HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series B: Technical Reports ISSN 0783-540X
No. 14; September 1995 ISBN 951-22-2756-8

MODELLING THE NEEDHAM-SCHRODER AUTHENTICATION
PROTOCOL WITH HIGH LEVEL PETRI NETS

TuOMAS AURA

Digital Systems Laboratory
Department of Computer Science
Helsinki University of Technology
Otaniemi, FINLAND

Helsinki University of Technology
Department of Computer Science
Digital Systems Laboratory
Otaniemi, Otakaari 1

FIN-02150 ESPOO, FINLAND

HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series B: Technical Reports ISSN 0783-540X
No. 14; September 1995 ISBN 951-22-2756-8

Modelling the Needham-Schréder authentication
protocol with high level Petri nets

TUuOMAS AURA

Abstract: In this paper, security of the Needham-Schréder key distribution protocol
is modelled and analyzed with predicate/transition nets, and along that, a methodology
for modelling cryptographic protocols with high level Petri nets is developed. The main
goal is clarity of the model and its feasibility for automated analysis. The intruder and
the communication channels are modelled as one entity that has complete control over
all messages in the system. The intruder model is based on the concepts of memory and
learning. Special care is taken that the model captures all possible actions of the intruder.
Guidelines are given for finding the minimal number of model parts that represents a system
with an arbitrary number of entities and concurrent protocol runs. Techniques of coping
with state space explosion in reachability analysis, the stubborn set method and prioritizing
of transitions, are discussed. Introduction of set type places or negative arcs in the net
formalism is proposed as a solution for reducing the storage space requirements of the
reachability graph. In experiments with the reachability analysis tool PROD, the model
proved efficient in detecting protocol failures. Further optimization of the formalism and
tools is necessary for the presented methods to be useful in full verification of real size
protocols.

Keywords: Cryptographic protocols, Needham-Schroder, formal model, Petri nets, predi-
cate/transition nets, PROD

Printing: TKK Monistamo; Otaniemi 1995

Helsinki University of Technology Phone: _ 90 4511

. +358-0
Department of Computer Science
Digital Systems Laboratory Telex: 125 161 htkk fi
Otaniemi, Otakaari 1 Telefax: +358-0-465 077

FIN-02150 ESPOO, FINLAND E-mail: lab@saturn.hut.fi

Contents
1 Introduction

2 Communication system architecture

2.1 Typesofdata
2.2 The Needham-Schroder authentication protocol

2.3 Predicate/transition net formalism

3 Model of the protocol entities

3.1 Entities of the N-S protocol

4 Model of the channel and the intruder

4.1 Learningo
4.2 Delivering messages to protocol entities
4.3 Intruder’s inherent data

4.4 Intruder’s inherent data in the N-S protocol

5 Security criteria

5.1 Security in the N-S protocol

6 How many is enough?

6.1 Number on entities in the N-S protocol model

7 Reachability analysis

7.1 Optimizing the model
7.2 On-the-fly verification
7.3 Optimizing reachability graph generation
7.4 Prioritizing learning transitions
7.5 The stubborn set method

7.6 Developing a new net class for cryptographic protocols
8 Conclusion
A Needham-Schréder protocol model for PROD

B Using Probe to track a failure of the protocol

11
12
13
13

14
15

15
18

18
19
19
19
19
20
21

22

25

31

1 Introduction

With the growth of computer networks and network applications, security of
communication has become an increasingly important issue. Cryptographic
protocols are rules specifying how secure communication is achieved over inse-
cure communication channels using cryptographic techniques. Although the
protocols are based on public key and symmetric cryptographic algorithms,
they form an independent area of study from that of the algorithms. In cryp-
tographic protocol design, encryption and authentication algorithms are taken
as unbreakable in the time span of a single communication process.

Our goal is to devise a formal analysis method for the security of protocols.
The approach taken is to model the protocol with high level Petri nets and to
locate errors or verify security with reachability analysis. For concreteness, we
give a case study of a well known key distribution protocol. The observations
made in the example case are generalized to all protocols, where possible.
Special care is taken to keep the intruder model as simple as possible in order
to convince the reader that we have captured in the model all possible attacks
by the infinitely resourceful enemy. Security is our only goal; no attempt is
made to analyze other properties of the protocol.

This paper is based on ideas evolved in professor Leo Ojala’s seminar course on
Applications of formal methods in computer science in spring 1995 in Digital
Systems Laboratory of Helsinki University of Technology. The main source
for the idea of modelling and analyzing safety of cryptographic protocols with
high level Petri nets was Benjamin B. Nieh’s thesis [7, 6]. The model in that
paper, however, provoked some criticism. A less complicated model of the
intruder is needed for automated analysis. Also, with a simpler model, it is
easier to see what assumptions have been made in its design. In this paper,
we present a conceptually simple model of the intruder and communication
channels. We have completely restructured the model of [7] to make it easily
understandable and feasible for automated analysis.

In Sec. 2 we describe our view of a communication system with an intruder.
The Needham-Schroder (N-S) authentication protocol and a predicate/transition
net formalism for protocol modelling are introduced. After that, we can build

a detailed model of the N-S protocol entities in Sec. 3. The intruder model in
Sec. 4 is the key part of the model. We make the intruder as simple and gen-
eral as possible. In Sec. 5, we give the criteria that the protocol has to fill in
order to be secure. The quantities of the model parts are discussed separately
in Sec. 6. The model has to represent a system with an arbitrary number of
parts, but can only be of limited size for analysis. Finally, we complete the
discussion with methods of reachability analysis in Sec. 7.

_ 3 _
2 Communication system architecture

In this paper, we consider communication systems that are composed of pro-
tocol entities and unreliable channels for transferring messages between them.
All messages sent to a channel are prone to attacks by an intruder. The in-
truder can read, remove, replace any messages in the channels. It can also
insert new messages to the channels and move messages from one channel to
another. Thus, the intruder has a complete control over the communication
channels. We view all channels and intruders of the system as a single intruder
who takes all the messages sent by protocol entities and gives them ones to
receive (Fig. 1).

Figure 1: Communication system

In a cryptographic protocol, there are usually several different kinds of entities.
There are communicating users that take the cryptographic system as a kind
of service and there are trusted key and ticket servers that only exist because
they are needed as a part of the protocol. A single entity may be able to adapt
to different roles in the process, depending on the messages it receives and the
inherent needs it has. In a system of homogeneous users, for example, a user
may behave entirely differently when initiating communication itself and when
responding to other’s messages. The number of entities in the system is often
unlimited or large.

In a typical system, the protocol is used unlimited number of times between
varying entities. We have to capture in our model a snapshot of the system
and analyze behavior of the system starting from that moment. We cannot
follow the system running forever but have to stop at some time. Therefore we
have to identify a protocol run, a sequence of events after which the state of
the system is similar to the one it started in. Then we can observe the behavior
of the system during a single protocol run and conclude something about a
system where an arbitrary number of successive and interleaved protocol runs
take place.

2.1 Types of data

Messages are composed of atomic data items such as text, keys, identifiers,
serial numbers and time stamps. The text of a message can be confidential,
non-confidential, incorrect (substituted by an intruder) and even randomly
generated. There are public, private and symmetric keys for encrypting and
decrypting messages. Serial numbers, time stamps and random numbers are
used to identify messages.

Messages are either plain or encrypted sequences of encrypted submessages
and atomic data items. In practical protocols, the encrypted submessages
usually consist only of atomic data items, although, in theory, the recursive
structure of submessages could be deeper. Even though some messages are
encrypted, we assume that differently structured messages can always be rec-
ognized. The protocol entities only send and receive messages that have a
correct structure. An intruder does not create malformed messages either
since no entity would read them from the channel.

All entities have some inherent data, such as keys and time, before the commu-
nication process begins. They use this data to compose messages and decrypt
and validate received ones.

2.2 The Needham-Schrioder authentication protocol

As an example of a protocol we have chosen one with a well-known weakness,
which we will try to rediscover. The Needham-Schroder (N-S) authentication
protocol uses a trusted key distribution center (KDC) and symmetric private
key cryptography to establish secure connections between users. We give a
concise description of how the protocol is used. For a better introduction to
the N-S protocol and private key cryptography, see any standard textbook on
the topic [9, 1].

When a user wants to communicate with another, it is called user A and the
other is user B. User A first sends a message to the KDC requesting a new
session key. (message 1 in Fig. 2) The request contains identifiers of both A
and B (Ald, BId) and a random number (Rnl) generated by A.

The KDC answers to user A with a message (message 2) encrypted with A’s
private key (K A). The message contains the random number (Rn1), B’s iden-
tifier (BId), the new session key (SK) and a submessage (F[SK, Ald; K B])
encrypted with B’s private key (K B). A uses the random number to identify
the specific request as it may want to establish several simultaneous connec-
tions. If the random number and B’s identifier match the previous request, A
accepts the new session key and forwards the encrypted submessage to B.

Key Distribution
Center

1. Session key request _
Ald,Bld,Rn1 2. Session key answer

E[Rn1,Bld,SK,E[SK,Ald:KB]:KA]

User A

3. Session key forward
E[SK,A;KB]

=

4. Challenge

= E[RN2;SK]

5. Response
E[Rn2+1;SK]

=

User B

Figure 2: The Needham-Schréder protocol

__

c
n
)
=
-
n
)
=
-
(7]
)
=

Center

Figure 3: Top level model of the Needham-Schréder protocol

-6 —

When user B receives the forward (message 3), it finds the session key (SK)
and A’s identifier (AId) in the message. It challenges A’s knowledge of the
session key by generating a random number (Rn2), encrypting it with the
session key and sending it to A (message 4). User A can now decrypt the
random number with the session key. It adds one to the number, encrypts
it with the session key and sends it back to B (message 5). If B receives the
random number properly increased (Rn2 + 1) and encrypted, it accepts the
session key as authentic.

Thus, A and B think a secure connection with the new session key has been
established and they have correctly authenticated the other entity.

2.3 Predicate/transition net formalism

In this paper, we have chosen to model the protocol with predicate/transition
nets (Pr/T nets) [2] . In order to keep the model readable, we will use concepts
of the problem domain where appropriate. These can be thought of as mere
short hand notations that have a direct interpretation in Pr/T nets. (see Fig.
4)

e We will write E[Text;Key] for encrypted messages instead of
<Text,Key> and ltem for unary tuples instead of <ltem>.

e A process often requires an item but does not consume it. For example,
the intruder needs to know a key in order to decrypt a message but it
does not forget the key after the encrypting. In Pr/T nets this means a
transition consumes a token and produces a similar one in its place. In
such cases, we will use the usual notation of a two-headed arrow.

e A place of a Pr/T net can represent a set if its tuples have an extra
field, with value 1 or 0, indicating the current status of an element’s
membership in the set. Inserting an element that already belongs to the
set should not change its contents. We will draw a dotted arrow for such
insertion.

e In partial pictures of nets, we will sometimes draw only a single arrow
with multiple labels instead of several ones leading from a transition to
some places outside the picture. This is done when the items on the
arrows are parts of a single clear-text message.

Predicate/transition nets were chosen because of the availability of effective
tools for their analysis. It is, however, straightforward to use other high level
Petri nets in their place. In particular, colored Petri nets [5] would suit the task

Model Pr/T net representation

<a,a,K,0>
<a,b,K,1>
<b,a,K,0>

Need to know (copy)

<b,b,K,0>
<Item,1>
Item
<ltem,1>
Learn (set insert)

It <ltem,knowsBefore?>.
- — — — em_ _ _ _
<ltem,1>

<|tem1>

—

< >
lteml,ltem?2,ltem3 - Item?2

——
<|ltem3>

Figure 4: Model notations and Pr/T net representation

— 8 —

very well. Different net classes have their own specialties that can be utilized.
We do not necessarily need the firing conditions of predicate/transition nets in
our example, but there is no reason why they should not be used. In Section
7.6 we will discuss the possibility of defining a new net class or formalism
that would be tailored for effective modelling and analysis of cryptographic
protocols.

3 Model of the protocol entities

The model of the communicating entities is based on their functional descrip-
tion. From our point of view, the protocol completely determines the behavior
of the entities. Any kind of behavior is possible as long as it conforms to the
protocol specification. The implementation of the entities has to conform to
the protocol specifications.

The communicating entities are sources and sinks of certain types of messages.
Most entities both send and receive data. They can have their own inherent
data sources and storages. Most entities can also react to received messages
by releasing other messages. When receiving a message, the entity checks
the integrity of the message against its inherent data and that saved from
previously received messages.

The key and ticket servers are an integral part of the cryptographic system.
The model must capture their possibly complex behavior accurately. The
servers can usually be specified as reactive systems that receive certain types
requests, check them against some inherent information of theirs and answer
with messages containing the requested data.

3.1 Entities of the N-S protocol

In the Needham-Schroder protocol, the types of entities are user and KDC.
A user can behave as user A initiating the communication or as user B. The
user can simultaneously be A and B in several protocol runs.

Our model of the key distribution center is very simple. (Fig. 5) The KDC
answers requests always in the same way. The only catch is that it has a
supply session keys that are never reused.

In the N-S protocol, the two roles of a user do not interact significantly. There-
fore, separate models could be built for users A and B. In general, this is not
the case. In other protocols, a user in one role might reveal information that
later becomes useful for the intruder when the same user is playing another

<SesKey>

Receive request and
send answer

<Ald,APriKey> +
<BId,BPriKey>

E[Rn,BId,SesKey,E[SesKey,

|
[

Ald,BId,Rn [) .
| Ald;BPriKey];APriKey]
[

Channel / Intruder

Figure 5: The key distribution center model

role. We have, therefore, decided to incorporate both A and B in the same
user model.

The user model is an uncomplicated representation of the protocol specifica-
tion. Fig. 6 is somewhat simplified. In practice, we want to have several users
and a field for the user identifier must be added to the tuples in appropri-
ate places. We also have to limit the number of users and who can initiate
communication with whom (see Sec. 6).

4 Model of the channel and the intruder

In modelling the intruder, we have to be careful not to make any assumptions
about how it manipulates the messages. The reliability of the security analysis
depends crucially on the completeness of the intruder model. The model must
be conceptually so simple that one can be reasonably assured it covers all
possible behaviors of the intruder.

To avoid any restrictive assumptions, the communication channel is regarded
as completely unreliable. The intruder has control over all messages in the
channel. It can remove, alter, substitute and add messages. It is simplest to
identify the intruder with the channel. We model the channel and the intruder

—10 —

Channel / Intruder

A) A pooA

e TR EEEEE TR PP PE

: E[Rn,Bld,SesKeyl,E[...]:PriKey]

E[Rn;SesKey]

Aid,BIId,Rn EL.] E[RNn+1;SesKey]
] v 1 v : |
Send request Receive answer and Receive challenge
send forward and send response
User A
Prik
an <BId,Rn> rrey <Bld,SesKey>
<Rn,Rn+1>
Sent A sessmn
request
Add one
table
B session
key
Prikey <Rn,Rn+1>
Rn
<Ald,Rn,SesKey> <AId SesKey>

V

Receive forward and
send challenge

N A
|
: E[SesKey,Ald;PriKey] : E[Rn;SesKey] E[Rn+1;SesKey]
‘\ __ I ___ ('

+ User B
' Receive response

Channel / Intruder

Figure 6: The user model

ive |

—_—— = = —_— — — - - - - - - = = =

Communication
Channel / Intruder

<= Need to know (copy)
- — — Learn (setinsert)

Figure 7: The intruder model concepts

as a single entity that delivers messages between protocol entities. It takes all
the messages sent by them and it gives them messages to receive.

The intruder can be an outsider, a legitimate protocol entity or a group of
legitimate entities. We always think of the last alternative since it is the
worst. Being a conspiracy of several entities, the intruder has all their inher-
ent knowledge: keys, passwords etc. Only trusted entities like key brokers
cannot be involved in the conspiracy. The intruder can manipulate messages
in negligible time. It has knowledge of the structure of all messages in the
system and can encrypt and decrypt messages if only provided with the right
key.

4.1 Learning

Fig. 7 shows a simplified picture of the intruder model concepts. We base our
model of the intruder on the idea of learning. The intruder has a memory
where it keeps all different data items. It learns new information when a
protocol entity sends a message to the channel. It breaks plain sequential

- 12 —

messages in parts and puts every data item in the memory. (Fig. 8) It can
learn the contents of an encrypted message, if it already has the message and
a correct key in its memory. Reversely, the intruder can learn an encrypted
message if it has the contents and the encryption key already in its memory.
There can be further ways of computing new data items from the old.

In learning, a new data item is inserted in the memory only, if it is not there
yet. In this sense, the memory is a set of data items. Once the intruder
has learned something, it cannot forget it. Removing items from the memory
could not help the intruder in its malicious tasks.

Encrypt
\\E[Id,Text;Key]
Text \
Atomic data items Enscrypted messages
)
N \
Key Id \ TeXt \
N . \ E[ld, Text;Key]
Decrypt

Figure 8: Encryption and decryption

4.2 Delivering messages to protocol entities

The intruder uses the items in the memory to compose sequential messages and
gives them to protocol entities as if they came from a legitimate entity. Thus,
the channel never carries a message directly to its destiny. The message is
decomposed into the intruder memory and, when the same message is delivered
further, it is re-composed from its parts. Since we will use full reachability
analysis to guarantee that all possible combinations and orders of sending
and receiving messages are considered, we never really have to decide which
messages the intruder delivers and in which order. All possible combinations
are considered automatically.

— 13 —

4.3 Intruder’s inherent data

Like the communicating entities, the intruder has some inherent information
before the communication process begins. This information includes user iden-
tifiers, public keys, time, false text, random keys and other commonly known
or random data.

The intruder has recorded old messages and complete protocol runs. It may
have been able acquire old session keys by means of cryptanalysis or otherwise
and decrypt old messages. Therefore, we have to make the assumption that
it has incorrect and previously used versions for all parts of the messages in
the system.

Keeping in mind that the intruder can be a group of legitimate parties of the
communication, we have to provide it with its own version of the inherent
information of every type of entity in the system, such as private keys with a
corresponding records in the key broker’s files.

The inherent data is mostly system specific, so we can give only vague instruc-
tions here. It is easiest to first consider all different types of atomic data in
the system and then, for each type, list what the intruder might have. It never
hurts to give the the intruder a little more knowledge than it in reality has.
That cannot lead to false acceptance of erroneous protocols in the security
analysis. Moreover, it may reduce the risk of modelling errors resulting in
such false acceptance.

4.4 Intruder’s inherent data in the N-S protocol

In our sample protocol, the intruder knows initially all the user identifiers, and
old versions of session keys and random numbers. The identifiers are publicly
known and the old data items may have been obtained from previous protocol
runs by recording, cryptanalysis or other methods.

The intruder knows or can generate some random numbers and random session
keys, but the N-S protocol does not require logging of used keys or other
critical data. In that case, there is no real difference between old and randomly
generated data items. The model can be simplified by leaving out randomly
generated data items from the intruder memory, for it can use the old ones
in they place. The entities won’t recognize any difference between old and
random data items.

The intruder also has old versions of session key encrypted messages for which
it has been able obtain keys. Of course, we need not provide the intruder
with these messages as it can compose them itself, if we only give it the

— 14 —

corresponding basic data items, submessages and keys. We will, nevertheless,
give it the messages to avoid re-composing them in the reachability analysis
(see Sec. 7.1) Again, since the protocol entities do not remember old messages,
we need not consider old session key encrypted messages that the intruder has
not been able to decrypt. If the intruder has some use for them, it can use
the ones with a known key instead.

The intruder does not know user’s private keys and, thus, cannot compose
private key encrypted messages from parts. We therefore have to give it old
versions of private key encrypted messages from the KDC to every user. It
is easiest to give all possible combinations of private key encrypted messages
without thinking which of them the intruder could have in reality. As discussed
above, it does not harm the security analysis to give the intruder too much
information. If false reports of security holes result, the model can be revised.

As the intruder can be a conspiracy of several legitimate users of the system, we
have to provide it with all the kinds data that different entity types have. The
intruder must be given private keys of conspiring users with a corresponding
entry in the KDC’s files. Along with the private keys it knows all the messages
that can be encrypted with them.

5 Security criteria

In order to verify the security of the protocol, we have to specify exactly what
kind of behavior is unwanted in the system. We have to have a model with
enough friendly entities for a full protocol run without any interference from
the intruder. The security goals are stated in terms of this correct protocol
run: how would the intruder want to affect it? The intruder can have two
kinds of goals: it may want to learn confidential pieces of information and
feed false information to an unsuspecting entity.

The intruder reaches the first goal when it learns a piece of information that
is labeled or otherwise defined confidential. This might be “confidential text”.
Often some information becomes confidential when a protocol entity decides
to use it for a certain purpose. In key distribution protocols session key is
confidential only if it is accepted by someone as a secure key. In a correctly
functioning protocol, there should not be any states where the intruder knows
confidential data items. The second goal means that a protocol entity accepts
in its internal storage a data item that should not be there. It can, for example,
be “false text” or “old key”.

Both of the above goals can be reduced to a situation where the same data
item is in two places: inside a protocol entity and in the intruder’s memory.

— 15 —

In the first case, confidential information from a protocol entity’s data place
is also known by the intruder. In the latter case, the intruder is able to lead
its false data items to an entity’s data places.

Our only aim is to find security failures in protocols and verify security prop-
erties. With the present model, it is not possible to verify protocols’ general
properties such as liveness and boundedness. For such properties to hold, we
would have to limit the intruder’s capability of controlling the communication
channel. While security analysis of a system has a lot to do with credibility,
it would not be wise to offer the intelligibility of the model or generality of
the security analysis in order to model such other properties. Neither can we
consider intruders that only want to hinder communication. In our model,
the intruder can stop all communication by refusing to deliver any messages.
We can verify that the data sent by one entity to another does not leak to the
intruder and that, if the receiver accepts the data, it is authentic. We cannot
guarantee that the data ever gets to the receiver.

Limiting the present discussion to security aspects is not in any way harmful,
because other properties of the protocol can be analyzed separately. A more
serious problem with our model is that it does not describe how the protocol
recovers from an intruder attack. Security is guaranteed only if the entities
halt after detecting an attack. It seems that our models could be extended
to cover the recovery process. That would require an accurate specification of
the behavior of communicating agents in error situations. Unfortunately, most
cryptographic protocols do not specify ways of error recovery. In practical
protocols the issue of recovery has to be addressed.

5.1 Security in the N-S protocol

In our example, the security criteria is fairly simple. The purpose of the
protocol is to distribute session keys to two users without the intruder knowing
them. Unacceptable states of the system are those where either user has a
session key in a place of accepted keys and the intruder has the same key in
its memory.

6 How many is enough?

So far, we have not discussed quantitative aspects of the model. Practical
protocols rarely limit the number entities that may be involved in communi-
cation simultaneously. If there is a limit, it is often much too high for full
reachability analysis to be feasible. We have to decide how many entities of

— 16 —

each type need to be included in the model for it to represent a system with
an arbitrary number of entities. Does it make a difference if the key broker
has two clients instead of one? Should the intruder have knowledge of more
than one legitimate entity’s inherent data? And so on.

This question is not easy to answer in general. The number of entities required
for completeness of the security analysis depends on the protocol and the
cryptographic techniques used in it. Consider, for instance, a threshold scheme
where any five agents can decrypt a message but no four can. If the intruder
has inherent knowledge of three agent’s keys, it may be able to decrypt the
message in a model with two other agents but not in a single agent model.

While the answer to the question “How many is enough?” depends heavily on
the protocol, we can restrict the number of parameters that need to be given
a value. First, we restate some observations from earlier sections (Sec. 3.1
and 4.4).

Observation 1 If two roles of an entity type do not interact, the entities can
be limited to playing only one of the roles. Also, different entities could be used
for each of the roles.

On the other hand, if an entity has two roles that share secret data or state
information, it is not safe to limit its behavior to only one role. The entity
might in one role accept false information or reveal confidential information
that the intruder can later use against it when it is paying the other role. We
noted (in Sec. 3.1) that in the N-S protocol the two roles of the user don’t
interact. In reachability analysis, we will limit users to act as either user A or
user B.

Observation 2 If the intruder has recorded old messages of a certain type
and has been able to obtain a key for them, it does not need similar messages
without the proper key, as it can always use the ones with a key in their place.

The protocol entities cannot know if the intruder has been able to cryptanalyze
the recorded message or not. They treat all old messages in the same way.

Observation 3 If the protocol does not require entities of the system to re-
member old messages or used basic data items (session keys, random numbers
etc.) and the intruder has been able to record old messages and obtain keys
for them, it does not need false versions of the data, as it can use old ones
instead.

If the protocol entities do not remember past messages, they cannot see any
difference between old messages and ones composed by the intruder. Usually
this is the case, because it would require too much memory to remember old

— 17 —

messages or data items and too much time to check newly received messages
against the memory.

Next, we consider the number of entities necessary for detecting security fail-
ures. As noted in Sec. 5, at least one honest, uncompromised entity of each
entity type of a correct protocol run is needed in the model. Otherwise, there
would be a conspiring entity involved in every communication process and
secure communication would be impossible. This is the minimal number of
honest entities that are needed for detecting security failures.

If security failures are detected, they are detected during some protocol run.
The security goals can be stated in terms of entities of a single protocol run
and the intruder memory. (Remember that we defined protocol run so that
the state of the system is essentially the same before and after a protocol run.)
Furthermore, if the intruder knows the inherent data of an entity, it can act
exactly like the entity. It can do this by responding to all messages exactly
like that entity would and generating all the same messages. Therefore, if
several protocol runs between varying entities are needed to result in a security
failure, the intruder can play the parts of all other entities, except the ones in
the run with the detected security failure. In conclusion, the minimal number
of uncompromised entities needed in a correct protocol run is sufficient for
detecting any security failures in a similar run. This leads to the following
observation.

Observation 4 If we give the intruder initial knowledge of the inherent data
of sufficiently many entities, it is not necessary to include in the model more
than the mazximum number of uncompromised entities that can take part in a
full protocol run. (How much is sufficiently many, has to be determined for
the protocol in question.)

This means that the intruder can be a conspiracy of arbitrary number of
legitimate agents. We have to initially insert in the intruder’s memory all the
inherent data of several entities of every type in the system. On the other
hand, we need to have in the model only a minimal number of entities for the
communication process to complete.

Still, we must decide how many conspiring agents data we initialize the in-
truder’s memory with. This question remains for the analyst to answer sepa-
rately for every protocol. It should be thoroughly answered every time. Oth-
erwise, the security of the system cannot be proved. In many cases, upper
bounds for the numbers may be easily found but these upper bounds are too
high for practical analysis.

— 18 —

6.1 Number on entities in the N-S protocol model

In the Needham-Schroder protocol, it is fairly easy to decide the number of
inherent data items in the intruder’s memory. If the intruder uses two different
basic data items of the same kind somewhere, there is no reason why it could
not use one of them for both purposes. Nowhere in the model is there a
transition that requires two data items to be different. This leads to one more
observation.

Observation 5 If the protocol does not require comparison of two data items
anywhere, it suffices to initialize the intruders memory with only one data item
of a kind as it can use the same one for all purposes.

We have to be careful about what we mean with the word “kind” here. Basic
data items are of the same kind, if they are of the same type (key, number
etc.) and they have similar corresponding data items in protocol data storages
inside protocol entities. For example, we mean that two keys are of different
kind, if one is known by the intruder only and the other is the session key used
by a protocol entity. In encrypted messages all the parts must be of the same
kind. It may be easier to provide the intruder with all thinkable combinations
of encrypted messages instead of trying to reason which really are different.

7 Reachability analysis

We have used the reachability analysis tool PROD [3, 4] to find errors in
the Needham—Schroder protocol. The well known repetition attack, where
the intruder sends an old forward message to user B, was rediscovered. The
complete model is in Appendix A and the analysis results in Appendix B.

Experiments showed that full reachability analysis of complicated crypto-
graphic algorithms is not a straightforward matter. Problems arise with the
size of the reachability graph. Interleaving of the actions of several entities and
independent learning events of the intruder result in a large state space, even
though the protocol is relatively simple. In the following we will discuss some
methods that were used to fight state space explosion. We are encouraged
by the fact that cryptographic protocols usually allow only very restricted
behavior of the entities. Therefore, there may be only a small number of con-
ceptually different processes and states to consider. Firstly, there are some
things that must be taken in consideration when building the model.

—19 —

7.1 Optimizing the model

All messages that the intruder can compose from its inherent data should be
given to it initially. This may not affect very much the overall size of the
state space, but it saves some time at the beginning of the reachability graph
generation. Giving the messages ready-made saves time when debugging the
model and when the protocol under development still has errors that are
quickly found.

In the previous sections we have emphasized that it is better to give the
intruder too much inherent knowledge that too little. From the reachability
analysis point of view, it is better to use as few different basic data items as
possible. It is probably the most demanding task of the modeller to find a set
of data items that sufficiently represents an arbitrary system and that still is
small enough to make reachability analysis feasible.

7.2 On-the-fly verification

On-the-fly verification looks for erroneous states of the system during reacha-
bility graph generation and stops when the first such state is encountered. If
the protocol has security flaws, on-the-fly method often finds them reasonably
fast.

7.3 Optimizing reachability graph generation

There are also ways of reducing the generated state space during the reachabil-
ity analysis. How well these methods work depends entirely on the structure
of the model. Luckily, some are especially well suited for protocols with sev-
eral concurrently acting agents. The main points of improvements lie in the
intruder learning process and in the concurrency of the protocol.

7.4 Prioritizing learning transitions

As anyone examining a reachability graph for our model will soon notice,
the intruder learning process is not very effectively described by Petri nets.
The problem is that the reachability analysis considers separately all different
orders in which the intruder can encrypt and decrypt messages. For example,
if the intruder learns a new session key, it may be able to compose tens or
hundreds of new messages from the data it already has. If we go through all
different orders of these messages, the number of intermediate states will be
immense. The end result of all different learning processes is, on the other

— 20 —

hand, the same set of messages. We can choose an single learning process to
represent all of them. Also, all internal learning (encrypting, decrypting, etc.)
can be done immediately after the intruder has obtained new data items.

What we did to choose only one of the possible learning processes, was pri-
oritizing the transitions. Giving the intruder’s internal learning transitions a
higher priority than any other transitions in the system forces all learning to
take place immediately. The different transitions inside the intruder also have
to have different priorities. In a high level net even this is not enough. Dif-
ferent instances of transitions in the intruder model should be given different
priorities so that several enabled instances of the same transition can occur
only in one order. It is worth noting that transitions in conflict with higher
priority ones are ignored. This does not cause problems because only the final
result, after all possible learning is done, matters.

In experiments, prioritizing worked well for very small problems. When the
number of different data items in the system increases, a new data item in
the intruder memory may induce a tens or hundreds of states long learning
process. Since we save both the set of messages known by the intruder (tuples
ending in 1) and the ones not known (tuples ending with 0), the space needed
for saving a single state became fairly large. (8-130kB in our experiments with
the N-S protocol). Generating and saving the intermediate states of the learn-
ing processes becomes the largest part of the work. Typically they comprise
at least 90% of the state space. This means high memory or disk space con-
sumption and slow reachability graph generation. The obvious improvement
would be to leave out all intermediate states of learning and only store the
final result set. That in not easily done with Pr/T nets and the tools at hand.

7.5 The stubborn set method

The stubborn set method [10] proved efficient in reducing the state space.
Interleaving of the concurrent actions of different entities greatly contributes
to the state space explosion. Also, most of the different learning processes
(see Sec. 7.4) can be arbitrarily interleaved. Changing the order in which
the intruder exchanges messages with the protocol entities or learns new data
often does not change the resulting state. The stubborn set method effectively
utilizes this kind of concurrency in the system. The method clearly is not as
effective in reducing the number of intermediate states in learning processes
as the priority method proposed in the previous section.

The on-the-fly version of CFFD equivalence preserving stubborn set method
[11, 12] implemented in PROD takes good advantage of concurrency of the
model while preserving behavioral equivalence with respect to test transitions,

— 921 —

whose enabledness indicates an insecure state of the system. This was the most
effective analysis method tested. It found the security flaw fast, but the path
to the erroneous state was quite long. The memory requirements of saving a
single state are still a problem.

In experiments, the stubborn set method found the flaw of the Needham-
Schroder protocol in the basic model after 79 states and in a model with
more users after 119 states. Without the stubborn set method, the former
took 623 states and the latter did not complete. Without stubborn sets,
breadth first generation of large state spaces is not feasible and results of
depth first on-the-fly generation depend heavily on details of the model and
the order of transitions in PROD input files. It is expected that priority
method combined with stubborn set would reduce the size of the state space
significantly, but for small problems it can slow down detecting security flaws
by ignoring the shortest routes to erroneous states. Unfortunately, PROD
does not allow combining priorities with on-the-fly verification or stubborn
sets; no experiments with combined methods were made.

7.6 Developing a new net class for cryptographic protocols

If extensive analysis of cryptographic protocols is needed, it might be a good
idea to adapt the formalism and analysis tools for them. This would make
both modeling and analysis more efficient.

The short hand notations used in this paper for Pr/T net constructs make
modelling easier. A new net class could be defined with set type places (instead
of the usual multi-sets) like the ones we have used. In the analysis tool,
the sets could be represented with a data structure especially fitted for sets.
The present representation of the set and its complement is unnecessarily
heavy. Set type places would partially solve the problem of states requiring
too large storage space. Negative arcs, or inhibitors, that disable transition if
the corresponding token exists in a place, could be used for the same purpose
as the set places.

Furthermore, in a net with negative arcs it would not be necessary to store in
the intruder memory any messages which the intruder can directly compose
from parts. In a normal predicate/transition nets it is impossible to inhibit
storing of messages when they can be composed from parts. With negative
arcs, the intruder could store received messages only when it is unable to
decrypt them and no similar message is already in the memory. There would
be three ways to receive a message: decrypt it immediately and only store
the parts, store the entire message when unable to decrypt, or not store the
message when it already is in the memory. Similarly, there would be two ways

— 929 —

of sending a messages: compose it from parts or send an entire message that
has been stored in the memory.

Set type places could be used for a partially similar effect: only store every
received message once and not store any messages composed by the intruder
itself. In normal Pr/T net, we have to store the complement sets, i.e. the
items which are not in the memory, in any case. Therefore, it would not help
any to rearrange receiving and sending of messages in our present model.

It is worth noting that nets with prioritized transitions, as suggested in Sec.
7.4, actually form a net class with far greater expressive power than the usual
Pr/T nets. We only used priorities so that they did not enhance the expres-
siveness of the formalism but merely sped up the analysis. It is possible to
use the priorities, and also negative arcs, in such a way that the net class has
the power of a universal computer. [8] There is no obvious reason to avoid
such use, but it is likely that any trickery in the model makes efficient analysis
more difficult.

In Sec. 7.4, we came up with the idea of leaving out all intermediate places of
the intruder learning processes. In a new formalism, the intruder’s memory
could be represented by a knowledge module that automatically does all en-
crypting, decrypting and other internal learning immediately when new data
items are inserted. More effective algorithms and data structures than nets
could be used to implement the memory’s contents and the learning process.
In reachability analysis, every state would still include the state of the mem-
ory. It is not clear if such a new formalism would be a Petri net any more. One
possibility would be to encode the contents of the memory to a fixed number
of tokens in a single place, but this task seems difficult and computationally
slow for large sets of memory items.

As long as only single problems are analyzed, it is better to use existing
formalisms and tools with well-implemented efficient algorithms. If the same
problem needs to be solved more often or is important enough, it may be worth
the work to adapt tools to the problem. The most promising improvement
of the formalism and tools would be the introduction of negative arcs to the
Pr/T net. To be effective in reducing the state space, any such change of
formalism should still accommodate the use of the stubborn set method.

8 Conclusion

In this paper, we modelled and analyzed security of the Needham-Schroder key
distribution protocol with predicate/transition nets, and along that, developed
a methodology for modelling cryptographic protocols with high level Petri

— 923 —

nets. Our main goal has been clarity of the model and its feasibility for
automated analysis.

The model of the protocol entities was constructed directly from the specifi-
cation of the protocol. The intruder and the communication channels were
modelled as one unreliabe entity that has complete control over all messages
in the system. The intruder model was based on the concepts of memory and
learning. Special care was taken that the model captures all possible actions
of the intruder.

The quantities of entities and data items in the model were found to be crucial
for the completeness of the security analysis. Several rules of thumbs were
given for finding the minimal number of model parts that represents a system
with an arbitrary number of entities and concurrent protocol runs. The issue
of quantities has to be thoroughly discussed for every every protocol model
separately, as was done here for the N-S protocol.

Several techniques of fighting state space explosion in reachability analysis
were discussed. The stubborn set method was found to be effective in re-
ducing the number of generated states. The large disk space required for
storing complement sets was found to be a central problem in the analysis.
Introduction of set type places or, preferably, negative arcs in the net formal-
ism was proposed as a solution. In experiments with the predicate/transition
net reachability analysis tool PROD, the model proved efficient in detecting
protocol failures. The PROD tool has efficient implementation of the on-the-
fly and stubborn set methods for reachability analysis. The tool is, however
limited to the class of Pr/T nets, and we were not able to test the proposed
enhancements to the formalism. Further development the formalism and tools
is clearly necessary for the presented methods to be useful in full verification
of the security of real size protocols.

— 24 —

References

[1] Dorothy Denning. Cryptography and data security. Addison-Wesley,
Reading MA, 1982.

[2] Hartman J. Genrich. Predicate/transition nets. In Advances in Petri
Nets 1986, pages 207-247. LNCS-254, Spring-Verlag, 1986.

[3] Peter Gronberg, Mikko Tiusanen, and Kimmo Varpaaniemi. Prod—a
Pr/T-net reachability analysis tool. Technical report, Digital Systems
Laboratory, Helsinki University of Technology, June 1993. <ftp: sat-
urn.hut.fi>.

[4] Jaakko Halme, Kari Hiekkanen, Tino Pyssysalo, and Kimmo
Varpaaniemi. PROD Reference Manual. Digital Systems Laboratory,
Helsinki University of Technology, October 1994. <ftp: saturn.hut.fi>.

[5] K. Jensen. Coloured petri nets. In Advances in Petri Nets 1986, pages
248-299. LNCS-254, Spring-Verlag, 1986.

[6] Nieh and Tavares. Modelling and analyzing cryptographic protocols using
petri nets. In Advances in Cryptology—AUSCRYPT ’92, International
Conference on Cryptology, pages 275-295. LNCS, Spring-Verlag, 1992.

[7] Benjamin B. Nieh. Modelling and analysis of cryptographic protocols
using petri nets. Master’s thesis, Queen’s university, Kingston, Ontario,
Canada, 1992.

[8] James L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall Inc., Englewood Cliffs, N.J., 1981.

[9] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 1994.

[10] Antti Valmari. Stubborn sets for reduced state space generation. In
Advances in Petri Nets 1990, pages 490-515. LNCS-483, Spring-Verlag,
1991.

[11] Antti Valmari. Alleviating state space explosion during verification of
behavioral equivalence. Technical report, University of Helsinki, Depart-
ment of Computer Science, 1992.

[12] Antti Valmari. On-the-fly verification with stubborn sets. In Computer
Aided Verification, pages 397—408. LNCS-697, Spring-Verlag, 1993.

[13] Kimmo Varpaaniemi. On computing symmetries and stubborn sets. Tech-
nical report, Digital Systems Laboratory, Helsinki University of Technol-
ogy, April 1994. <ftp: saturn.hut.fi>.

— 925 —

A Needham-Schréder protocol model for PROD

/*
Needham---Schréder authentication protocol

*/

/*
Data types

Basic data types:
User identifier (Id)
Random number (Rn)
Key (Key)
Encrypted message types:
E[Rn,Id,Key,E[Key,Id;Key] ;Key]

<Rn,Id,Key,Key,Id,Key,Key> (EX)

E[Key,Id;Key] = <Key,Id,Key> (EY)
E[Rn;Key] = <Rn,Key> (EZ)
E[RnPlus1;Key] = <RnPlusl,Key> (EW)

*/

#enum Jules,Jim,Kathe

#define IdMax Jules

#define IdMin Kathe

#define Alllds IdMin..IdMax

#define IdCount IdMax-IdMin

/* Only Jules can be A, he can only choose Jim for B and
he can start the process only once. */

#define PossibleABInit <.Jules,Jim.>

/* Only Jim can act as B. */

#define PossibleBInit <.Jim.>

#enum arnil, \

brni, \

irnl
#define ARnMax arnl
#define ARnMin arnl
#define Al1ARns ARnMin. . ARnMax
#define BRnMax brnil
#define BRnMin brnl
#define Al1BRns BRnMin. .BRnMax
#define RnMax arnl
#define RnMin irni
#define AllRns RnMin. .RnMax
#define IRns irnl..irnl
#define NonIRns brnl..arnl
#define RnCount RnMax-RnMin+1

#enum arniplusi, \

brniplusi, \

irniplusi
#define RnPlusiMax arnlplusi
#define RnPlusiMin irniplusil
#define IRnPlusls irniplusl..irnlplusi
#define NonIRnPlusls brnlplusl..arnlplusi
#define AllRnPlusls RnPlusiMin..RnPlusiMax

#define AddOneTableInit <.arnl,arnlplusl.>+<.brnl,brnilplusl.>+ \
<.irnl,irnlplusi.>

— 26 —

#enum prikeyl,prikey2, \
prikey3

#define IPriKeyMax prikey3

#define IPriKeyMin prikey3

#define IPriKeys IPriKeyMin. .IPriKeyMax
#define IPriKeyCount IPriKeyMax-IPriKeyMin+1
#define PriKeyMax prikeyl
#define PriKeyMin prikey3

#define AllPriKeys PriKeyMin. .PriKeyMax
#define PriKeyCount PriKeyMax-PriKeyMin+1

#enum seskeyl, \

iseskeyl
#define SesKeyMax seskeyl
#define SesKeyMin iseskeyl
#define NonISesKeys seskeyl..seskeyl
#define ISesKeys iseskeyl..iseskeyl

#define AllSesKeys SesKeyMin. .SesKeyMax
#define SesKeyCount SesKeyMax-SesKeyMin+1

/* The following initializer can conveniently be user for both
the user and KDC models. */

#define PrivateKeysInit <.Jules,prikeyl.>+<.Jim,prikey2.>+<.Kathe,prikey3.>

/* Everything without new random numbers or session keys,

total 3*3%2%2%x3%3%3=972,
presently gives the intruder a bit too much knowledge */

#define memoryEXInit \
<.NonIRns,Al1Ids,AllSesKeys,Al1SesKeys,Al1Ids,Al11PriKeys,Al11PriKeys,0.> + \
<.IRns,Al11Ids,NonISesKeys,AllSesKeys,A11Ids,Al11PriKeys,Al11PriKeys,0.> + \
<.IRns,Al11Ids,ISesKeys,NonISesKeys,A11Ids,A11PriKeys,A11PriKeys,0.> + \
<.IRns,Al11Ids,ISesKeys,ISesKeys,AllIlds,A11PriKeys,Al11PriKeys,1.>

/* Everything without new session keys, total 2%3%4=18,
gives the intruder a bit too much knowledge */

#define memoryEYInit \
<.NonISesKeys,AllIds,Al1PriKeys,0.> + \
<.ISesKeys,Alllds,Al1PriKeys,1.>

/* Everything the intruder could compose itself */

#define memoryEZInit <.IRns,ISesKeys,1.> + \
<.NonIRns,AllSesKeys,0.> + \
<.IRns,NonISesKeys,0.>

#define memoryEWInit <.IRnPlusls,ISesKeys,1.> + \
<.NonIRnPlusls,AllSesKeys,0.> + \
<.IRnPlusls,NonISesKeys,0.>

/*
General computation tables

*/

/% Unique new random numbers,

a separate set for each origin to reduce state space,

intruder’s share is initially in its memory */
#place ARandomNumbers lo(<.ARnMin.>) hi(<.ARnMax.>) mk(<.AllARns.>)
#place BRandomNumbers lo(<.BRnMin.>) hi(<.BRnMax.>) mk(<.AllBRns.>)
/* Adding one to a random number */
#place AddOneTable lo(<.RnMin,RnPlusiMin.>) hi(<.RnMax,RnPlusiMax.>) \

— 27 —

mk (AddOneTableInit)

/*
Intruder memory places

*/

/* Basic data types */
/* Intruder knows all user identifiers, cannot learn more */
#place Memoryld lo(<.IdMin,1.>) hi(<.IdMax,1.>) mk(<.IdMin..IdMax,1.>)
#place MemoryRn lo(<.RnMin,0.>) hi(<.RnMax,1.>) \
mk(<.IRns,1.>+<.NonIRns,0.>)
#place MemoryRnPlusl lo(<.RnPlusiMin,0.>) hi(<.RnPlusiMax,1.>) \
mk (<.IRnPlusls,1.>+<.NonIRnPlusls,0.>)
/* Intruder cannot get hold of any more pivate keys in the process. */
#place MemoryPriKey lo(<.IPriKeyMin,1.>) hi(<.IPriKeyMax,1.>) \
mk (<.IPriKeys,1.>)
#place MemorySesKey 1lo(<.SesKeyMin,0.>) hi(<.SesKeyMax,1.>) \
mk (<.NonISesKeys,0.>+<.ISesKeys,1.>)
/* Encrypted messages */
#place MemoryEX lo(<.RnMin,IdMin,SesKeyMin,SesKeyMin,IdMin,PriKeyMin, \
PriKeyMin,0.>) \
hi(<.RnMax,IdMax,SesKeyMax,SesKeyMax,IdMax,PriKeyMax, \
PriKeyMax,1.>) \

mk (memoryEXInit)
#place MemoryEY lo(<.SesKeyMin,IdMin,PriKeyMin,0.>) \
hi(<.SesKeyMax,IdMax,PriKeyMax,1.>) mk(memoryEYInit)
#place MemoryEZ lo(<.RnMin,SesKeyMin,0.>) \
hi(<.RnMax,SesKeyMax,1.>) mk(memoryEZInit)
#place MemoryEW lo(<.RnPlusiMin,SesKeyMin,0.>) \

hi(<.RnPlusiMax,SesKeyMax,1.>) mk(memoryEWInit)

/*
User data places

*/

#place PossibleAB lo(<.IdMin,IdMin.>) hi(<.IdMax,IdMax.>) \
mk (PossibleABInit)

#place PossibleB lo(<.IdMin.>) hi(<.IdMax.>) mk(PossibleBInit)

#place SentRequestRn lo(<.IdMin,IdMin,RnMin.>) hi(<.IdMax,IdMax,RnMax.>)

#place MyPrivateKey lo(<.IdMin,PriKeyMin.>) hi(<.IdMax,PriKeyMax.>) \
mk (PrivateKeysInit)

#place ASessionKey lo(<.IdMin,IdMin,SesKeyMin.>) \

hi(<.IdMax,IdMax,SesKeyMax.>)
#place SentChallengeRn lo(<.IdMin,IdMin,RnMin,SesKeyMin.>) \
hi(<.IdMax,IdMax,RnMax,SesKeyMax.>)
#place BSessionKey lo(<.IdMin,IdMin,SesKeyMin.>) \
hi(<.IdMax,IdMax,SesKeyMax.>)

/*
KDC data places
*/

#place PrivateKeys 1lo(<.IdMin,PriKeyMin.>) hi(<.IdMax,PriKeyMax.>) \
mk (PrivateKeysInit)
/* Unique new session keys */
#place SessionKeys lo(<.SesKeyMin.>) hi(<.SesKeyMax.>) mk(<.NonISesKeys.>)

/*

— 28 —

Tester

*/

#place Tester 1o(<.0.>) hi(<.1.>) mk(<.0.>)
#tester Tester reject(<.1.>)

/*
Intruder learning processes

*/
/* Decrypting */

#trans decryptEX
in { MemoryPriKey: <.PriKey2,1.>; /* Decryption key */
MemoryEX: <.Rn,Idl,SesKeyl,SesKey2,Id2,PriKeyl,PriKey2,1.>;
MemoryRn: <.Rn,knowsBeforeRn.>;
MemorySesKey: <.SesKeyl,knowsBeforeKey.>;
MemoryEY: <.SesKey2,Id2,PriKeyl,knowsBeforeEX.>; }
out { MemoryEX: <.Rn,Id1,SesKeyl,SesKey2,Id2,PriKeyl,PriKey2,1.>;
MemoryPriKey: <.PriKey2,1.>;
MemoryRn: <.Rn,1.>;
MemorySesKey: <.SesKeyl,1.>;
MemoryEY: <.SesKey2,Id2,PriKeyi1,1.>; }
comp () { if (knowsBeforeRn == 0 || knowsBeforeKey == 0 ||
knowsBeforeEX == 0) Accept(); }
#endtr

#trans decryptEY
in { MemoryPriKey: <.PriKey,1.>; /* Decryption key */
MemoryEY: <.SesKey,Id,PriKey,1.>;
MemorySesKey: <.SesKey,0.>; }
out { MemoryPriKey: <.PriKey,1.>;
MemoryEY: <.SesKey,Id,PriKey,1.>;
MemorySesKey: <.SesKey,1.>; }
#endtr

#trans decryptEZ
in { MemorySesKey: <.SesKey,1.>; /* Decryption key */
MemoryEZ: <.Rn,SesKey,1.>;
MemoryRn: <.Rn,0.>; }
out { MemoryEZ: <.Rn,SesKey,1.>;
MemorySesKey: <.SesKey,1.>;
MemoryRn: <.Rn,1.>; }
#endtr

#trans decryptEW
in { MemorySesKey: <.SesKey,1.>; /* Decryption key */
MemoryEW: <.RnPlusl,SesKey,1.>;
MemoryRnPlusl: <.RnPlus1,0.>; }
out { MemoryEW: <.RnPlusl,SesKey,1.>;
MemorySesKey: <.SesKey,1.>;
MemoryRnPlusl: <.RnPlusl,1.>; }
#endtr

/* Encrypting */

#trans encryptEX
in { MemoryPriKey: <.PriKey2,1.>; /* Encryption key */
MemoryEX: <.Rn,Id1,SesKeyl,SesKey2,Id2,PriKeyl,PriKey2,0.>;
MemoryRn: <.Rn,1.>;

— 929 —

MemorySesKey: <.SesKeyl,1.>;
MemoryEY: <.SesKey2,Id2,PriKeyi1,1.>; }
out { MemoryEX: <.Rn,Id1,SesKeyl,SesKey2,Id2,PriKeyl,PriKey2,1.>;

MemoryPriKey: <.PriKey2,1.>;

MemoryRn: <.Rn,1.>;

MemorySesKey: <.SesKeyl,1.>;

MemoryEY: <.SesKey2,Id2,PriKeyl,1.>; }

#endtr

#trans encryptEY
in { MemoryPriKey: <.PriKey,1.>; /* Encryption key */
MemoryEY: <.SesKey,Id,PriKey,0.>;
MemorySesKey: <.SesKey,1.>; }
out { MemoryEY: <.SesKey,Id,PriKey,1.>;
MemoryPriKey: <.PriKey,1.>;
MemorySesKey: <.SesKey,1.>; }
#endtr

#trans encryptEZ
in { MemoryEZ: <.Rn,SesKey,0.>;
MemorySesKey: <.SesKey,1.>; /* Encryption key */
MemoryRn: <.Rn,1.>; }
out { MemoryEZ: <.Rn,SesKey,1.>;
MemorySesKey: <.SesKey,1.>;
MemoryRn: <.Rn,1.>; }
#endtr

#trans encryptEW
in { MemoryEW: <.RnPlusl,SesKey,0.>;
MemorySesKey: <.SesKey,1.>; /* Encryption key */
MemoryRnPlusl: <.RnPlusl,1.>; }
out { MemoryEW: <.RnPlusl,SesKey,1.>;
MemorySesKey: <.SesKey,1.>;
MemoryRnPlusl: <.RnPlusi,1.>; }
#endtr

/* Adding one to a random number and subtracting one
(the latter probably unnecessary) */

#trans addOne
in { MemoryRn: <.Rm,1.>;
MemoryRnPlusl: <.RnPlus1,0.>;
AddOneTable: <.Rn,RnPlusi.>; }
out { MemoryRn: <.Rm,1.>;
MemoryRnPlusl: <.RnPlusi,1.>;
AddOneTable: <.Rn,RnPlusi.>; }
#endtr

#trans subtractOne
in { MemoryRnPlusl: <.RnPlusi,1.>;
MemoryRn: <.Rn,0.>;
AddOneTable: <.Rn,RnPlusi.>; }
out { MemoryRnPlusl: <.RnPlusl,1.>;
MemoryRn: <.Rn,1.>;
AddOneTable: <.Rn,RnPlusi.>; }
#endtr

/*
User message exchange

*/

— 30 —

#trans sendRequest /* User
in { PossibleAB: <.MyId,BId.>; /* Don’t put
ARandomNumbers: <.Rn.>; /* Don’t put back
MemoryRn: <.Rn,knowsBeforeRn.>; }
out { SentRequestRn: <.MyId,BId,Rn.>;
/* Request <MyId,AId,BId,Rn> from user A to
MemoryRn: <.Rn,1.>; }
#endtr

#trans recAnswerAndSendForward /* User
in { SentRequestRn: <.MyId,BId,Rn.>;
MyPrivateKey: <.MyId,PriKey.>;
/* Answer EX from KDC to user A. */

A x/

back for reuse!

for reuse!

KDC. */

A *x/

MemoryEX: <.Rn,BId,SesKey,Keyl,Idl,Key2,PriKey,1.>;

MemoryEY: <.Keyl,Idl,Key2,knowsBeforeEY.>;
out { MyPrivateKey: <.MyId,PriKey.>;
ASessionKey: <.MyId,BId,SesKey.>;

}

MemoryEX: <.Rn,BId,SesKey,Keyl,Idl,Key2,PriKey,1.>;

/* Forward EY from user A to user B. */
MemoryEY: <.Keyl,Id1,Key2,1.>; }
#endtr

#trans recForwardAndSendChallenge /* User
in { MyPrivateKey: <.MyId,PriKey.>;
PossibleB: <.MyId.>;

BRandomNumbers: <.Rn.>; /* Don’t put back for reuse! */

/* Forward EY from user A to user B. */
MemoryEY: <.SesKey,AId,PriKey,1.>;
MemoryEZ: <.Rn,SesKey,knowsBeforeEZ.>; }

out { SentChallengeRn: <.MyId,AId,Rn,SesKey.>;
PossibleB: <.MylId.>;
MemoryEY: <.SesKey,AId,PriKey,1.>;

/* Challenge EZ from user B to user A */
MemoryEZ: <.Rn,SesKey,1.>; }

#endtr

B *x/

#trans recChallengeAndSendResponse /* User A */

in { ASessionKey: <.MyId,BId,SesKey.>;
AddOneTable: <.Rn,RnPlusi.>;
/* Challenge EZ from user B to user A */
MemoryEZ: <.Rn,SesKey,1.>;

MemoryEW: <.RnPlusl,SesKey,knowsBeforeEZ.>; }
out { ASessionKey: <.MyId,BId,SesKey.>;
AddOneTable: <.Rn,RnPlusl.>;
MemoryEZ: <.Rn,SesKey,1.>;
/* Response EW from user A to user B. */
MemoryEW: <.RnPlusl,SesKey,1.>; }
#endtr
#trans recResponse /* User B */

in { SentChallengeRn: <.MyId,AId,Rn,SesKey.>;
AddOneTable: <.Rn,RnPlusi.>;
/* Response EZ from user A to user B. */
MemoryEW: <.RnPlusi,SesKey,1.>; }

out { AddOneTable: <.Rn,RnPlusi.>;
BSessionKey: <.MyId,AId,SesKey.>;
MemoryEW: <.RnPlusl,SesKey,1.>; }

#endtr

*/

*/

— 31 —

/*
KDC message exchange

*/

#trans recRequestAndSendAnswer
in { PrivateKeys: <.AId,APriKey.> + <.BId,BPriKey.>;
SessionKeys: <.SesKey.>; /# Don’t put back for reuse! */
MemoryRn: <.Rn,1.>;
MemoryEX: <.Rn,BId,SesKey,SesKey,AId,BPriKey,APriKey,
knowsBeforeEX.>; }
/* Request <AId,BId,Rn> from user A to KDC. */
out { PrivateKeys: <.AId,APriKey.> + <.BId,BPriKey.>;
MemoryRn: <.Rn,1.>;
/* Answer EX from KDC to user A. */
MemoryEX: <.Rn,BId,SesKey,SesKey,AId,BPriKey,APriKey,1.>; }
#endtr

/*
Tester

*/

#trans foundProblemA
in { MemorySesKey: <.SesKey,1.>;
ASessionKey: <.AId,BId,SesKey.>;
Tester: <.0.>; }
out { MemorySesKey: <.SesKey,1.>;
ASessionKey: <.AId,BId,SesKey.>;
Tester: <.1.>; }
#endtr

#trans foundProblemB
in { MemorySesKey: <.SesKey,1.>;
BSessionKey: <.BId,AId,SesKey.>;
Tester: <.0.>; }
out { MemorySesKey: <.SesKey,1.>;
BSessionKey: <.BId,AId,SesKey.>;
Tester: <.1.>; }
#endtr

B Using Probe to track a failure of the protocol

O#query bspan (true) %2
o [9> 10 [3> 14 [1> 16 [0> 17 [0> 18 [0> 19 [0> 20 [0>

21 [0> 22 [0> 23 [0> 24 [0> 25 [0o> 26 [0> 27 [0> 28 [0O>
29 [0o> 30 [0o> 31 [o> 32 [0> 33 [0> 34 [0> 35 [0> 36 [0O>
37 [0> 38 [0> 39 [0> 40 [0> 41 [o> 42 [0> 43 [0> 44 [1>
46 [0> 47 [0> 48 [0> 49 [0> 50 [0> 51 [0> 52 [0> 53 [0>
54 [0> 55 [0> 56 [0> 57 [0> 58 [0> 59 [0> 60 [0> 61 [0>
62 [0> 63 [0> 64 [0> 65 [0> 66 [0> 67 [0> 68 [0> 69 [0>
70 [0> 71 [o> 72 [0> 73 [0> 74 [0> 75 [0> 76 [0> 77 [O>
78 [0> 79

1 paths

Built set %4

The intruder sends user B an old message recorded from

previous protocol runs. B does not notice that the

— 32 —

message and session key are old and sends a challenge.

10#succ arrow 3

Arrow 3: transition recForwardAndSendChallenge, precedence class 0
MyId = Jim
PriKey = prikey2

Rn = brnl

SesKey = iseskeyl

AId = Jules

knowsBeforeEZ = 0
to node 14

[...irrelevant transitions removed...]

Since the intruder knows the old session key, it can

decrypt the challenge and send a response.

44#succ

Arrow 0: transition decryptEZ, precedence class 0
SesKey = iseskeyl
Rn = brnl

to node 45

T5#succ
Arrow O: transition addOne, precedence class 0
Rn = brnl
RnPlusl = brnlplusil
to node 76
T6#succ
Arrow 0: transition encryptEW, precedence class 0
RnPlusl = brnlplusl
SesKey = iseskeyl
to node 77
TT#succ
Arrow 0: transition recResponse, precedence class 0
MyId = Jim
AId = Jules
Rn = brnil
SesKey = iseskeyl
RnPlusl = brnlplusi
to node 78

T8#succ

Arrow 0: transition foundProblemB, precedence class 0
SesKey = iseskeyl
BId = Jim
AId = Jules

to node 79

