationsietworks to be at leastas
goodasthey arefor therandomgraphsasrealnetsareusu-
ally sparselyconnectedcandtendto have mostly local de-
pendencies(lt is difficult to gethold of sufficiently large
mapsof anactualnetworksfor thetests.)

In ourimplementationthe logic programrepresentation
wasaslightly optimizedversionof theonein Figs.3 and4.
Thereis still roomfor furtheroptimization,in particular in
preprocessingf the graphbeforethe translationto a logic
program.
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9 Quantitati ve analysisof denial of service

In theview of the previous sectionswe will try to form
generalguidelinesfor denial-of-servicanodels. The main
ideais to expresshedamagecausedy anattackasafunc-
tion of the resourcesequiredfor its execution. Whende-
terminingthe seriousnesef athreator comparingarchitec-
tures,one shouldinspectthe whole rangeof the function.
By consideringarangeof optimal attacks we avoid setting
ary awkward thresholdsfor when an attackis successful
andwhennot. Meadavs [11] presents formal methodfor
evaluatingresistancef cryptographigrotocolsagainstde-
nial of serviceandsuggests similar measuref robustness
wherecost-damageointsof theattacksarecomparedo an
application-specifitolerancdevel.

Formally, let ATTACKS be the set of possibleattacks.
ThecostfunctionCost: ATTACKS— COSTSs amapping
from the attacksto the costsof the attacksandthe damage
functionDamage : ATTACKS — DAMAGESis a mapping
from theattacksto thedamagesausedy theattacks.

The COSTSand DAMAGESare setsof scalaror vector
values. In the simplestcase,they may be dollar values.
The costis often a vectorof the variousresourcesieeded
for the attack: communicationdandwidth,computational
power, numberandtype of conspiringentities,requiredac-
cessrights, etc. Damagesaremorelikely to be scalarsbe-
causeof the needto putthethreatenedervicesn anorder
by their importance. However, it may sometimeshe nec-
essaryto expressthe damagein componentssuchaslost
monegy andtime. Possiblevectorvaluesare comparedby
componentsThus,scalarvalueshave a naturallinearorder
andvectorvaluesa partialorder

Themainquestiorthatwe wantto answelis

Problem9 For givenC' € COSTSandD € DAMAGES
decidewhetherthereis anattackA € ATTACKSsuchthat
Cos{A4) < C andDamage(4) > D? m|

If the damagesare linearly ordered(scalars) the same
guestioncanbe formulatedasan optimizationproblem.
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Figure 5. Optimal cost-dama ge curve

Problem10 For a given C € COSTS find an attack
A such that Damage(A4) is maximal over all {4 €
ATTACKS| Cos(4) < C}. O

The bestpicture of the seriousnessf the attacksis ob-
tainedby plotting thedamagecausedy the optimalattacks
asafunctionof theallowedattackcost. For example Fig. 5
shavs how the damagevariesas a function of the attack
costin the network of Fig. 2. The plots for differentsys-
temarchitectureganbe comparedo evaluatetheir relative
robustnessinderattack. Whenthe costis a vectorvalued
guantity asingletwo-dimensionaplot cannotsatishctorily
depictthe function. In thatcase,comparison®f the func-
tionstake moretime andeffort.

Similarly, the seriousnessf two typesof attackscould
be comparedby plotting the maximal damagecausedby
attacksof eithertype. When the damageis measuredn
more-than-one-dimensialvectorvalues,eachcomponent
of thedamagemustbe plottedseparately

An equallyinterestingproblemis to minimizethecostof
an attackfor a desiredlevel of damagealthoughthis only
malkessenséf thecostis measuredh scalarvalues.

Problem11 For a given D € DAMAGES find an at-
tack A such that Cos{A) is minimal over all {4 €
ATTACKS| Damage(A) > D}. O

It shouldbe mentionedhatit is oftenimpossibleor un-
necessaryo calculatethe accuratadlamagédunctionvalues.
Neverthelesstheseconceptanbe usedto argueaboutthe
relative greatnessf the damage®r costsandaboutthe ef-
fectsof changesn the systemarchitecture.

The comparisorapproacthasbeensuccessfullyapplied
in someareasompletelydifferentfrom network inhibition.
Aura andNikander[2] comparethe robustnesof stateless
andstatefulsenersandprotocols.Dwork andNaor[6] sug-
gestincreasingthe cost of sendingjunk mail and Hirose
andMatsuura[10] and Aura, Nikanderand Leiwo [3] de-
sign key-agreemenprotocolswherethe attacler is always
the first to commit to expensve computations. The gen-
eralideais thata systemis consideredobustif Cos{A) >
Damage( A) for all attacks.
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To make the analysiseasierin practice, attacksand
damagesan be evaluatedseparatelyfrom eachinterested
party’s point of view. In opensystemswherethe partici-
pantshave few commoninterests,it doesnot make sense
to modelthe whole system.It is often mucheasierto con-
siderthethreatsonly from asingleentity’s perspectie. For
example,it is differentto considerthe availability of a ser
vice with the sener’s or a client's interestin mind. For the
sener, thegoalis to allow asmary clientsaspossibleto ef-
ficiently usetheservice.For thesingleclient,it isimportant
to obtainthe desiredservicedrom ary of possiblymary al-
ternative seners. Rarelyis it necessaryor every client to
be ableto acces®very service,andevenif it is, theremay
be no authoritythatwould wantto investin improving the
availability for all theseparties.This couldbe summarized
by sayingthat doing the analysiswith the payingclient in
mind ratherthanfor the public goodmakesit easierto get
usefulresults.

10 Conclusion

We definedthe single-serer network inhibition prob-
lem and showved it to be NP completelike mary related
problems. Logic programswith stable-modelsemantics
were usedto representhe network. Optimal attackswere
foundwith atool thatimplementghis semanticsThetech-
niguesof this papercanbeusedio analyzetherobustnessf
network architectureggainstdenial-of-serviceby link and
nodedestruction.

Possiblefuture work includesoptimizing the searchfor
attacksby reducingpartsof the networks at a preprocess-
ing stageand evaluating other techniquessuchas integer
linear programmingand simulatedannealingto solve the
sameproblem.The ultimategoal shouldbeto developvul-
nerability detectiontechniqueghat canbe incorporatedas
standarccomponentsnto network engineeringools.

We alsosuggestedhat the analysisof denial-of-service
attacksshould,in general,aim to give the damagecaused
by optimal attacksasa function of the costto the attacler
ratherthansettingsharpthresholdgor availability andde-
nial. This makesit possibleto comparethe robustnesof
systemaunderattackevenwhenit is impossibleto guaran-
teethe availability.
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