HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series A: Research Reports ISSN 0783-5396
No. 46; May 1997 ISBN 951-22-3607-9

STATELESS CONNECTIONS

TuomAS AURA AND PEKKA NIKANDER
Department of Computer Science

Helsinki University of Technology

Otaniemi, FINLAND

Helsinki University of Technology
Department of Computer Science

Digital Systems Laboratory

Otaniemi, Otakaari 1

P.0.Box 1100, FIN-02015 HUT, FINLAND

HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series A: Research Reports ISSN 0783-5396

No. 46; May 1997 ISBN 951-22-3607-9

Stateless connections

TuoMAs AURA AND PEKKA NIKANDER

Abstract: We describe a transformation of stateful connections or parts of them into
stateless ones by attaching the state information to the messages. Message authentication
codes are used for checking integrity of the state data and the connections. The stateless
server protocols created in this way are more robust against denial of service resulting from
high loads and resource exhausting attacks than their stateful counterparts. In particular,
stateless authentication resists attacks that leave connections in a half-open state. Examples
of problems related to statefulness and solutions to them shown for the X.509, ISAKMP,
TCP and HTTP protocols.

Keywords: stateless connections, denial of service, cryptographic protocols, robust design,
SYN-flooding attack

Printing: TKK Monistamo; Otaniemi 1997

Helsinki University of Technology Phone: (09) 4511

. +358 9
Department of Computer Science
Digital Systems Laboratory Telex: 125 161 htkk fi
Otaniemi, Otakaari 1 Telefax: +358 9 451 3369

B.0.Box 1100, FIN-02015 HUT, FINLAND E-mail: lab@saturn.hut.fi

Contents

1 Introduction

2 Denial of service in stateful protocols

2.1 Running out of connection table space

2.2 Attacks exhausting connection limit

3.1 Transformation from stateful into stateless

3.2 Integrity and confidentiality of the state data

3.3 Integrity and confidentiality of the connection

3.4 Replays and denial of service

3 Making connections stateless
4 Partially stateless protocols

4.1 Stateless handshake . .

4.2 Statelessness during idle periods. 0oL L.

4.3 Stateless layers in protocol stacks

4.4 State caching and packet windowing

5 Stateless security protocols

5.1 Stateless key exchange

5.2 Storing the session keys

6 Application examples

6.1 Stateless ISAKMP/Oakley

6.2 TCP resistance to SYN

6.3 Secure HTTP cookies

7 Conclusion

flooding

10
11

13
13
14
14

16

17
17
19

20
20
21

22

23

1 Introduction

When designers of communications and operating systems want the systems to
survive high loads and to continue functioning under malicious flooding with
requests, they resort to the application specific engineering principles that
have developed over time [8]. The computer security research community, on
the other hand, has given surprisingly little attention to such principles. In
theories on denial of service, the focus has been on absolute qualities express-
ible with formulas of logic rather than on the comparative performance of
different designs under attacks.

In this paper we suggest a family of design principles that can help in building
the systems to be more robust against the denial-of-service threat from both
malicious attacker and masses of honest clients. Our goal is to make attacks
more complex and resource demanding, to limit the number of potential at-
tackers, and to minimize the impact of attacks by making recovery after an
attack easier.

The basic idea is to combine the strengths of connection-oriented protocols
with the characteristic robustness of stateless services. This is done by saving
the protocol state in the client rather than in the server. At the cost of trans-
ferring state data between the client and the server, we are able to maintain
connections with a stateless server. The state and connection data is then
protected with secret key cryptography.

The present proliferation of electronic commerce and business that rely en-
tirely on open networks in their operation highlights the importance of reliable
services. In the open networks, it has become increasingly difficult to differen-
tiate between malicious attacks and resource exhaustion by unexpectedly high
demand for a service. It therefore seems appropriate that the same techniques
are applicable to both shielding services against overload by honest clients and
against request flooding attacks. We will show how the new concepts of this
paper can be used to enhance the reliability of several layers in the Internet
protocol suite.

The paper is structured as follows. We first discuss resource exhaustion prob-
lems that are typical of stateful services in Sec. 2. In Sec. 3 we present a
transformation of stateful protocols into stateless ones, gradually augment
their security, and compare the behavior of the new protocols and the original
ones under denial-of-service attacks. Sec. 4 describes how statelessness can be
utilized at the parts of the protocol where it is most beneficial. Sec. 5 and 6
discuss applications of the techniques in schematic security protocols and in
real communication protocols. Sec. 7 summarizes the presented ideas.

_ 3 _
2 Denial of service in stateful protocols

The need to store connection information makes stateful protocols vulnera-
ble to two kinds of denial-of-service threats that are not present in stateless
protocols. Firstly, there can be too many clients trying to open simultaneous
connections to the server. When a limit on the number of connections be-
comes exhausted, further requests must be refused. We discuss this weakness
in Sec. 2.1. Secondly, a malicious attacker can consume the resources of the
server in order to deny others the service. Sec. 2.2 describes such attacks.

2.1 Running out of connection table space

In stateful protocols, there is always an upper limit on the number of clients
that can connect to a server simultaneously. It exists regardless of the pos-
sibility that the clients might still be satisfied with a thinner share of the
server capacity. Eventually, the restriction is caused by the limited space that
is available for storing connection state information. When more and more
clients attempt to connect to the server, its storage space becomes exhausted
and new connections must be refused. In the worst case, the connected clients
do not consume the full capacity of the server, and the server remains partially
idle while the refused clients are waiting to connect. Of course, the connection
table and the memory space of the server can be expanded to accommodate
more clients, but at some point, the maintenance of the growing connection
data will become too expensive. An indication of this is that many operating
systems optimize performance by storing connection states in fixed-size tables.

An unintentional mistake by a client or a communication error may also leave
a connection in an eternally open state. The client can forget to close the
connection, lose its connection table data, or it may be unable to reach the
server for the closing commands. In the end, the stale connections must be
purged from the server table; but it is difficult do this without sometimes
closing valid connections.

One way to describe the problem with stateful servers is that their behavior
under stress is unideal. Fig. 1 compares the speed of stateful and stateless
service when the number of clients or connections to the server increases.
The service quality in both systems shows a smooth decline as more clients
connect to the server. At a certain point, the stateful server stops accepting
new connections. The quality of service for already connected clients remains
constant, but new clients are refused completely. Thus, the stateful protocol
exhibits a sudden change in its behavior that is difficult to take into account in
performance models and correctness proofs. In the stateless server, the service
quality continues its slow decline with increasing number of clients.

Stateful server Stateless server
2 2
§ connected §
o clients o all clients
(O] (O]
2 AL o
2 --d---
(] (]
n new clients «
Number of clients Number of clients

Figure 1: Service quality as a function of load in stateless and stateful servers

2.2 Attacks exhausting connection limit

The difference between stateful and stateless servers becomes highlighted when
malicious attackers consume resources in an attempt to deny them to others.
Attackers can exploit the limit on the number of simultaneous connections,
blocking any new connections. If an attacker succeeds in opening enough con-
nections, the server will refuse new clients. Moreover, if the open connection
does not obligate the client to actively use a service, the malicious agent needs
to sacrifice only relatively small computation and communication resources in
order to continually block other clients’ access to the service.

In the attack, the memory space for saving connection states becomes a critical
resource, although it was not meant to be that. The attack is particularly
disturbing, because the attacker is not necessarily utilizing the service but
merely consuming a secondary resource that is needed for accessing it.

Of course, the attacker tries to keep the connections in a state where the
number of simultaneous clients is as limited as possible, the effect of blocking
maximally harmful, and its own efforts minimal. Furthermore, the attacker
would prefer not to reveal its own identity to the server. All these conditions
are best met at the transient states during connection opening, where not
many connections are expected to stay for a long time, and where the client
has not yet fully identified itself. Therefore, the danger of denial-of-service
attacks that exploit vulnerabilities caused by statefulness is greatest at the
beginning of connections.

3 Making connections stateless

Since saving the connection states creates problems, we would like agents to
maintain connections without saving any data. This can be done by passing

-5 -

the state information between the protocol principals along the messages. In
Sec. 3.1 we describe a general transformation that removes saved states from
protocols. Sec. 3.2 adds an integrity check on the state information and Sec. 3.3
continues by ensuring integrity of the entire connection. Sec. 3.4 points out
the main advantages of statelessness by comparing denial-of-service attacks
against stateless protocols and their stateful counterparts.

There are not many precedents in the literature that would have used state-
lessness in a way similar to our ideas. The closest resemblant is the HTTP
cookie mechanism [7] that could be used for the same purposes. Perrochon
[10] suggests translation servers that function as stateless front-ends for state-
ful services. Some of the benefits that we gain from statelessness could also
be given by the translation servers.

3.1 Transformation from stateful into stateless

We will assume for a while that all parties of communication are trustwor-
thy and the communication channels are reliable. On this assumption, we
can transform any stateful two-party protocol into a stateless protocol that
achieves the same goals. In every protocol step, the principals of the new
protocol avoid saving state information by sending it along the message to
the other party and erasing it from their own memory. In the next protocol
step, the same state information is always returned to the sender. That is, the
principals pass the responsibility of saving the state data to each other and
receive the data back right at the time when they need it. Since we assume
that nobody takes advantage of the unprotected state information by reading
or altering it, the resulting protocol is equivalent to the original one. The only
difference is the new way of storing the state data and the communication
costs caused by it.

The following protocol schemas demonstrate the idea of repeatedly sending
and receiving the state information. Every message in the stateless variant
contains the actual message to be transferred, the receiving principal’s state,
and the sending principal’s state. After sending a message, the principals
discard any state information from their memory.

A stateful protocol:

1. A— B Msg

State of A is Statea;.
2. B— A Msg

State of B is Statep;.
3. A— B Masgs

State of A is Stateas.
4. B— A Msg

An equivalent stateless protocol:

A— B Msgi, Statea

B — A Msgs, Statepy, Statea:
A — B Msgs, State s, Statepy
B — A Msgy, Statepsa, State o

N I R

Although any two-party communication protocol can, assuming security prob-
lems do not exist, be transformed to a stateless equivalent in this way, it is
usually sufficient to make the server in a client/server system, or the responder
in symmetric protocols, stateless. Again, the protocol schema below demon-
strates the transformation. The server attaches its state to the messages going
to the client. The client returns the state information in its next message to
the server.

A stateless service protocol:

c— S M591

S — C Msgo, Stategy
C — S Msgs, Stateg:
S — C Msgy, Stategs

W=

It is possible to do a similar conversion to multi-party protocols if the messages
travel suitably. There one must take care that the state information is returned
to the stateless principal right at the time when it is needed.

The main reason why one would want to transform protocols into stateless
ones is that it makes the system behavior more ideal. A stateless server does
not have an upper limit on the number of clients that can be connected to
it or be in a particular phase of the protocol run simultaneously, because it
does not need any tables for saving connection parameters. When there is

-7 -

no limit on the number of clients, the limit cannot be exploited by denial-
of-service attacks. The ideal protocol properties also simplify quantitative
analysis of system behavior under stress. Instead of failing unexpectedly at
some threshold, the performance degrades gradually as the frequency of service
requests increases.

Moreover, the stateless protocol moves the responsibility of reliably saving
state information from the server to the client. Since the client has requested
the service, it is better motivated to take care of the information and to recover
from error conditions and data loss. This is advantageous, because a server
with several clients does not want to reserve its resources for a single client
for the indefinite time that may pass before the client continues the message
exchange.

Another application for stateless protocols is information services that di-
vide the server load between several identical machines. The servers can be
geographically distributed or clustered in one place. When the servers are
stateless, client requests can be routed to an arbitrary server without giving
any consideration to where the previous messages were processed. Routing
decisions and reply addresses can be changed dynamically in order to level
the load on the servers and to minimize communication costs.

As a drawback, the stateless protocols require additional bandwidth for trans-
ferring the state data. If the states are large, the cost may be too high. File or
document servers are therefore examples of promising applications for state-
less protocols while intensely interactive sessions most often are not. Also, the
communication channels should be relatively reliable, because retransmission
of damaged messages is more difficult to arrange than in stateful protocols.

Although stateless protocols implemented in the above way resist denial-of-
service attacks by server flooding, they are prone to much more serious attacks.
We will analyze and improve the security of the protocols in the next three
sections.

3.2 Integrity and confidentiality of the state data

When the state data is repeatedly transferred through insecure channels, its
integrity and confidentiality become an important security concern. In this
section, we will show how to protect the stateless protocols against altering
and disclosure of the state data. These mechanisms will then be used for
enhancing the overall security of the protocol in the later sections.

The integrity is naturally protected by signing the data. The server signs the
data before sending it to the client and checks the signature on returned state

-8 —

data. A big advantage here is that the signature is checked exclusively by the
signer itself. This makes possible the use of secret key signatures, i.e. message
authentication codes, instead of much more costly public key signatures.

Also, the freshness of the state data should be checked in order to limit the
number of times the data can be replayed. Timestamps can be applied liber-
ally, because they are checked by their creator against the same clock that is
used for the timestamping. (Distributed servers that accept state data packets
created by each other must, however, have synchronized clocks. The accuracy
does not need to be very high, because the timestamp lifetimes will be long.)

The improved transformation of a stateful service into a stateless one is il-
lustrated by the protocol schema below. Every message leaving the server
contains a timestamped state of the connection, signed with a key K& known
only by the server. The state is then returned to the server along the next
message from the client.

C—S Msq

S—C Msgs, SK% (Tgl, Stategl)
C— S Msgs, SKg (Ts1, Stategt)
S — C Msgy, SK; (T'so, Stategs)

-~ W

The secret key signature can be implemented as a message authentication
code,

Msg, SKg(Ts,State) = Msg, Tg, State, MACKg(Ts,State).

Sometimes there is redundancy in the actual message and the state informa-
tion. In that case, it is not necessary to repeat the redundant data. Below,
State' contains only the data that is not in the message M sg.

Msg, SKE(TS,State) = Msg, Tg, State, MACKg(TS,State).

On receipt of the state data, the server should check the timestamp against
the same clock as is used for timestamping. Expired messages can be simply
ignored. The client is responsible for taking any corrective steps after such
error conditions. It is necessary to allow long lifetimes for the states so that the
data does not expire before the client wants to continue the message exchange
and succeeds in sending its next request. Hence, the timestamp lifetime should
be longer than the expected duration of a denial-of-service attack, usually on
the order of a few days. The goal is not to control immediate replays but

- 09—

to limit the amount and distribution of message material that is available for
replay attacks. The issue of replays is discussed in more detail in the next two
sections.

| K1 |

I

| | K2 |

| I

| I ! K3 |

AR K4 |

e] KS |

: de : | K6

| ! I K7

R R
t t+3dt Time

Figure 2: Key validity periods

Another method for checking freshness is to change signature keys periodically.
A few of the newest keys should be kept in the server’s memory for accepting
fresh messages. State information signed with older keys is then discarded
as invalid. The period of generating new signature keys becomes thus the
resolution of message expiration times. The period of validity is the period
of key generation multiplied by the number of newest keys accepted. For
example, K3 in Fig. 2 is generated at time ¢ and it remains valid until time
t + 3dt. Keys with different lifetimes can be used for different purposes. This
is feasible, because even in a complicated key arrangement, the space and
computation required for maintaining the keys is a constant, i.e. does not
depend on the number of clients or on the amount of traffic in the system. In
any case, a key identifier should be added to the messages in order to avoid
trying out several keys.

Also, any secret state data is easily concealed by encrypting it with a secret
key K¢ known only by the server. The mechanism is illustrated below.

i. C— 8 Msg, Tg’i,EKg(States’i), MAC;
1+1. §S—C Msgit, Tg,i,EKg(States,i), MAC;

As before, the authenticity of the state data is protected with a message
authentication code

MACZ = MACKg (TS,ia States,i).

In the rest of the paper we assume that secret parts of the server state are
transferred in encrypted form, even when this is not shown explicitly.

~10 -

3.3 Integrity and confidentiality of the connection

So far, the described stateless protocols have not protected the integrity or
confidentiality of the messages in any way. Such protocols are vulnerable
to a wide variety of attacks. In this section we will describe a technique
for authenticating and encrypting stateless connections. These measures will
protect the protocol against the same kind of attacks as they would protect a
stateful protocol.

There is, however, an additional reason for the security enhancements. Namely,
the statelessness opens a whole new range of attacks against the connection
integrity: replay of connection states. The stateless principals have no means
for detecting the replays, because they cannot remember which messages have
already been received and processed. An integrity check that links the state
data to the actual messages will limit the ways in which third parties can
utilize recorded server states in attacks.

In the following protocol schema, the client and the server have a shared secret
key Kcg for signing and encrypting connection data. (Key distribution will
be discussed in Sec. 5.1.) The server naturally passes the key to the client
along with all other state data.

i. C— 8 Msgg, Tg,i,EKg(Kcs),State,g,i, MAC;
i+1. §—C M39§+1a TS,i,EKg(KCS), Stateg,i, MAC;

The familiar message authentication code is
MAC; = MACkg (Ts,i, Kcs, States,;),
and the protected messages themselves take the form
Msg; = Exs(Msgi), MACk (i, Msg;, M AC;).

It is necessary to encrypt the messages only if their contents are secret. Sig-
natures, on the other hand, should be used in this way in all systems where
replay attacks are considered a threat. The signatures alleviate the effect of
replays, because they bind state data together with the corresponding mes-
sages. After these enhancements, the only harm the attacker can do with
recordings is to replay messages to the stateless server. The replays result in
duplicate responses to the client. The protocol designer should ensure that
the client is able to detect the duplicates or is not affected by them.

When protection against replay attacks is needed, the above connection in-
tegrity check should also be made on anonymous connections. Although it is

- 11 -

impossible to securely exchange a session key with an anonymous client, this
limits the possible attacks to ones that also manipulate the key exchange pro-
cess. Thus, it becomes useless to record and replay random messages without
understanding and altering them.

The described measures effectively shield the system against replay attacks
by third parties. A dishonest client, on the other hand, cannot be stopped
from replaying state data from earlier stages of the protocol run. By replay-
ing old states, the client can return to any previous point in the protocol run.
Consequently, the client can execute parts of the protocol several times or go
through several alternative branches of the protocol run. If the protocol has a
point of choice for a principal, it can come back later and test how the other
alternatives would have ended. In some protocols, the possibility of collect-
ing information from several alternative execution paths is catastrophic. For
example, in many zero knowledge proofs, allowing two choices for the prover
or verifier could result in a false proof or disclosure of secret knowledge, re-
spectively. Therefore, not all protocols can be securely made stateless. The
transformation is not suitable for protocols where combined information from
a small number of alternative runs could reveal something more to the client
than a single deterministic run. Luckily, most existing protocols are deter-
ministic enough so that the client will not be able to cause any damage by
replaying the states.

3.4 Replays and denial of service

Another way to exploit the inability of a stateless server to detect replays is
to exhaust the server’s capacity by continuously resending old messages. The
attacker must be someone with access to the communication channel between
the server and its clients. This is a denial-of-service attack, as was the attack
that we avoid by making the protocols stateless. The two attacks, however,
exploit a different vulnerability, and we must compare the harm caused by
them.

We first consider the stateless server under replay flooding attack. The best
the attacker can do is to replay messages at the maximum throughput rate
of the server so that no service capacity remains for real clients. (This is
the worst case scenario. In most communication systems, some legitimate
messages will still get through, but more optimistic estimates would require
detailed knowledge of the structure of the communications system.)

Another danger is that the legitimate connections start breaking, because the
time stamps on the state data expire while the attacker blocks the service.
This can be avoided by making the timestamp lifetimes longer than it takes

~12 -

to detect the attack and to take countermeasures. After the attack, the clients
can continue the connections if they still find them useful. This is the reason
why the time stamps should last days rather than seconds or hours. The
timestamp lifetime, however, should not be infinite, because we want to limit
the amount of replayable material in circulation.

Next, we consider the behavior of a stateful server when an attacker is creating
new connections and leaving them open. If the attacker opens connections at
the maximum rate C' allowed by the server, no other clients can access the
service. The server must also purge the idle connections from its memory after
a certain time to make space for new ones. If the server has enough memory to
save the state of M connections, each connection will remain in the memory
at most time M/C. In a typical system, this time will be much shorter than
the duration of an average attack. Thus, the attacker is able to break the
existing connections.

Comparing the stateless and stateful protocols under their characteristic at-
tacks, we observe that an equal rate of replays against the stateless server and
connection openings against the stateful server have approximately the same
effect on the service quality during the attack. Both servers can be totally
clogged by the attacks. The clients of the stateless server, however, recover
much faster after an attack.

Another big advantage for the stateless server is that the described worst-
case scenario is less likely to happen for it. We assumed that the attacker
can record enough messages for the replay attacks. On a large network, most
agents never see any such messages. Hence, the number of agents that can
mount the replay attack against the stateless server is very small in comparison
to the group that can open useless connections to the stateful server. For
example, on the Internet, anyone in the world can open connections to almost
any public server, but very few people can observe other peoples’ connections
to a particular server.

We conclude that stateless protocols are, in general, more robust against
denial-of-service attacks than their stateful counterparts. The stateless proto-
col makes recovery after an attack easy and dramatically reduces the number
of potential attackers. Nevertheless, the effect of replay attacks should be
evaluated for each particular system before transforming the protocols into
stateless equivalents.

~ 13-
4 Partially stateless protocols

Although we have described a general transformation of entire protocols into
stateless ones, in practical systems, most benefits of statelessness are obtained
at some specific parts of the protocol. It thus makes sense to have only those
parts stateless. Sections 4.1 and 4.2 discuss statelessness at two different
periods in the protocol run, in connection opening and during idle periods,
respectively. In Sec. 4.3 we consider stateless layers in protocol stacks. Sec. 4.4
overviews protocol optimizations such as state caching and packet windowing.

4.1 Stateless handshake

Attackers usually do not want to reveal their identity. Neither do they want
to pay for the services that they are blocking. Therefore, the robustness of
stateless protocols is most beneficial at those parts of the run where the client
remains unidentified. In many protocols, the client must be authenticated
as a legitimate user of the service at the beginning of the connection. Thus,
the only time when the client has not yet been reliably identified are the first
few messages of the connection. Such protocols should avoid saving the state
before the authentication of the client has been completed. After that, the
server can move to stateful mode in order to optimize the rest of the message
exchange.

A few opening messages of a connection often adequately indicate the client’s
real intentions. In the opening dialogue, the client can show its commitment
to honest use of the service with the following actions:

e The client authenticates itself cryptographically to the server and can
be held responsible for misuse of the service.

e The client proves its access rights to the service, or pays for it.

e The client does something resource-demanding that an attacker cannot
afford to do repeatedly.

e The client responds to a message from the server and, thus, has not
forged the return address.

The last point is important, because the communications address of the client
in its opening message could be forged. If the client responds to a message
from the server, the server at least knows how to reach the client, which can
be construed as a level of authentication. Knowing the address of the attacker
helps the server administration in resolving problems off-line. In anonymous

- 14 -

services that are available to everyone, the return address may be the only
available identifier, but it is often enough. In the following protocol schema,
the server is stateless only during the first roundtrip from it to the client and
back.

1. ¢ —§ Msgl
. §S—C Msg2, SK; (Ts1, S’tates,l)
3. C— S Msgs, S}{sg (TSIa States,l)
The return address is valid.

S moves to stateful mode.
4. §—C Msgd

Anonymity is also possible if the client proves its access rights to the server
without revealing its identity. This commonly occurs when the client pays for
the service with an anonymous digital payment method. An attacker usually
does not want to pay for the services.

4.2 Statelessness during idle periods

In addition to the first handshake with the clients, the server may benefit from
statelessness during long idle periods in communication. In long-lived protocol
runs, activity often ceases and is resumed later. In a stateful protocol, the
server will have to maintain connection state data throughout the idle periods.
The server can be relieved of this duty by sending the state information to
the client for temporary storage. The client has the responsibility for saving
the data and recovering from data losses. The server’s memory will be freed
for use by other connections.

Depending on the protocol, the server can send its state to the client with
every message, after certain messages, or after the connection has been idle
for a threshold time. The client can either return the state in its next messages
or check first whether the server still has the state in its cache.

The main benefit from passing the state to the client on long connection is
that the limit on the number of open connections is removed. The client is also
better motivated to take care of storing its connection state than the server
is.

4.3 Stateless layers in protocol stacks

Communication protocols are normally organized in stacks where each layer
uses the services of the layer below and provides services to the layer above.

— 15—

A protocol, as we have used the word, either forms a layer in itself or is a
part of a layer protocol. Even if one layer is stateless, the others might not
be. This is in accordance with the philosophy behind the layered design: each
layer can be designed independently of the others as long as it provides the
specified services to the layer above. If we, however, consider availability and
security to be an essential part of the service specification, some layers may
have to be implemented as stateless.

(N+21)-protocol A | |(N+1)-protocol B (N+1)-layer

(N)-protocol (N)-layer

(N-1)-protocol (N-1)-layer

Figure 3: Protocol stack

In the OSI terminology [. ISO 7498 .|, when an application layer protocol
on the top of the stack is stateless, it usually makes sense to have all layers
down to the network layer equally stateless. If denial-of-service attacks from
the local networks are expected to be a problem, the data link layer could
also be made stateless, but in that case, there are probably much more serious
vulnerabilities that should be considered first.

A layer protocol can have more than one upper layer protocol accessing it
(see Fig. 3). Then, regardless of whether the upper protocols are stateless or
not, it is beneficial to make the lower layers stateless. The reason is that the
alternative upper layer protocols should be able to operate independently of
the resources consumed by each other and attacks against each other.

To accomplish this, it is not always necessary to send the state data to the
other end of the connection. The lower layer could just as well pass the
information to the upper layers for storage. That way the parallel upper layer
protocols are still independent of each other. The lower layer protocol must
somehow obtain the state data from the upper layer protocol every time it
processes data for that particular protocol. Thus, there must be a mechanism
for requesting the state information from the correct upper layer protocol
when the lower layer receives messages over the connection.

—16 —

4.4 State caching and packet windowing

Server overloads and denial-of-service attacks occur only occasionally. For the
rest of the time, one would like to retain the many performance optimizations
offered by stateful protocols. In this section we will see that most such opti-
mizations can be preserved in a stateless service by caching state data in the
server.

State caching means that the stateless server sends its state to the client as
usual, but it also maintains the state in its memory as long as there is enough
space for it. Under normal server load, a caching server can behave just as a
stateful server except for the slight performance penalty for transmitting the
state data. It can, for example, detect lost and duplicated messages, report
the errors to the client, collect statistics on the channel characteristics and
dynamically adjust the transfer rate and packet size for optimum performance.
If server memory becomes scarce or the maintenance of the state data too
burdensome, the server can purge the data from its memory any time. In this
way, the system can have most of the performance benefits of stateful servers
while being as resistant to denial-of-service attacks as any stateless protocol
principal. Admittedly, it may be difficult to design state caching servers with
even near-optimal performance. Nevertheless, it should be feasible to find
solutions that significantly improve on the robustness of stateful protocols
and on the efficiency of stateless ones.

It should be noted that unless the integrity of connections is protected, the
state caching opens a possibility for a new kind of attack: connection hijacking.
If the attacker sends a false message with correct state information to the
server before the client does, the client’s messages will be ignored as duplicates.
Therefore, it is important to combine connection integrity check (see Sec.
3.3) with state caching whenever replay attacks are expected. Fully stateful
protocols have, of course, the same problem.

Windowing is a common performance optimization technique for stateful com-
munication. It means that a principal sends data in advance, without waiting
for the other party to acknowledge. The maximum amount of data that a
protocol principal can send in advance is called the window size. The window
size estimates the amount of data the receiver can hold in its buffers plus
any data fitting on the transmission channel. Windowing allows the sender to
adjust its sending speed to the ability of the receiver to handle data.

A fully stateless server obviously cannot keep count of sent packets and re-
ceived responses. Consequently, windowing in a stateless protocol has to be
performed by the stateful client alone. The client can easily measure its own
buffer capacity and estimate the round-trip time. The server may also be
able to give additional timing and load statistics to the client. Based on this,

17 -

the client can then adjust its transmission rate. A requirement for the server
is that it must give the client a number of message authentication codes,
representing a number of expected future states. Having several MACs, each
representing a separate future server state, the client can send several requests
before it receives replies from the server.

This way, the stateful client of a stateless server can use windowing. Still,
a performance penalty in comparison to the stateful alternative is caused by
the stateless server’s inability to combine several acknowledgements to one
message. On the other hand, if the server caches states, delayed acknowledge-
ments and most other usual windowing techniques can be applied both on the
client and the server side.

5 Stateless security protocols

If robustness under high load and denial-of-service attacks is important in all
protocols, it is especially important in security protocols, such as authentica-
tion and key exchange. First, these protocols often operate in systems where
reliability is a special concern. Second, a security protocol should make the
system more trustworthy, not open any new easy points of attack. We discuss
statelessness in authentication and key exchange protocols in Sec. 5.1 and in
the middle of long key lifetimes in Sec. 5.2.

5.1 Stateless key exchange

Authentication and key exchange are typically the first phases of establishing
a new connection. As we noted in Sec. 4.1, the server should be stateless up
to the point where the client, or the connection initiator, has been positively
identified. Otherwise, an attacker could anonymously open connections and
leave them in the open state. If the server can trust its legitimate clients not
to abuse the resources, it could safely become stateful after the authentication
is complete. On the other hand, if attacks are expected from authenticated
clients, the protocol should remain stateless and a shared key is needed for
protecting the connection integrity (cf. Sec. 3.3).

We now demonstrate the importance of authenticating the client before the
server becomes stateful. In the three-way X.509 authentication protocol [2, 6],
an attacker can replay a large number of old copies of the first message. This
could exhaust the space that B has reserved for saving the state of the protocol
between sending Message 2 and receiving Message 3. (Note that the three-
way X.509 protocol uses nonces for verifying freshness of the messages. Hence,
principal B only knows that Message 1 is fresh after receiving Message 3.)

— 18 —

1. A— B Sa(Na,B,Eg(Kap))
2. B— A Sp(Ng,A Ny, Ex(Kpa)),
3. A—B SA(NB’B)

In the following modification of the X.509 protocol, the responding principal
B does not save the state of the protocol until it has positively authenticated
A.

1. A— B Sy(N4,B,Ep(KaB))
2. B— A SB(NB,A,NA,EA(KBA)),
Sks,(Tp, N, A, Exe (Kap, Kpa))
3. A— B S4(Ng,B)
Sks (T, Np, A, Exs (Kap, Kp4a))

The session keys in the state data have been encrypted with the secret key
of the server. The protocol can be further optimized by removing data items
that are repeated in both signed submessages.

1. A—B SA(NA,B,EB(KAB))
2. B— A SB(NB,A,NA,EA(KBA)),
Tp, Ex< (Kap), MACks (TB, N, A, Kap, KpA)
3. A—s B Su(Ng, B),
Kap(Kpa), T, Exe (Kap),
MACKSB(TB,NB;AaKAB;KBA)

The above protocol is deterministic in the sense that there is only one exe-
cution path. Its runs differ only in that fresh nonces and keys are generated
every time. Therefore, an attacker could not possibly collect any interest-
ing information by replaying old states and thus causing the principals to
re-execute steps. Luckily, most cryptographic protocols have a similar deter-
ministic nature. Key exchange and authentication protocols usually have a
limited number of alternative execution paths that do not interfere with each
other in any way. The only choices made by the principals are the values of
the fresh data items. In a stateless version, an attacker could collect several
different pairs of plaintext-ciphertext pairs (or plaintext-MAC pairs) by re-
playing an earlier state in order to re-execute nonce and key generation steps.
The gathered information could aid cryptanalysis. In practice, however, cryp-
tographic algorithms can resist attacks with a much larger number of known
plaintext messages than the attacker could possibly collect by re-executing
protocol steps. The attacker will gain no advantage from the replays as long
as combining information from a small number of alternative runs does not
reveal any secret data.

Most key exchange protocols aim at producing unique keys for every session
and purpose. Uniqueness and freshness of protocol parameters are central

~19 —

issues in designing these protocols. Since stateless principals cannot distin-
guish between replays and original messages, they cannot recognize duplicated
keys at the accuracy that is usually expected from security protocols. For the
stateless principals, there is no difference between one and many sessions with
the same parameters. Furthermore, the branching of the key exchange process
can lead to the generation of several alternative end results. Thus, uniqueness
of keys is partially lost in the stateless protocols. Nevertheless, freshness can
be guaranteed in the sense that none of the fresh parameters has been used
before the common beginning of the protocol runs.

5.2 Storing the session keys

After the key exchange, the keys may be used only occasionally over a long
period of time. Nonetheless, the protocol principals must store the keys and
other session parameters throughout the connection. The session parameters
can have lifetimes lasting from hours to years. It is therefore a good idea to
move this information from the server to the client for storage over long idle
periods in the communication. This may be reasonable even in applications
where one does not want to make the server completely stateless by always
sending the data to the client.

The session parameters are usually known to both principals. Hence, it is not
really necessary to send everything to the client. Often only the session key
needs to be encrypted with the server’s secret key and sent over the channel
along with a message authentication code for the key and the rest of the session
parameters. The client knows the parameters and can return them with the
message authentication code in its next message. Although the client also
possesses the session key, it has no secure means for transporting it to the
server (apart from expensive key exchange involving public key algorithms
and/or trusted third parties). Therefore, the session key must be sent both
ways encrypted with the server’s secret key. If necessary, the client can encrypt
other confidential session parameters with the session key.

S — C Msgl,Ts, Exe(Ksgs),
MACKks(Ts, C, parameters, Ksps)
Possibly long idle period follows.
S— S Msg2,C, parameters, Ts, Exc (Ksgs),
M ACks (Ts, C, parameters, Ksgs)

One more detail to be taken into account is that when the encrypted session
keys have been transferred over the channel in this way, the server’s secret key
should only be used for a limited time and then completely erased from any
media. That way the contents of the communication cannot later be recovered

T

from recorded messages. In short, the key encryption key should be treated
with as much care as a secret master key. It is better to use one key for
encrypting session keys and other keys for signatures and less sensitive session
parameters data.

6 Application examples

The principles described in this paper can be applied at any any level in the
OSI protocol stack. It seems, however, that statelessness offers most benefits
at the transport and application layers. For example, in the TCP/IP protocol
stack, denial-of-service attacks are usually targeted either at the TCP protocol
[3] or at the application layer. In UDP based protocols, the application layer
protocols are the natural target [4].

In Sec. 6.1 we improve both robustness and performance of a key exchange pro-
tocol from the ISAKMP specification. Sec. 6.2 describes how the statefulness
of the TCP protocol leads to the well-known SYN flooding attack. Finally,
Sec. 6.3 discusses security enhancements to the HT'TP cookie mechanism.

6.1 Stateless ISAKMP /Oakley

The Internet Security Association and Key Management Protocol (ISAKMP)
[9] is a protocol framework for Internet-wide key management and authentica-
tion. In the following, we briefly describe a version of the Oakley key exchange
[5] used in ISAKMP and show how its resistance to denial-of-service attacks
can be increased while at the same time reducing the number of messages.

There are two principals, the initiator I and the responder R. In the beginning,
nonces Ny and Np are exchanged in order to to ensure that the initiator has
given a correct reply address. Only after the nonce exchange will the server
proceed with expensive public key operations.

The protocol uses public key signatures and Diffie-Hellman key exchange.
The Diffie-Hellman parameters can be reused for several protocol runs. The
freshness of the final session key is guaranteed by hashing the Diffie-Hellman
key together with two key generation parameters N; and Nj, one from each
principal.

I — R N

R — 1 Npg,N;

I — R NI,NR,SKI(gm,I,R,N})
R—1 Ng,Ni,Sk,(¢%,R,I,N, N
I — R NI,NR,SKI(QI,I,R,N},N;B)

Cup W=

~921 —

The responder knows the initiator’s key generation parameter to be fresh only
after receiving Message 5. Nevertheless, the responder has to remember inter-
mediate states with the following state information: the two nonces Ny and
Npg, the network address of I, the Diffie-Hellman key of I, the key generation
parameters of both principals, and the creation time of the state. This clearly
leaves the protocol vulnerable to attacks where someone initiates a connec-
tion, executes Steps 1, 2 and 3 of the protocol, and then leaves the responder
waiting forever.

We enhance the protocol by making the responder stateless until the receipt of
the last message. The stateless protocol avoids the attack where an initiator
leaves connections open before being authenticated. Furthermore, the initial
cookie exchange is not needed, because the stateless responder is not affected
by opening messages with forged return address. Thus, the protocol is more
robust and has less messages than the original one. (Note that the signed
messages S(---) below contain the message itself while the authentication
codes MAC(---) are only hash values.)

1. TSR N,g° LR N,
2. R—1 NR,N[,SKR(gy,gm,R,I,Nk,N}),
MACKks;,(Tr,9%,9%, Nr, N1, N, Np), Exce ()
3. I—R NI,NRaSKI(gwagyaIaRaN}aN}ﬁ)a
MACKks (Tr, 9%, 9%, Nr, N1, N, N1), Exe (y)

6.2 TCP resistance to SYN flooding

Recently, a lot of attention has been paid to the the so called SYN flooding
attack against the TCP/IP Transmission Control Protocol (TCP). In the TCP
connection establishment, the parties exchange message sequence numbers.
The first packet from the connection initiator is flagged as a SYN message and
the consequent reply from the responder is flagged as a SYN acknowledgement.
The third messages is the first one that can carry actual data.

1. C—S ISNG,SYN
2. §—C ISNg,ISNc.1,SYN|ACK
3. C— S ISNci1,ISNsi1, ACK

After receiving the first message, the responder creates a state called Trans-
mission Control Block (TCB). In the SYN flooding attack, the adversary sends
large numbers Message 1s to the server. The attacker also forges its IP address
addresses on the underlying IP protocol level. The attack fills up the respon-
der’s table for saving TCBs, making it impossible to open further connections.

~ 92 _

Several people have independently suggested versions of this protocol where
the server does not create a state initially. Instead, the responder can compute
a message authentication code of the initiator sequence number and other
session parameters. It sends the MAC to the client and receives it again in the
next message. The secret key Kg for signing should be changed periodically
as described in Sec. 3.2. To maintain backward compatibility, the MAC is
used in place of the initial server sequence number I.SNg.

1. ¢ =28 ISNG,SYN
2. §— C MACk,(ISN¢,parameters),ISN¢i1,SY NJACK
3. C— S ISNci1,MACks(parameters) +1, ACK

After these changes, the server avoids creating the TCB before it knows the
initiator’s IP address to be valid. Unfortunately, this does not protect against
attackers who are willing to reveal their IP addresses, or ones who can alter
routing. They only need to proceed to the next protocol step where the
responder waits for data from the initiator then leave the connection open.
Another possibility for the attacker is to leave the TCP connection in half
closed state: when the other party closes the connection, it may fail to send
the final acknowledgement, thus leaving the other party waiting indefinitely.
Early experiments by the present authors indicate that these problems could
be solved by making the TCP responder completely stateless.

6.3 Secure HTTP cookies

HTTP cookies [7] are an enhancement to the Hypertext Transfer Protocol [1].
The cookies are packages of connection state information that are saved by
the client and returned to the server in a way closely resembling our basic
transformation in Sec. 3. The cookie protocol does not originally provide any
security protection for the cookie information, which can be altered by the
clients and by outsiders. The same techniques that we have used for ensuring
integrity and confidentiality of the state data can be applied to HTTP cookies.
The present authors have implemented a secure cookie system according to the
principles presented in this paper. It appears that signing and encrypting the
cookies causes no significant degradation of WWW server performance. Since
the client cannot tamper with the secure cookies, new kinds of applications
become possible. These include personal price offers on the electronic markets
and stateless score-keeping for interactive games.

_923—

7 Conclusion

It is a characteristic weakness of stateful servers that they always have a limit
on the number of clients that can be connected simultaneously. The behavior
of such servers is unideal, because the limit can be exhausted by high demand
of the service or by malicious attackers that leave connections in the open
state.

In order to remedy the problem, we presented a transformation of stateful
protocols into stateless ones. In a two-party protocol, it is usually practicable
to make the server, or the responder, stateless. The stateless server does not
save any state information in its own memory, but instead, sends it to the
client for storage. The client returns the state data in its next request. This
way, clients are able to maintain connections with a stateless server.

Integrity and confidentiality of the state data can be protected with secret key
cryptography. The state data packets include a message authentication code
that is computed with a secret key known only by the server. Session keys
and other confidential state information are likewise encrypted with server’s
secret key. The connection data can also be protected and be bound to the
correct state data packets.

The new stateless protocols are more robust against denial-of-service threats
than their stateful counterparts. The stateless server responds to increasing
load with slowly decreasing service quality rather than with the unexpected
drop typical to stateless services. Moreover, leaving connections open does
not disturb a stateless service in any way. The cost of the robustness is,
of course, the communications bandwidth required for transferring the state
data to the client and back. Also, fully stateless servers cannot dynamically
optimize their communication. These performance penalties can be minimized
with state caching and client-run packet windowing.

Statelessness does open one new line of attack: the stateless principals can-
not detect replayed messages. Nevertheless, most protocols are deterministic
enough so that replays cannot not significantly disturb their operation. The
attacker may also try to flood the server with replays. This can exhaust the
service capacity, but the connections of the real clients survive suck attacks.
This is in sharp contrast with stateless protocols that tend to forget legitimate
connections under denial-of-service attacks. Additionally, the number of po-
tential attackers for the stateless protocols is much smaller, because on open
networks, anyone can open useless connections to any server while few people
are able to record and replay messages to a particular server.

To summarize, stateless protocols behave more ideally under denial-of-service
attacks than their stateful counterparts, they recover faster from the attacks,

— 924 —

and they effectively limit the number of potential attackers.

In protocols where the clients are reliably identified, statelessness is needed at
the opening steps before the authentication. This can be seen, for example, in
the X.509 and ISAKMP /Oakley key exchange protocols. Usually, the removal
of states is most beneficial in transport and application layer protocols.

In the future, the presented techniques should be applied to new practical
protocols. The ultimate goal would be a completely stateless protocol stack.
On the theoretical side, the security of the stateless protocols should be exam-
ined from two directions. First, we expect statelessness greatly simplify formal
analysis of the protocols, because the state space of stateless server protocols
is small. Second, the preservation of security properties in the transformation
should be assessed more carefully.

— 925 —

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol
— HTTP/1.0. RFC 1995, IETF Network Working Group, May 1996.

[2] Recommendation X.509, The Directory - Authentication Framework, vol-
ume VIII of CCITT Blue Book, pages 48-81. CCITT, 1988.

[3] TCP SYN flooding and IP spoofing attack. CERT Advisory CA-96.21,
CERT, November 1996.

[4] UDP port denial-of-service attack. CERT Advisory CA-96.01, CERT,
August 1996.

[5] D. Harkins and D. Carrel. The resolution of ISAKMP with Oakley. In-
ternet draft, IETF IPSEC Working Group, June 1996.

[6] Recommendation x.509 (11/93) - the directory: Authentication frame-
work. I'TU, November 1993.

[7] David M. Kristol and Lou Montulli. HTTP state management mecha-
nism. Internet draft, IETF HTTP Working group, July 1996.

[8] Howard F. Lipson and Thomas A. Longstaff. Coming attractions in sur-
vivable systems. Draft technical report, Software Engineering Institute,
Carnegie Mellon University, June 1996.

[9] Douglas Maughan, Mark Schertler, Mark Schneider, and Jeff Turner.
Internet security association and key management protocol (ISAKMP).
Internet draft, IETF IPSEC Working Group, June 1996.

[10] Louis Perrochon. Gateways in globalen Informationssystemen. PhD the-
sis, KTH Ziirich, 1996. Diss. ETH Nr. 11708.

