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List of symbols and notational conventions
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firing delay
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an interleaving
firing schedule of p
timing function
initial elements in CN
final elements in CN
bottom element
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earlier events of e
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B a set of conditions

CN a causal net

E a set of events

EFCTPN an extended free choice time Petri net
F a flow relation of a net

G a flow relation of a process
1 a clock function

M a marking

My an initial marking

N a net

NS a net system

P a set of places

S a state

T a set of transitions
TPN a time Petri net

b a condition

e an event

P a net homomorfism
S a place

4 a transition



1 Introduction

Petri nets [25, 18] are a formalism for modelling and analyzing distributed
and concurrent systems. They are characterized by fine grained control over
concurrency and synchronization, and equal emphasis of state and actions.
Petri nets describe the causal behavior of systems. This is natural, because
one of the distinctive characteristics of distributed systems is the lack of global
time. Therefore, causal relationships are a more reliable criterion for reasoning
about the order of events than timing would be. In practical system, however,
timing of events is often just as important as the causal order. Most distrib-
uted systems have nonideal features like timeouts and alarms. Furthermore,
performance aspects force designers of distributed systems, such as communic-
ation protocols, to maintain synchrony between concurrent subsystems with
local clocks. The difficulties in designing time dependent distributed systems
are likely to increase the demand for formal methods with timing capabilities.
Consequently, time extensions are being planned, for example, to the LOTOS
specification language [19]. This development is sped by an ever increasing
need to specify communication and media systems with critical timing prop-
erties, and by the fact that the theory and methods for causal systems have
already reached reasonable maturity.

Many time related extensions of Petri net formalisms have been introduced
to facilitate performance analysis [24, 17]. Most of them attach the timing
information on top of the systems, without having any effect on the causal
relations between events. Recently, more attention has been given to net
classes where time constraints restrict the causal behavior of the system and
limit its state space [8, 12, 33|. Time Petri nets [16] are perhaps the simplest
formalism for modelling systems where time limits can force events to occur
and keep others from happening. Nevertheless, we find them to be sufficiently
powerful for theoretical consideration of time behavior of systems, their simple
structure in this case being only an advantage.

In time Petri nets, there is an upper and a lower bound for the time an event
can remain enabled without occuring after its preconditions are met. This can
be used to model time limits in system specifications and imprecise timing like
skew of local clocks, as well as asynchronous timer interrupts. The upper time
bound of one potential event can limit the time when another conflicting event
can occur, creating dependences not seen in causal systems. Furthermore, the
timing limits can be used in a way giving the net class the expressive power
of a universal computer [21]. This is a strong indication that the analysis on
time Petri nets is more complicated than it is for untimed net classes.

Even though timing constraints reduce the number of reachable markings of
the net they, instead, increase the cost of examining the state space. In addi-
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tion to the causal state, clock information has to be carried along throughout
the analysis. In reachability graphs of time Petri nets [2, 1], the states of
the net contain a marking and intervals of possible firing times of all enabled
transitions. The states are grouped into state classes where the possible fir-
ing times are presented with sets of inequalities. Complex rules are given for
transforming the state classes in firings and for checking their equivalence.
A variation of the state class method has been considered in [6], making the
approach computationally somewhat more feasible. A more comprehensible,
although not so optimized reachability graph has been proposed by [23]. Being
much simpler than the state class approach, this is a good point of comparison
for new and improved analysis methods. In it, a state contains the marking
and the readings of the local clocks of enabled transitions. State changes are
divided in two types: either time passes or a transition fires.

An alternative approach to inspecting the behavior of concurrent systems is
to use the partial order semantics, like nonsequential processes [22, 13, 5] and
branching processes [20, 9]. The research on branching processes has lately
lead to efficient deadlock detection and model checking algorithms for net
systems [15, 11]. It is rather obvious that the benefits of the partial order
approach to the analysis of systems should be assessed also with regard to
the analysis of timed systems. Processes have been defined and successfully
utilized for some net classes with time [31, 14, 30|, but in these cases the
timing does not interfere with the causal order of events. We will show in this
theses that nonsequential processes can be successfully used in presenting the
behavior of time Petri nets. Although the occurrence times of events seem to
put even causally unrelated events in a sequential order, the concurrent parts
of the process develop independently within the specified time limits. In a
causal system, the relative speed of concurrent events can be arbitrary and
order results only from synchronization by shared events. In time constrained
systems, the speeds are given some bounds, but the events are not forced to a
fixed sequence. Instead, the order of events arises from synchronizing events,
or from the time limits of enabled events representing potential interactions.
Thus, the seemingly global dependences created by the timing derive from
local causes.

In this thesis, we propose a notion of time process for time Petri nets, examine
carefully the relation between the time processes and the firing schedules of the
nets, and present algorithms for verifying validness of timings and constructing
valid timings for a given process. The basic idea is that under time constraints,
not all processes or timings of the events are possible. We find out which
processes have a valid timing and which do not, and what kind of timings
a process can have. With the developed techniques, questions like, what is
the maximum time separation between two events in a given process, can be
answered.



1.1 Outline of the thesis

Section 2 contains basic definitions. The time Petri net formalism and funda-
mental notions about the behavior of time Petri nets are defined. Emphasis
is put on the details that differ from the conventional definitions in the liter-
ature. The class of systems is restricted to contact-free ones with divergent
time.

The most important new concepts, valid timing and time process, are intro-
duced in Section 3. The time processes of time Petri nets are constructed
by labeling the events of processes of untimed net system with time values.
Criteria is given for when the choice of time values should be considered a
valid representation of system behavior. An efficient algorithm is presented
for verifying the validness. The section ends with discussion on the persistence
of invalidity in growing processes.

Discussion and proofs about the exact relationship between a time Petri net
and its time processes can be found in Section 4. The relation between firing
schedules of a time Petri net and interleavings of the time processes of the net
is shown to be bijective.

In Section 5, the set of all valid timings of a process is characterized with
linear inequalities. The discussion is based on the idea that the occurrence
of every potential event has to be somehow decided by an actual event of the
process. The results can be used to analyze properties of all valid timings,
such as maximal time separation of events.

The last Section 6 summarizes the thesis and draws some conclusions.



2 Time Petri nets

Time Petri nets are a simple yet powerful formalism for modelling concurrent
systems with time constraints. In time Petri nets, transitions are labeled with
time intervals. There is an upper and a lower limit for the time a transition
can be enabled before firing. This makes it possible to model imperfect timing
where the exact durations of events are not known. Time limits in real systems
are often specified in the same way, by giving worst case boundaries. Time
Petri nets can be used to analyze absolute limits of timing and effects of the
time constraints on the state space of the system. A wide variety of time-
related phenomena can be observed in them.

There are other net formalisms for timed systems, all with their specific
strengths and weaknesses. For practical modelling, time stream nets [8, 27]
might be a better choice than time Petri nets. They allow the modeller to
choose from several alternative synchronization policies for each transition.
Time stream nets can be reduced to time Petri nets, which means that ana-
lysis methods for time Petri nets should be easily adaptable to them. The
TB nets in [12] are an interesting generalization of different time net classes,
giving the modeller great freedom in choosing the time and firing semantics
of the net. The TB net formalism is significantly more expressive than any
other time net classes in the literature. In performance analysis, timed Petri
nets [24], where every transition has a fixed firing duration, are a popular
formalism, along with various stochastic nets [17], in which the firing dur-
ation has a known statistical distribution. These net classes are optimized
for efficient and straightforward analysis of average behavior. There are also
numerous restrictions and variations of these net classes, most of which have
been developed with some special modelling needs or analysis algorithms in
mind.

We begin by giving an exact definition of time Petri nets in Section 2.1 and
continue with fundamental notions about their behavior in Section 2.2. As-
sumptions about contact-freeness and divergence of time will be made in Sec-
tions 2.3 and 2.4.

2.1 Definition

The domain of time values T is either nonnegative real numbers, nonnegative
rational numbers or natural numbers. We denote by |71, 72| the closed interval
between two time values 71,7 € T, and by I the set of such intervals. Infinity
is allowed at the upper bound.

I={[r,m]|meT A mneTU{x}}. (1)



-8 —

An interval can be of zero length (71 = 79), containing only a single time value.

Definition 1 (time Petri net) A time Petri net is a five-tuple TPN =
(P,T,F,SI,M;), where

P is a set of places,

T is a set of transitions,

PNT =0,

FC(PxT)U(T x P) is a flow relation,

SI:T — 1 is a function called static interval, and

My C P is the initial marking of the time Petri net.
The boundaries of the static interval are called earliest firing time E ft and
latest firing time Lft. The preset of z € PUT is *x = {y | yFz} and postset
is z* = {y | zF'y}. The members of the preset and the postset of a transition
t are called preplaces and postplaces of t, respectively. A marking M C P is
a subset of the places.

It is assumed that the initial marking is finite, |Mp| < oo, and that there
is some constant branching factor § < oo such that |*z| < § and |z°| <
for all z € PUT. Moreover, the presets and postsets of transitions must be
nonempty, |*¢| > 0 and [¢*| > 0 for all ¢t € T'. O

Time Petri nets were introduced in [16]. The above definition does not strictly
follow any previous definition, but rather combines the properties that we find
useful for this discussion. We will outline the differences below. Basically,
what we have is the class of elementary net systems [29] enriched with the
static intervals on transitions, and with some finiteness requirements.

There are no weights on the arcs, and the markings are represented by sets,
limiting the capacity of all places to one. This differs from the normal defin-
ition of time Petri net but coincides with the 1-safeness assumption made
by most analysis methods. The time Petri nets are of finite synchronization,
meaning that presets and postsets are finite. There are no sinks or sources,
that is, transitions with empty presets or postsets.

In the literature, earliest and latest firing times are often allowed to have
rational values but no real values. Real numbers are not permitted because
the state space of a finite net could then become infinite [2]|, and irrational
values would be difficult to handle in computation. In practical models, there
is no need for real numbers in any case, as the time bounds are usually worst
case estimates of physical timing limits, or sometimes exact integers in digital
systems. As noted in [23], the static intervals can as well be required to
have integer boundaries instead of the more common rationals. In finite nets,
rational intervals can be converted to integers by multiplying the boundary
values by the least common multiple of their denominators. Rational numbers
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are used either for ease of modelling or in order to blur the restriction to
discrete division of time for interval boundaries. The choice of the domain
for time values is not important for us. Therefore, we allow all reasonable
alternatives.

We allow the boundaries of a static interval to equal zero, which means that
the transition in question can fire without delay. Such firings and the cor-
responding events are called immediate. The class of systems that can be
modelled with this extension is significantly larger than it would be if imme-
diate events were not allowed. Furthermore, we will see that the complexity
of timing analysis is not affected by the immediate events. However, we will
disallow infinite sequences of immediate firings that consume no time or only
a bounded amount of time in total.

In order to simplify the notation, we extend the domain of preset and postset
functions from single elements to sets of elements so that the value is the union
of the individual presets or postsets. When X C PUT,

*X={yePUT|ze X Ay€®z} and (2)
X*={yePUT|ze X ANy€ez*}, (3)

This makes it possible to use the the notations *®e and e®® for the sets of
previous and next events in a causal order in the later sections.

2.2 Behavior

The fundamental concepts of net behavior like enabledness and firing will
defined by adapting the definitions of [28] to our net class. They differ some-
what from the more usual ones in [2].

Definition 2 (enabled) A transition ¢ of a time Petri net is enabled at mark-
ing M iff *¢ C M. The set of all enabled transitions at marking M is denoted
by Enabled(M). O

Note that being enabled does not necessarily mean that the transition can
fire. It simply means that all preplaces of the transition are filled. Transitions
have to be enabled for the length of their earliest firing time before they can
fire, as will be specified in the firing condition.

In time Petri nets, a marking is not sufficient information to describe a com-
plete state of the system. The state must also include timing information.
This is given as a clock function that, for each enabled transition, gives the
amount of time passed since its enabling. The definition of state, and the idea
for the firing condition and firing rule between states are from [28].



~10 -

Definition 3 (state) A state of a time Petri net TPN = (P,T,F,SI, M)
is a pair § = (M, I), where

M is a marking of TPN, and

I: Enabled(M) — T is called the clock function.
The initial state of TPN is Sy = (My,Iy), where Iy(t) = 0 for all ¢t €
Enabled(My). O

The state of a time Petri net can change in two ways:.

1. Time passes but no transition fires: Ounly the clock function is adjusted.

2. A transition fires but no time passes: The firing changes the marking of
the net. Clocks of disabled transitions are discarded and new clocks are
started for newly enabled transitions.

The total time that can pass before the next transition fires is limited by the
firing intervals of enabled transitions.

The division into two different kinds of state changes captures the basic idea
of time Petri nets. For technical considerations, it is, however, preferable to
have only one kind of state change. Therefore, the two changes are combined
into a single step where time first passes and a transition then fires. Two
or more state changes by passing of time can obviously be combined into one
that takes the sum of the two times. Two simultaneous firings cannot as easily
be merged into one. We can, however, add a zero length time passing step
between any transitions firing without delay. This way, any sequence of time
passing and transition firing state changes can be converted into a sequence
of two stage state changes where, in each state change, zero length or longer
time passes and then a single transition fires.

Finally, we give the firing rule and the firing condition of time nets. For
the firing of a transition to be possible at a certain time, four things must
be taken in account. First, the transition must be enabled at the current
marking. Second, the postplaces of the transition must be empty, or belong
to both preset and postset of the transition. Third, at least the earliest firing
time of the transition must have passed since its enabling. Last, no more time
must have passed since the last firing than that which the latest firing times
of all of the presently enabled transitions allow.



- 11 -

Definition 4 (firing condition) A transition ¢ may fire from state § =
(M, I) after delay 6 € T iff

t € Enabled(M),
(M\*t)nt* =0,
Eft(t) <I(t)+0, and
Vt' € Enabled(M) : I(t') + 6 < Lft(t).

4
5
6

(
(
(
(7

~— ——

A transition satisfying Equations 4,6 and 7 but not Eqn. 5 is said to be in
contact. The set of all transitions that may fire from state S is denoted by
Fireable(S) and the set of all transitions in contact is Contact(S). O

From the definition we see directly that Fireable((M,I)) C Enabled(M).
Not all enabled transition can fire because of timing constraints. The second
requirement (Eqn. 5) protects from the insertion of a second token into a
place, thus causing 1-safeness of the system. It will be made obsolete by the
assumption of contact-freeness below.

The new marking after a firing is calculated in the usual way by removing
tokens from the preset places of the firing transition and adding tokens to the
postset places. New clock values are calculated for the transitions that remain
enabled. Newly enabled transitions are assigned a zero clock value. The clock
function has no value for disabled transitions.

Definition 5 (firing rule) When transition ¢ fires after time 6 from state
S = (M, I), the new state S" = (M",I') is given as follows:

M' =M\t (8)

M" =M'Ut*, and 9)
I(t)+6 if t € Enabled(M'),

I't)=40 if t € Enabled(M") \ Enabled(M'), (10)

undefined else.

In time Petri nets, the firing sequence is enriched with timing information,
and it is called firing schedule [2].

Definition 6 (firing schedule) A firing schedule of a time Petri net is a
finite or infinite sequence of pairs of transitions and time values

o = (t1,01), (t2,02), (t3,03), ... (11)
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(1.1
[0,1] [0.1]
[1,1] [1,1] I?I.>
[3.4]
(1.1

Figure 1: Contact-free time nets

where the ¢; are transitions and 6; € T are their firing delays. The firing sched-
ule is fireable from the initial state Sy if there exist states S1,.S52,53,... such
that the transition ¢; may fire from state S;_; (according to firing condition
in Def. 4) and the firing leads to new state S; (according to the firing rule in
Def. 5) fori =1,2,3,....

A state of a time Petri net is reachable if some fireable firing schedule leads
from the initial state of the net to that state. A marking is reachable iff there
is a reachable state with that marking. d

2.3 Boundedness

We want to exclude from our class of nets the ones where Eqn. 5, is needed
to prevent a second token from being inserted to a place.

Definition 7 (contact-free) The time Petri net is contact-free iff in every
reachable state S of the net, no transition is in contact, Contact(S) = 0. O

A time Petri net can be contact-free even though the underlying elementary
net system obtained by removing all timing information has contacts. On the
other hand, contact-freeness of the elementary net system implies the contact-
freeness of the time Petri net. The timing constraints can protect the net from
reaching a contact state but they cannot create any new reachable contact
states. In Fig. 1, there are two contact-free time nets whose corresponding
elementary net systems have states with transitions in contact. In the contact-
free time Petri nets, the latest allowed firing time for a transition forces the
removal of the first token from a place before the second one is inserted to the
place. Note also that tight loops do not create contacts.

Assumption 8 From now on, all time Petri nets will be assumed contact-
free.
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[0,10] [0,10] [0,10] [0,10] [0,10]
@O RO RO OO - @
[1,10] [1/2,10] [1/4,10] [1/8,10] [1/16,10]

(OO

Figure 2: Two time Petri nets with nondivergent time

2.4 Zeno’s paradox

Another anomaly that we need to exclude from the class of nets under con-
sideration is the possibility of infinite firing schedules that consume no time.
Moreover, in infinite nets there can be infinite firing schedules where trans-
itions consume nonzero amounts of time, but the the total time is bounded
by a finite constant.

Definition 9 (divergent time) The time Petri net 7PN has divergent time
iff for every infinite firing schedule (t1,61), (t2,62), (t3,63),... of TPN, the
series 01 + 02 + 63 + - - - diverges. O

Figure 2 shows two time Petri nets that do not have divergent time. We will
make some comments about the problems created by such degenerate timings
in Section 4.2.

Assumption 10 From now on, we assume that all time Petri nets have di-
vergent time unless otherwise stated.
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The firing schedule presentation of system behavior forces causally independ-
ent events in the system to a linear order. Since the whole purpose of Petri
nets is to model the fine details of concurrency, a different presentation is
needed, one that retains both causal dependence and concurrency. This is
what processes are made for. We will now extend the notion of process to
time constrained systems, modelled by time Petri nets.

Time processes of time Petri nets will be constructed by labeling traditionally
defined causal processes with time values and giving validness criteria for them.
Section 3.1 recalls some well-known definitions. In Section 3.2, a time process
is defined as a causal process with a valid timing. An algorithm for deciding
validness of a timing is presented in Section 3.3. Section 3.4 gives examples of
valid and invalid timings. Section 3.5 discusses persistence of invalid timings
in growing processes.

3.1 Causal processes

We recall the definitions of a causal net and homomorfism from the literat-
ure. The definition of homomorfism from time Petri nets to causal nets is a
straightforward adaptation of the usual net homomorfism. A causal process
of a time Petri net is defined as a causal net and a homomorfismm between
these nets. Timing information and constraints will be attached to the causal
processes in Section 3.2.

Causal nets are used to depict causal histories of systems. The transitions of
a causal net represent events in the system. An event changes the state of the
system and it can only occur if certain conditions are fulfilled in the current
state of the system. The preplaces of a transition represent the necessary
preconditions for the event. Postplaces are the conditions that are made true
by the event. The conditions can be thought of as logical or physical states
that either are true or false (marked or unmarked). The flow relation of a
causal net indicates causal relations between events. There are no loops in
the net so that the one can talk about the past and the future of an event.

Definition 11 (causal net) A causal net CN = (B, E, G) is a finitary, acyc-
lic net, where

Voe B:|b*| <1A|% <1
Places B of a causal net are called conditions and transitions E are called
events. Preplaces are called preconditions and postplaces postconditions. [

The term causal net is from [9]. Causal nets are called occurrence nets, for
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example, in [13]. Finitary means that every z € B U E has only a finite
number of G-predecessors.

If CN = (B, E,G) is a causal net, we denote by < the partial order G* on
B U E and by < the corresponding strict partial order. Event e is said to
causally precede ¢’ if e < €. We write Min(CN) for the <-minimal elements
of a causal net and Maz(CN) for the <-maximal events, and call these initial
elements and final elements, respectively.

Min(CN)={z € BUE|#ye BUE:y < x}, (12)
Maz(CN)={z € BUE |y BUE:y > z}. (13)

In a nonempty net where G is finitary, there is always at least one minimal
element. In a contact-free causal net, the minimal elements are places.

In a causal net, we identify the preset and postset of a condition with the
unique events in them and use the notations *b and b* to mean a single event.

Defining processes, we give the conditions of causal nets the meaning that a
place of a time Petri net is marked. Events represent firings of the transitions.
The partial order of events gives the causal dependences between the firings.
The initial conditions of the causal net precede all events in the causal partial
order in the same way as the initial marking of a time Petri net is the initial
cause of all transition firings in it.

The relation between time Petri nets and causal nets will be stated using a
homomorfism, a mapping that preserves the local structure of the net. We
define homomorfism as a mapping from a time Petri net to a causal net,
because these are the net classes it will be used for. Nevertheless, this is the
familiar net homomorfism of [32]. The formulation of the definition is similar
to [9], but since we have not defined marking for a causal net, the minimal
conditions will be used instead.

Definition 12 (homomorfism) Let TPN = (P,T,F,SI,M;) be a time
Petri net and CN = (B, E,G) a causal net. A mappingp: BUE — PUT
is a homomorfism if

p(B) C P,

p(E)CT,

Ve € E : the restriction of p to ®e is a bijection between e and *p(e)

and the restriction to e® is a bijection between e® and p(e)®, and

the restriction of p to Min(CN) is a bijection between Min(CN) and

M. O

In order to shorten the notation, we extend the domain of the homomorfism
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p to sets of elements X C BU E, that is, p(X) = {p(z) | z € X}. Especially
for presets and postsets, *p(e) = p(®e) and p(e)® = p(e®)

We will frequently make use of an auxiliary function Cut [10]. In the context
of a process, we write

Cut(E') = (E'* U Min(NS)) \ *E'. (14)

The intuition of a cut is that it represents a state of the system. Thus, the
function Cut should be used only on downward closed sets of events (some-
times called configurations). Otherwise, it does not make much sense.

The idea of a process in an untimed net system is that it is a possible “run” of
the system in the same way as a firing sequence. But the process, unlike firing
sequences, does not specify an interleaving of causally independent events.
The entire causal history of the system is stored in the process, without addi-
tional information on the firing order of unrelated transitions. Nonsequential
processes for Petri nets go as far back as [22]. Processes for untimed nets
are defined in [13] as a mapping from a causal net to the original net. Dif-
ferent approaches to process construction are compared in [4]. Processes are
sometimes called concurrent runs [26].

In time nets, the causal relationships are not the only way in which events
influence each other. The time constraints of one event depend on the other
events creating complex dependences between events and their timing. Also,
occurrence times are an essential part of the history of system modelled by
a time Petri net. We will define processes of time Petri nets, called time
processes, by giving first an auxiliary definition of causal processes which
have no timing information and whose structure is not constrained by the
timing. In Section 3.2, the events of the causal process will be labeled with
occurrence times and a validness criteria will be given to identify the labelings
that correspond to actual runs of the system. Causal process is defined as a
causal net and a homomorfism that relates it to the original net, in exactly
the same way as processes of untimed nets have been defined, for example, in

[9].

Definition 13 (causal process) Let TPN = (P,T,F,SI,M;) be a time
Petri net. A causal process of TPN is a pair (CN,p), where

CN is a causal net and

p is a homomorfism from CN to TPN. O

It is often important to know if any two conditions in a set map to the same
place of the original net. When all conditions of correspond to different places,
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that is,
Vb, € B : p(b) =p(t)) = b=1, (15)

we say that B' maps injectively to places. In processes of 1-safe untimed
net systems, sets Cut(E') are guaranteed to map injectively to places for all
downward closed sets E'. This is not the case with contact-free time Petri nets.
To see why, consider causal processes of the contact-free time Petri net in Fig.
1(a). The processes consist of two causally unrelated chains. It is possible to
choose one condition from each chain so that they map to the same place of
the net. In a process of an untimed net system, this would mean that the net
is not 1-safe.

3.2 Valid timings

So far, we have listed concepts from the literature with the aim of forming a
coherent set of basic definitions. We will now start building a new theory on
top of them.

The notion of process will be extended to time Petri nets. This is done by
adding timing information to the causal processes of the net. Time values
depicting occurrence times are attached to the events of the process. Validness
criteria are defined for deciding if the process with the time values is a time
process of the time Petri net. The idea is that the time constraints imposed by
the earliest and latest firing times of events restrict the set of possible timings
the events of the time process can have. Not all timings are possible and some
causal processes may even have no valid timings at all, being thus impossible
in the system. The earliest and latest firing times put restrictions on the
occurrence times of events in processes in the same way as they restrict the
firing times in firing schedules. Furthermore, timing constrains the structure
of the processes in the same way as it limits the number of reachable markings
of a time Petri net.

There are not many references to combinations of timing and partial order
semantics in the Petri net literature. [31] defines processes of timed Petri nets
by an algebra of labeled partial orders. An alternative approach to processes
of timed Petri nets, along the lines of [4], can be found in [30]. [14] introduces
processes for a class of free choice nets where delays with upper and lower
bounds are associated with the places of the net. In all the cases, timing is
added on top of the processes of the underlying untimed net in the sense that
the structure of the processes is not restricted by the timing. Such processes
are useful in performance analysis, but they do not allow time constraints to
limit the state space of the system.
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Figure 3: Events and occurrence times

In order to motivate the definition of valid timing, we demonstrate the de-
pendences between between events of a time constrained system. Figure 3
shows a segment of a causal process of a time Petri net. Occurrence times are
written next to the events. The dashed transitions are not part of the process,
but they depict transitions enabled at certain times. Assume that the event e
in the process is just about to occur. The darker grey area is the causal past of
e, and the light grey area contains the events with an earlier occurrence time
than e. The upper black line intuitively marks the two possible global states
at which event e can occur depending on the interleaving of concurrent events.
The lower black line marks the global state before the clock was advanced the
last time. Let us denote the state of the system on this line by C.. Below,
we will argue that the possibility of event e and its occurrence time should
be determined based on the state C, rather than the causal past of e or the
global state at which e occurs.

— We want to show how dependences arise between causally unrelated
parts of the process. Look at transition ¢; enabled at the global state
where e occurs. It became enabled at time 4 and has to fire before or at
time 4 4+ 3 = 7. Therefore, event e cannot occur at time 8. In this way,
events e; and es and their timing can affect e. The latest firing times of
transitions that are not fired in the precess can either make it impossible
for e to occur or just restrict its possible occurrence times. Thus, it is
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not enough to look at the local state where e occurs, but one must also
consider causally unrelated parts of the process in order to know if e can
occur at the given time.

— This would indicate that we have to consider the global state where e
occurs. However, the state is not uniquely known, as demonstrated by
the branching upper black line in the figure.

— Even though 5 is enabled at the global state at which e occurs, it cannot
keep e from occurring. This is because one of the conditions enabling ¢5 is
not in C¢ and, consequently, the latest firing time of ¢3 cannot be earlier
than the occurrence time of e. Thus, when assessing the possibility of
event e, it is not necessary to consider all conditions in the global state
where e occurs, but only those in C.

— Transition t3 is enabled at C, but not at any of the possible global states
where e occurs. It can still stop e, because it does not allow ez to occur
and e depends causally on e3. In any case, it is just as important to
know that event es cannot occur at the given time than it is for e.

— Transition ¢4 has to fire at time 6 or earlier. Unlike the other transitions,
t4 does not have causal relation to e through its preset. Therefore, one
might think that ¢4 cannot in any way affect e. But this is not true!
t4 does stop e because the next transition ¢5 inevitably disables e. We
might not know that there is a transition t5, but to be on the safe side,
we must require all transitions enabled at Ce to have latest possible firing
times greater than or equal to the occurrence time of e. Otherwise, we
cannot know that the occurrence time of e is possible.

— Events e, e3 and e4 have the same occurrence time and C, = C¢, = Cg,.
If we check that one of the events is not kept from firing by transitions
enabled at Cp, it implies the same for all of them. Thus, all events with
the same occurrence time can be processed together.

We will now give the definition of time process and continue with a related
algorithm and examples in Sections 3.3 and 3.4. The entire Section 4 is devoted
to showing that the validness criteria is solid in the sense that valid time
processes have a particular relation to the firing schedules of the time Petri
net.

Definition 14 (valid timing, time process) Let TPN be a time Petri net
and (CN,p) its causal process, where CN = (B, E,G). A timing function
7: E — T is a function from events into time values. The values of 7 are
called occurrence times of the events. If B’ is a set of conditions and transition
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t is enabled at p(B’), the time of enabling for t in B’ is defined as
TOE(B',t) = max({r(*b) | b€ B'\ Min(CN) Ap(b) € *t} U{0}). (16)
The set of earlier events for an event e is
Earlier(e) = {' € E|1(e') < 7(e)}. (17)
A timing function 7 is a walid timing of the causal process iff

Vee€ E:7(e) >TOE(®e,p(e)) + Eft(p(e)), and (18)
Ve € E : Vt € Enabled(p(C,)) : 7(e) < TOE(Ce,t) + Lft(t), (19)

where C, = Cut(Earlier(e)).

A time process of TPN is a triple (CN, p, 7) where (C'N, p) is a causal process
of TPN and 7 is a valid timing of the causal process. O

The definition of valid timing has been derived from the firing condition of
time Petri nets (Def. 4). The two criteria (Eqn. 18 and 19) impose the earliest
and the latest firing times on the events (like Eqn. 6 and 7, respectively). The
auxiliary function TOFE gives the time when a transition becomes enabled
at a set of conditions, i.e. the occurrence time of the last of the previous
events. When there are no previous events (t is enabled at the initial mark-
ing), the time of enabling is naturally zero. The lower bounds of occurrence
times (Eqn. 18) are easily checked as they depend only on the previous events.
The upper bounds (Eqn. 19) are more complicated because they create de-
pendences between causally unrelated parts of the process, as seen in the
example above. The latest firing times of all transitions enabled at the set
C. = Cut(FEarlier(e)) must be considered. The C, has the same meaning as
in the example.

The definition of valid timing does not give any direct way for constructing
time processes. Instead, it is optimized for checking validness of known timing
functions. Note that the set C. is equal for all events e with the same value
of the timing function,

7(e) = 7(') = C, = Cut(Earlier(e)) = Cut(Earlier(e')) = Ce.
(20)

Thus, Eqn. 19 has to be considered only once for each different occurrence
time. Several events with the same occurrence time correspond to zero delays
in firing schedules. For consecutive immediate firings, conformance to latest
firing times needs to be checked only once. Consequently, firings with zero
delay do not complicate the timing analysis with time processes. This is sig-
nificant, because time constrained systems often have large parts that only
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perform immediate events. Time Petri net models of such systems will have
many transitions with static interval [0, 0], and their processes will have large
sets of events with equal timing values. When analyzing timing of the pro-
cesses, we do not want the required effort to be increase if untimed parts of
the system are described accurately in the model. The definition of validness
has been formulated in this way to explicitly avoid unnecessary timing checks
at parts of the process where time does not advance.

3.3 Algorithm for verifying validness

Figure 4 shows pseudo-code of an algorithm for deciding the validness of a
timing function 7 on a causal process (CN,p) of a time Petri net, where
CN = (B,E,G). The algorithm is based directly on the definition of valid
timing. It checks the requirements of Equations 18 and 19 carefully avoiding
extra work with events having the same occurrence time. In the following, we
describe the algorithm and determine its complexity.

Checking that the validness criterion on the earliest firing times (Eqn. 18)
holds is straightforward. It takes up to B|E| steps, where 8 is the branching
factor of the net.

In order to check that the criterion on latest firing times (Eqn. 19) holds,
the algorithm enumerates all different sets C. = Cut(Earlier(e)) with e € E
and transitions enabled at them. The events are first sorted according to
their occurrence times. The sorting takes up to N log N steps where N =
|{7(e) | e € E}| is the number of different time values on the events.

A data structure CUT is needed for storing the sets C.. It must be a set of
conditions accessible in constant time by the corresponding places. This can
be implemented as an array of size |P|, holding conditions and indexed by the
places corresponding to the stored conditions.

The sets C, are then constructed into the data structure CUT one after an-
other by increasing values of 7(e). When a set C, is known, the next set C is
constructed by checking the conditions of C, and postconditions of all events
with occurrence time 7(e). The latter are easily obtained from the sorted
set E. The conditions whose next events also have occurrence time 7(e) are
discarded; the others belong to Cy and they are reinserted into CUT'. In this
way, the conditions of Cs are collected one by one. There are N different sets
C. to go through. In each set C,, there are up to P conditions to be processed.
This means inserting at most N|P| conditions to CUT during the execution.
The transitions enabled at the sets C, are enumerated in the following way.
Every time a new condition belonging to C, is found, the algorithm checks
if it enables any transition with the other conditions already in CUT. The
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global variables CUT, NEW, time,limit

EV : array 1...|E| of events

CUT : set of conditions, accessed by corresponding places
NEW : set of conditions

(* Eft *)
for each e€ FE do
for each €' € **e do
if 7(e) < 7(¢') + Eft(p(e)) then return false
(x Lft *)
sort E by 7(e) and insert into EV][I...|E|]
i:=0, time:=0, CUT :=(
repeat
NEW := CUT, CUT := 0, limit := oo
call add_new_to_cut
repeat
if ¢ =0 then NEW := Min(CN) else NEW := EV[i]*
call add_new_to_cut
t:=4+1
until ¢ = |E|+ 1 or 7(EVTi]) > time
if i <|E| then time := 7(EVi])
(x Now CUT = Cut(Earlier(EV[i])) and Eqn. 19 is time < limit,
or i=|E|+1 and we are done x)
until ¢ = |E|+1 or time > limit
return (i = |E|+ 1)

procedure add_new_to_cut
for each be NEW do
if b* #0 or 7(b°®) > time then
for each t € p(b)® do
if *b=( then toe:=0 else toe:=7(*b)
for each s € °t do
if s # p(b) then
find b € CUT such that s = p(b)
if such b’ exists then
if *b' # 0 then toe := max(toe, 7(*1'))
else
toe := 00
break
limit :== min(limit, toe + Lft(t))
insert b into CUT
Figure 4: Checking the validness of a timing
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new condition is then inserted into CUT'. The new condition has at most 3
transitions possibly enabled by it. Enabledness of each of them is checked by
looking for the at most # — 1 other preplaces in CUT. This means less than
(3% constant time accesses to CUT for each new condition. Thus, during the
entire execution, inserting conditions into CUT takes at most 52N|P| steps.

Altogether, the sorting and the rest of the computation take up to Nlog N +
B2N|P| steps.

Theorem 15 The validness of a timing function on a causal process can be
checked in time O(Nlog N + B2N|P|), where N is the number of different
values of the timing function in the process, 3 is the branching factor and |P)|
the number of places in the net. O

Naturally, if the set of events is already sorted by the timing, validness can be
decided in O(B8?N|P|) steps. For causal processes that have been generated
by time Petri nets much smaller than the process, the sorting is the most
expensive part of the computation. On the other hand, if the process is about
the same size as the net, the 32N|P| will dominate. When there are many
events with equal time values, the algorithm will do significantly less work
than when all events have unique occurrence times, because events with equal
time are processed together.

3.4 Example

In Figure 5, there is a time Petri net and its time process. (w = oco.) The
values of the timing function have been printed next to the events. The
timing in Fig. 5(b) is valid. All different sets Cut(Earlier(e)) are shown in
grey. They are only three such sets because two are equal: 7(e2) = 7(e3)
implies Cut(Earlier(ez)) = Cut(FEarlier(eg)). The transitions enabled at the
sets have been drawn with dashed lines.

On the contrary, the timings in Figure 6 are not valid. The sets and enabled
transitions that conflict with Eqn. 19 are shown. In (a), transition ¢ should
fire before e3 and disable it. The timing is clearly not in accordance with
the firing condition. Net (b) demonstrates a more surprising requirement for
validness. In Fig. 5(b) we already saw that the firing times of the transitions
are completely legal. Nevertheless, the timing is not valid. This is because the
left side of the process has not been generated far enough to make conclusions
about the possibility of the firing times. We will see in Section 5 that it is
essential for all parts of the process to be complete up to same time value.
Otherwise, validness cannot be determined.
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Figure 5: A time Petri net and a process with valid timing

3.5 Invalid timings and process growth

In the preceding example we saw that an invalid timing can become valid
when the process grows. The question arises, when can one be certain that
a timing cannot be made valid by generating the process further. To answer
this, we must first define when a process is larger than another. The following
definition is essentially same as in [13]; only the 7 has been added.

Definition 16 (initial subprocess) Let (CN',p’) and (CN,p) be causal
processes of a time Petri net, where the causal nets are CN = (B, E,G) and
CN' = (B, E',G"). (CN',p') is an initial subprocess of (CN,p) iff B'U E’
is a downward closed (with respect to G) subset of BU E and G’ and p' are
restrictions of G and p to B’ U E'. O

The following theorem seems more complicated than it really is. It simply
states that invalidity persists in growing processes if a new event cannot be
added to a location where it would remedy the invalid situation. This idea
will be restated in a more comprehensible form in Section 5. We delay the
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Figure 6: Two invalid timings

proof until then.

Theorem 17 Let a causal process (CN,p) with timing function 7 have an
event e and a transition ¢ that violate the inequality of Eqn. 19. Moreover,
assume |b*| = 1 for all b € Cut(Earlier(e)) Np L(°t). If (CN,p) is an initial
subprocess of another process (C'N, p), then (C'N,p) does not have any valid
timing such that 7 is a restriction of that timing function to the events of CN.
[l

The process in Figure 6(a) fulfills the prerequisites of the theorem. Event e3
and transition 9 violate Eqn. 19 and all conditions enabling to are consumed
by some event. Thus, no time process having the process as an initial sub-
process can have the same timing of events eq, ... ,e4 as in the figure. On the
other hand, Theorem 17 does not apply to the process of Fig. 6(b). As we
have seen in Fig. 5(b), the timing is valid in a larger process.
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4 Processes and firing schedules

In this section, we will look closely at the relation between time processes and
firing schedules. A time process is a partial order that can be sorted into sev-
eral different linear orders. The linear orders that respect the occurrence times
of the events will be called interleavings of the time process. We will see that
in a time Petri net, there is one-to-one correspondence between interleavings
of time processes and firing schedules that are fireable from the initial state
of the net.

Interleavings of a time process and a function from interleavings to firing
schedules are introduced in Section 4.1. In Section 4.2, these are shown to
be an essential link between the world of time processes and that of firing
schedules.

4.1 Interleavings

We want to define interleaving of a time process as a linearization of the partial
order of events where the events are ordered also by their occurrence times.
In order for this to make sense, we have to prove that the causal and time
order never conflict with each other.

Lemma 18 Let (CN,p, 7) be a time process of a time Petri net, where CN =
(B, E,G). Let also e,€’ € E be two events of the process. Then,

e<e = 1(e) <T(€) (21)
O

Proof Recall that e < e’ means eG*e',ie. e=e1Gb1Gea Gy G...Ge,
=¢ forsomee; € E;i=1,...,nand b; € B; i = 1,... ,n — 1. From the
definition of valid timing we get e; < ;41 = T(ei+1) > 7(e;) + Eft(p(eir1))-
Since the lower boundaries of the static intervals are nonnegative, the sequence
7(e1),-.. ,7(ey) is nondecreasing, and 7(e) < 7(e'). O

It is now possible to give the definition of an interleaving of a time process.
A function from interleavings to firing schedules is will also be defined. Inter-
leavings and the function will link time processes to firing schedules.

Definition 19 (interleaving) An interleaving of a time process is a finite
or infinite sequence p = ey, e9,e3,... consisting of the events of the process,
such that every event is in the sequence exactly once, and both causal and
time order are preserved,

e; <e;i V 1(e;) <7(ej)) = 2 <jforalli,j. 22
J j



Figure 7: A process with two interleavings

The function F'S maps interleavings to firing schedules of the net.

FS(p) = (p(e1), 7(e1) = 0), (p(e2), 7(e2) — 7(e1)), - (23)
O

To summarize, we have now three different order relations on the set of events:
causal order (e < €'), time order (7(e) < 7(€¢’)) and a linear order in an
interleaving (e; < e;j+1). The orders do not conflict with each other. Causal
and time order both imply order in interleavings.

In Figure 7, there is a time Petri net (a) and it process (b). The values of the
timing function 7 have been marked next to the events. The process has two
interleavings,

p = €1,€2,€3,€4,€5,€6,€7 and

/
p = €i1,€2,€3,€4,¢€q,€5,€7.

The order of ey and e3 is fixed because 7(e3) < 7(e3), but e5 and eg can be
interleaved arbitrarily because they have the same occurrence time and no
causal relationship. The number of interleavings of a time process can be
much smaller than it would be for the causal process, because the occurrence
times determine the linear order. The firing schedules corresponding to the
above interleavings are

FS(p) = (t2,5), (t1,2), (t3,1), (t2,2), (t1,0), (t3,0), (t2,0) and
FS(p') = (t2,5), (t1,2), (t3,1), (t2,2), (t3,0), (t1,0), (t2,0).
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4.2 Relation between interleavings and firing schedules

In the rest of this section, we will prove that the function F'S is a bijective
mapping from the interleavings of the processes of a time Petri net to the firing
schedules fireable from the initial state of the net. It will be shown first that
the firing schedule F'S(p) for an interleaving p is fireable. The proof of that
theorem is then further utilized in showing that every process has at least one
interleaving. After this sidestep, the mapping F'S is shown to be surjective.
That is, every fireable firing schedule is the image of some interleaving. The
proof is done by constructing a time process from the firing schedule. The
construction is unique up to renaming of process elements, meaning that the
relation is bijective.

Throughout the rest of this section, having first fixed an interleaving p =
e1,€e9,e3,..., we write pg for its prefix of length k. For each kK = 0,1,2,...,
we write Ej for the set of events in pg, Ey = {e; € E' | i < k}. Specifically,
Ey=10.

Before stating the main theorems of this section, we need to prove some tech-
nical details.

Lemma 20 Let p be an interleaving of a time process of a time Petri, eg
its kth element, ¢ a transition of the net, and Ej, as defined above. If Cut(E;)
maps injectively to places for all 0 < [ < k, the following formulas hold for
E;.

plegtr1) € Enabled(Cut(Ey)). (24)
TOE(*ex11,p(ex+1)) = TOE(Cut(Ey), pex+1)) (25)
TOE(Cut(Earlier(egt1)),t) < TOE(Cut(Ey),t). (26)
g

Proof Let b € ®exy1. Either b € Min(CN) or *b < egy1. In the latter
case, *b must be before e, in the interleaving p, *b € Ey. Thus, b € E;°* U
Min(CN). On the other hand, b* = ey1 & Eg, and b € *E). Putting these
together, we get ®exy1 C (Ex®* U Min(CN)) \ *Er = Cut(Eg). It follows
that p(*egs1) C p(Cut(Ey)). Since the homomorfism p is an isomorfism on
the presets, *(p(ex+1)) C p(Cut(Ey)), i.e. p(exy1) is enabled at p(Cut(Ey)).
Thus, Eqn. 24 holds.

Cut(Ey) maps injectively to places. Let b € Cut(Ey), and p(b) € *p(eg+1)-
Assume that b & ®egy;. This means that there is b’ € Cut(Ey) such that
p(t') = p(b) but b’ # b, which contradicts with the injective property. Thus,
the assumption is wrong and b must be in *ex4q. This and the definition of
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TOE imply TOE(Cut(Ey),p(ex+1)) < TOE(*eg+1,p(ex+1)). On the other
hand, it is obvious from Eqn. 24 and the definition of TOE that TOE(®eg+1,p(ex+1)) <
TOE(Cut(Ey),p(ex+1))- Thus, we have Equation 25.

Earlier(egy1) = E; C Ey, for some 0 <[ < k. For that [, 7(e) = 7(exs1) >
TOE(Cut(Ey),t) for all the events e € Ex \ E; = {e;4+1,... ,ex}. Cut(E;) and
Cut(Ey) map injectively to places. Let ¢ € Enabled(Cut(Earlier(ex+1))) N
Enabled(Cut(E))). There has to be a subset B’ C Cut(Earlier(eyt1)) such
that p(B') = *t, and a similar subset B” in Cut(Ey). The injective mapping
to places guarantees that B’ and B” are unique. Consider first the case where
B' = B". Then, TOE(Cut(E;),t) = TOE(Cut(Ey),t). On the other hand,
if B' # B", there is a condition b € B" \ B’ for which *b € Ej \ E;. Then, it
must be the case that TOE(Cut(Ey),t) < TOE(Cut(Ey),t) = 7(*b). In both
cases, Eqn. 26 holds. O

We now have the prerequisites to prove that interleavings of a time process
are mapped to firing schedules that are fireable from the initial state of the
net. This is the first important property of F'S.

Theorem 21 If p is an interleaving of a time process of a time Petri net,
then the firing schedule F'S(p) is fireable from the initial state of the net. The
markings in the intermediate states of the firing schedule are My = p(Cut(Ey))
for k=1,2,3,.... 0

Proof Let TPN = (P,T,F,SI, M) be a time Petri net, (CN,p, 7) its time
process and p = e1,€e9,e3... an interleaving of the time process. The proof is
done by induction on the prefixes of the interleaving.

Our goal is to prove that the firing schedule F'S(py) is fireable from the initial
state Sy of TPN. Throughout the induction, we need to carry three additional
conditions, which relate the marking, contact-freeness and timing in the firing
schedule to the respective properties of the time process. First, the marking
after firing k first transitions of the firing schedule is given by

My, = p(Cut(Ey))- (27)

Second, the set of conditions Cut(E;) maps injectively to places for all 0 <
I < k in the sense of Eqn. 15. Even though these two conditions obviously
hold in processes of contact-free net systems, we cannot assume them without
explicit proof in contact-free time Petri nets, whose underlying net systems
are not necessarily contact-free. Last, the value of the clock function for all
t € Enabled(My) is

I(t) = 7(ex) — TOE(Cut(Ey), t) < Lft(2). (28)

if kK > 0. Let 7(eg) denote 0 in the rest of the proof, and let 7(ex) have its
standard meaning when k > 0. (This is just a syntactic trick to shorten the
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notation. On need not worry what 7(eg) actually means.) Then, the above
equation holds for all £ > 0.

Basis step: The empty firing schedule is a prefix of p. The initial marking of
the net satisfies Eqn. 27 since p(Cut(Eyp)) = p(Cut(D)) = p(Min(CN)) = M.
The initial marking is a set of places and p is a bijection between it and
Min(CN). Therefore, no two events in Cut(Ep) map onto the same place,
as required by the injective property. The initial value of the clock function
for all ¢ € Enabled(My) is Ip(t) = 0 < Lft(t), and it is undefined for other
transitions.

Induction step: Assume that the firing schedule FS(py) is fireable from Sy,
that Equations 27 and 28 hold for the index k, and that Cut(E;) maps inject-
ively to places for all 0 <[ < k.

The first goal to show that the firing schedule F'S(ex1) is fireable from Sp.
We begin by noting that p(eg+1) is enabled at the marking M. Since My, =
p(Cut(Ey)), this follows directly from Eqn. 24.

It is not sufficient that p(egy1) is enabled, but it must also be fireable. Def. 4
requires that

Eft(p(ex+1)) < Ix(p(ex+1)) + 7(ex+1) — T(ex) and (29)
Vt € Enabled(My) : I (t) + T(ep+1) — 7(ex) < Lft(t). (30)

We first examine the earliest firing time. Rearranging Eqn. 29, substituting
the value of Ix(p(eg+1)) from Eqn. 28 and applying Eqn. 25, we get a new
inequality that is equivalent with Eqn. 29.

T(ex+1) > 7(ex) — Ik(p(ex+1)) + Eft(p(ex+1))
= TOE(Cut(Ey),p(ex+1)) + Eft(p(ex+1)) (31)
=TOE(*ex+1,p(ex+1)) + Eft(p(er+1))-

This inequality is immediate from the definition of valid timing (Eqn. 18).
Thus, the criterion on the earliest firing time (Eqn. 29) is satisfied.

The criterion on the latest firing time (Eqn. 30) requires a little more work.
Let t € Enabled(p(Cut(Ey))). We have to show that Ix(t) + 7(exr1) —
7(ex) < Lft(t). Substituting the value of Ix(t), this becomes 7(exy1) <
TOE(Cut(Earlier(egx+1))) + Lft(t). But the definition of valid timing (Eqn.
19), and Lemma 20 give

T(exy1) < TOE(Cut(Earlier(egy1)),t) + Lft(t)

< TOE(Cut(Ey),t) + L ft(t)’, (32)
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Thus, the criterion on the latest firing time is also satisfied. Not only is the
transition p(ex41) enabled after F'S(py), but it is also a fireable. Consequently,
the firing schedule F'S(pg1) is fireable from Sp.

Next, we need to show that the marking after F.S(pg11) is correctly obtained
from Eqn. 27 and that Cut(Ejy1) is maps injectively to places.
Cut(Ex11) = (Eg+1® UMin(NS)) \ *Egi1
= (BEx* Uegt1® U Min(NS))\ (*Ex U *ex11)
= (((Bx® UMin(NS)) \ *Eg) \ *ext1) Uegr®
= (Cut(Eg) \ *eg+1) Uegy1®.
The restriction of p to a preset or a postset is a bijection, and because of

the injective mapping of Cut(Ey), the restriction of p to Cut(Ey) is also a
bijection. Hence, we have

M1 = p(Cut(Egy1)) = (p(Cut(Ey)) \ *plex+1)) Up(ex+1)®.  (34)

This coincides with the firing rule. Thus, the M1 given by Eqn. 27 equals
the marking after F'S(pgy1)-

(33)

Similarly, the bijections can be used to derive the following formula. When
the net is contact-free, the right hand side equals the empty set (Def. 7).

p(Cut(Eg) \ *exy1) Nplert1®) = (Mg \ *plex+1)) Nplex1)® = 0. (35)

Cut(Ey) \ *ex1 maps injectively to places, because Cut(Ey) does. The above
equation shows that p(Cut(Ey) \ ®exy1) is disjoint with p(egs1°®). Thus,
Cut(Eg4+1) = (Cut(Ey) \ *ex+1) U ex+1® maps injectively to places.

It remains to be shown that the timing function I after the (k + 1)th firing is
the I given by Eqn. 28. For those transitions ¢4 that remain enabled in
the firing of p(eg+1),

TOE(Cut(Ejy,),t) = TOE(Cut(Ey), 1). (36)

To see this, change Farlier(egy1) into Egy1 in the proof of Eqn. 26 of Lemma
20. When we know that ¢ remains enabled, it is always the case that B’ = B”
for the sets in the proof. Thus the equality in Eqn. 36. In the (k+ 1)th firing,
the timing function becomes

Tey1(tag) = 7(eks1) — TOE(Cut(Ej41),1)
= 7(egs1) — TOE(Cut(Ey),t) (37)
= Ik(told) + T(6k+1) — T(ek).

The second equality above holds because of Eqn. 36, and the third is obtained
simply by substituting the value of Ix(tyq) from Eqn. 28. From Eqn. 32 we
see immediately that Iy 1(toiq) < Lft(teq)-
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On the other hand, if ¢ is newly enabled by the (k + 1)th firing,
TOE(CUt(Ek+1), t) = T(€k+1)- (38)

The above equation holds, because when ¢ is newly enabled, there is necessarily
abe€egy1® C Cut(Eg41) such that p(b) € *t. As egy1 has the highest value of
7 in Ejy1, this implies TOE(Cut(Eg+1),t) = 7(eg+1), Eqn. 38. The timing
function after the (k + 1)th firing is

Tit1(tnew) = 7(ex11) — TOE(Cut(Ey41), 1) (39)
= 7(eps1) — T(ekr1) =0 < Lft(new), (40)

where the second equality comes from Eqn. 38. Consequently, the value of
Ii41 is in accordance with the firing rule.

We have shown that if the induction hypothesis holds for index &, it also holds
for £+ 1. By induction we now know that it is true for any index. Especially,
for any prefix p; of an interleaving, the firing schedule F'S(p;) is fireable from
the initial state of the net. This suffices to show that any interleaving of finite
or infinite length is mapped onto a fireable firing schedule. The marking after
the kth firing in the schedule is My = p(Cut(Ey)). This concludes the proof
of Theorem 21. O

We know now that there is a fireable firing schedule corresponding to every
interleaving. Before showing more properties of the function F'S, we sidestep
into the relation between processes and interleavings. It is intuitively clear
that a process should be completely characterized by its interleavings, but
since an interleaving has only an enumerable amount of events, some processes
might be too large to interleave. This is why we have limited the branching
factor of the net. Furthermore, we have limited the discussion to systems
with divergent time. Otherwise, not all processes would have interleavings.
This is demonstrated by the time Petri net in Figure 2(b). The net has a
process isomorfic with itself, pictured with occurrence times of events in Fig.
8. The time values leave only one possible interleaving, e, €9, e3,.... But this
interleaving does not have the event ey (with 7(eg) = 2) in it, because there
are infinitely many events with time less than 2. The assumption of divergent
time saves us from situations like this, as will be shown in the following.

Theorem 22 Let TPN be a time Petri net with divergent time. Every time
process of TPN has an interleaving. O

Proof Let (CN,p,7) be a process of a time Petri net, where the causal net
is CN = (B, E,G). The minimal events of CN are Min(CN)*. This set has
at most |Min(CN)| - = |My| - B < oo members. Thus, the set of minimal
events in CN is finite. If one minimal event e, is removed from FE, the



Figure 8: A process with nondivergent timing

minimal events of the resulting partial order either were already minimal or
are in the finite set e;,*®. Thus, after removal of €,,;,, the set of minimal
events is still finite. By induction, the set of minimal events remain finite no
matter how many minimal events are removed one after another.

Since the set of <-minimal events E,,;, is finite, there is always at least one
event e, in Ep;, that has the smallest time value 7(emmn). A sequence
of events p = e1,e9,... can be constructed by selecting for e¢; a <-minimal
event that has a minimal time value, removing it from the partial order, and
proceeding with the selection of event e; 1 in the same way.

The constructed sequence p has the property that for any ¢, all events of E
that causally or in time precede e; belong to E; = {e1, ... ,e;}. This property
is exactly Eqn. 22 in the definition of interleaving. The only thing that remains
to show is that all events E are in the sequence p. Obviously, if |E| < oo,
every event of E will eventually be chosen for some e;. For an infinite process,
the proof is done by contradiction.

Assume that an event e € E is not in the sequence p. e has some time
value 7(e). The sequence p satisfies Eqn. 22 which was the only property of
interleaving that was actually used in the proof of Lemma 20 and, thereafter,
was needed for Theorem 21. Hence, also the firing sequence F'S(p) is fireable
from Sj. If the time Petri net has divergent time, the series

(r(e1) = 0) + (7(e2) —7(e1)) + (7(ez) —7(e2)) + ... (41)

is divergent. This means that 7(e;) — 0o when 7 — oo. For some e; in p, the
time 7(e;) will go over 7(e). Thus, the assumption is wrong, every event of E
isin p, and p is an interleaving. g

The firing schedules in the range of the function F'S are known to be fireable
from the initial state of the time Petri net in question. We still have to
show that the function is a bijection. The next theorem will show that it is
surjective.

Theorem 23 Given a firing schedule o of a time Petri net TPN, it is possible
to construct a process of TPN with interleaving p, such that o = FS(p).
O
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Proof Let TPN = (P,T,F,SI,M;) be a time Petri net and let (¢1,61),
(t2,02), (t3,63),... be a firing schedule. We construct from the schedule a
time process (CN,p,T), where CN = (B, E,G), and prove step by step that
it, indeed, is a time process. After that, it will be easy to see that the process
has the desired interleaving.

E={e,...,en}, (42)

ple;) =t;foralli=1,...,n, (43)

T(e) =Xt _10, i=1,...,n. (44)

B={bys|seM}U{bis|i>1Ns€"}, (45)

p(bis) =sforalli=1,... ,n. (46)

G ={(ei,bis) | i 21 As€;"} (47)
U{(bj7s,6i) | s € *t; Aj = max {k | brs € BAKk <i}t}.

In order to show that (CN,p, ) is a time process of TPN, we have to prove
that CN is a causal net, (CN, p) is a process, and 7 is its valid timing. Clearly,
CN is a net. It is acyclic because e; G b; s G ej implies ¢ < j, and inductively,
e; < e;j implies 4 < j. It is also finitary, because for every e; there are at most
j — 1 events ey < ej. The preset of a condition is *b; s = {e;} for ¢ > 1 and
*bo,s = 0. Thus, |*b] <1 for all b € B.

To see that CN is a causal net, we still have to verify that [b;,*| < 1 for
all conditions in B. Let b; s € B. For the above chosen set B of conditions,
bjs € Bmeans (j =0As € My)V(j>1As € *t;). Assume e; € b;,* and
ey € b;*, where i/ < 4. In the chosen flow relation G, e; € b; ;* means

SE% ANbjs€BAj<iAPk:(j<k<iAbgs€B), (48)
which equals

sELA((G=0AsEM)V (j>1AsE€")) A
F<iAPE:(j<k<iAset®). (49)

The same holds for i'. s € *t;y A j < i’ < i. Together, these imply
SEy NseEt Ni' <i APk:(i' <k <iAs€et®). (50)

But such a firing schedule is not possible: ¢; cannot consume token s if none
has been produced after ;. Therefore, ¢ must equal 7' and |b;*| < 1 for all
bjs € B. Hence, CN is a causal net.

Next, we prove that p is a homomorfism. Clearly, p(B) C P and p(F) C T.
The restriction of p to e;*® is a bijection between e;* and p(e;)® because

ei. — {bi,s | (ei,bi,s) (= G} = {bi,s | s € tz.} . (51)
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Consider then p on the preset of an event,
‘ei ={bjs|setinj=max{k|bys € BNk <i}}. (52)

Let s € *p(e;) = *t;. In the firing schedule, there is the firing (¢;,6;). This is
possible only if s € My or s € t;° for some 1 < j < i, or otherwise ¢; could
not become enabled. Therefore, s = p(b;s) for some 0 < j < i. Consequently,
there is a condition b; s in ®e; for each s € *¢; and the restriction of p to ®e;
is surjective. Since the j in bj s € ®e; is a maximum, it is unique, and there
is exactly one b; s in ®e; for each s € *¢;, and the restriction is also injective.
Thus, the restriction of p to ®e; is a bijection between ®e; and *p(e;). The
restriction of the homomorfism to Min(CN) = {bys | s € My} is a bijection
between Min(CN) and My. This shows that p is a homomorfism from CN
to the underlying net system of TPN. Thus, (CN,p) is a process of the
underlying net system of TPN.

In addition, we must show that 7 is a valid timing. We first examine the
enabling time of transitions and the function I in order to show that Eqn. 28
holds in the constructed time process. Let transition ¢ be enabled after firing
t1,...,t;. It became enabled when the last of its preplaces received a token,
at time

max({z:;:lek 11<I<jAsEl AsE 't} u{o}). (53)

Let s and [ be the values of the free variables at which the maximum is reached.
There cannot be any k such that [ < k < 7 and s € *t;. Otherwise, ¢ would
not be enabled, or there would be some k' with k¥ < k' and s € #;* and k'
would be the point of maximum, not {. That is, Ak : (I < k < j A s € *t).
This implies Ak : (I < k < j A (bs,ex) € G), because according to Eqn. 47,
(bis,ex) € G implies s € *t;. Moreover, (b s,ex) € G cannot hold unless
I < k. Together, this means

Pe:(0<k<jA(bsex) €G). (54)

Since this is always true for the maximum, we can insert it into the formula
of Eqn. 53, which equals
= max({Z}_10; |1 <I<jAseEt;® A
ﬂk) : (l <k Sj/\(bl’s,ek) € G)/\S € .t} U {0})
=max({7(e;) | bys € Cut(E;) Nl >1As €t} U{0})
= max({r(*b) | b € Cut(E;) \ Min(CN) A p(b) € "t} U {0}). (55)
=TOE(Cut(E;),1).
This is the enabling time of ¢t. Consequently, the value of I(t) after the jth
firing is

I;(t) = 7(e;) — TOE(Cut(E;), ). (56)
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Second, we examine the marking and corresponding set of events in order to
show that Eqn. 27 holds in the constructed time process. The sum of the
changes in marking caused by the firings of ¢1,... ,%; equals the sum of tokens
produced and consumed by the events ei,... ,e;. Thus, the set Cut(E;) is
isomorfic with the marking after the jth firing, M;. This implies Eqn. 27,
M; = p(Cut(Ej)), and that the set of conditions Cut(E;) maps injectively to
places.

Third, we show that Eqn. 25 of Lemma 20 holds in the constructed time
process. *ej1 C Cut(E;) because if by, € *ej;1 and also by s € *e; for some
I < j, then |bgs*| > 2, which is impossible in a causal net. This and the
injective mapping of Cut(E;) to places imply

TOE(*ejy1,p(ej41)) = TOE(Cut(E;j), p(ej1))- (57)
Finally, with these results, it is possible to show that 7 is a valid timing. Let

e; € E. Choose j =1 — 1 and t = p(e;) in Equations 57 and 56. Together,
they give

Ii 1(p(ei)) = 7(ei1) — TOE(®ei, p(es))- (58)
Eqn. 6 of the firing condition can be transformed to

7(e;) > T(eir1) — Lim1(p(ei)) + Eft(p(es)). (59)

Substituting the value of I;_1(p(e;)) from Eqn. 58, we get Eqn. 18, the first
validness criterion.

The second validness criterion is a little more complicated. Let still e; € E,
and let 7 = max({k | 7(ex) < 7(e;)} U{0}). Then, 0 <j <.

Earlier(e;) = {ex € E | 7(ex) < 7(e;)} = FEarlier(ej4+1) = Ex.  (60)
For all k, k > j implies 7(ex) = 7(e;). Denote
C = Cut(Earlier(e;)) = Cut(Earlier(ej+1)) = Cut(E;), (61)

and let ¢ € Enabled(p(C)). Rewriting the firing condition on the latest firing
time (Eqn. 7), and substituting the value of I;_1(¢) from Eqn. 56,

7(ei) = 7(ej+1) < 7(ej) — Li—1(t) + Lft(t)

= TOE(C,t) + Lft(t). (62)

This shows that the requirement on latest firing times in the definition of valid
timing (Eqn. 19) holds. Thus, 7 is a valid timing of the process, and (CN, p, 7)
is a time process of CN.
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It remains to show that the time process has an interleaving p for which
o = FS(p). The interleaving is simply p = e1,e2,... ,e,. It is an interleaving
since every event is in the sequence exactly once, the process is constructed in
such a way that the partial order does not conflict with the order of indices,
e; < e; = 4 < j, and most importantly, the choice of 7 directly guarantees that
7(e;) < 7(ej) = i < j. FS straightforwardly maps p on . This concludes
the proof of Theorem 23. O

So far, we have shown that there is a surjective mapping F'S from the inter-
leavings of time processes to the firing schedules fireable from the initial state
of the net. The next theorem will complete the proof that the F'S is biject-
ive. As long as the time Petri net is contact-free, there is a unique process
corresponding to each firing schedule, up to isomorfism of processes.

Theorem 24 Let ¢ be a firing schedule of a time Petri net TPN. The process
of TPN with interleaving p, such that o = F'S(p), is unique up to renaming
of elements. 0O

Proof The proof is done by comparing an arbitrarily chosen process with
the one in the proof of Theorem 23. Let (CN',p',7') be an a time process of
TPN with an interleaving p’ such that F'S(p') = 0. Here, CN' = (B, E', G").
Obviously, the interleaving has the same number of events as p, and they can
be renamed e, ... , e, in the same order as in p. Since the events map to the
same firings, p(e;) = p'(e;) for all events e;. Thereafter, also the postset of an
event maps to the same places of the net in both processes. The conditions
B’ can be renamed as in Eqn. 45. For the minimal conditions that correspond
to the initial marking, there must be corresponding tokens in B’ and, since
they all are in different places, they can be renamed b, ;. After the renaming,
p(bis) = p'(bis) for all conditions.

It remains to show that the flow relation G’ is isomorfic to G. For the con-
nections (e;,b;s) € G this follows simply from the way we have renamed
the postplaces. For the preplaces, it is essential that the time Petri net is
contact-free. Then, there are no two conditions mapping to the same place in
Cut(Earlier(ex)) for any event ex. The only choice for preconditions of an
event are the ones last produced, as in Eqn. 47. Thus, also G is isomorfic to
G. O

As we have seen, in a contact-free time Petri net, the relation between firing
schedules fireable from the initial state and interleavings of time processes is
bijective. The results of this section are not surprising, but they assure that
the time processes correctly represent the behavior of the system. The timing
and the slightly more general notion of contact-freeness make the proofs com-
plicated in comparison to similar ones for untimed contact-free net systems.
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5 All valid timings of a process

It would be desirable to somehow characterize the set of all valid timings for
a given process. The definition of valid timing only gives a way to check the
validness, but it does not help much in constructing timing functions. Still,
the need of having the entire set of valid timings is obvious. From the set, one
can answer questions like, what is the longest time that can pass between two
events, can an event occur after another, and so on. We will see that the set
of all timings can be computed in a fairly general setting, but that the cost of
the computation may be high.

In section 5.1, an alternative criteria for the validness of a timing are derived.
It is used in Section 5.2 to construct an algorithm for computing the set
all valid timings of a causal process or deciding if any valid timing exists.
In Section 5.3, we return to question of when the validity of a timing in a
process can be decided by finding an invalid initial subprocess. An example of
maximizing time separation of events is given in Section 5.4. Finally, in Section
5.5, we briefly discuss the improvements in efficiency that can be achieved in
a restricted class of nets.

5.1 Deciding events

We will now give an alternative characterization of valid timings. It is based
on the idea that a decision has to be made about the firing of all potentially
enabled transition and that this decision is made by some actual event in the
system. The concepts choice transition and deciding event will be defined. The
approach of this section is aimed at computing the set of all of valid timings.
Therefore, it cannot take advantage of the structure of a single timing function
like the definition of validness does.

In processes of untimed net systems, all antichains of conditions represent
subsets of reachable markings. The is not the case in processes of time Petri
nets, but the antichains are still useful, because all reachable markings are
represented by some of them. Antichains are traditionally called co-sets, co
meaning a concurrency relation between process elements [22].

Definition 25 (co-set, cut) A set B’ of conditions in a causal net is a co-set
if no two conditions in the set are causally related.

Vb,b' € B': (=(p < q) A~(g < p)) (63)

A maximal co-set is called a cut. O
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We saw in Section 4.2 that in time processes, the sets p(Cut(Earlier(e))
correspond to markings of the time Petri net. In that light, the following
lemma is not surprising.

Lemma 26 Let (CN,p, ) be a time process, where the causal net is CN =
(B,E,G). Cut(E) and Cut(Earlier(e)) for all e € E are co-sets and so are
all their subsets. 0

Proof Assume that b,b' € Cut(E) and b’ < b. Then , there exist an event
€' € E such that ¥ Ge' G...G b. But then b ¢ Cut(E), which contradicts

with the assumption.

Similarly, assume that b,' € Cut(Earlier(e)) and b < b. There exist
events e and e” such that o G e G...G €" Gb. Tt has to be the case
that *b = €’ € Earlier(e). Since 7(e') < 7(€"), also ¢’ € Earlier(e) and
b' ¢ Cut(Earlier(e)), again a contradiction. O

When a transition becomes enabled in a time Petri net, it will eventually
fire by its latest firing time, unless it is disabled by the firing of another
transition. Furthermore, it is possible for the disabling to occur before the
transition becomes fireable. And, the transition may never become enabled
if it is “disabled” by removing some tokens before the others have been all
inserted to the places. In a net system, there would be an interleaving of the
events where the marking is reached, but the timing restrictions may exclude
such interleavings.

Since our definition does not require a processes to continue infinitely or until
all enabled transitions have been fired, a process is not necessarily maximal.
The first transitions left out at the end of the process are naturally enabled
at the marking corresponding to Cut(E), but no decision is made about firing
or disabling them. In the next definition, the potentially enabled events at
co-sets are called choice transitions and the undecided ones at the end of the
process are extension transitions. The decision about firing or disabling a
choice transition is quite naturally done by some event of the process.

Definition 27 (choice, extension, deciding event) Let (CN,p) be a causal
process of a time Petri net, where CN = (B, E,G). Transition ¢ is a choice
at B' C B iff B’ is a co-set that maps injectively to places and *t = p(B').
The choice is an eztension of the process iff B’ C Cut(E).

Let e be an event and ¢ a choice transition at B’ with B'N®e # () and
7(e) <TOE(B',t) + Lft(t). (64)

Then, e decides t at B. O
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Figure 9: Choice and extension transitions

The deciding event of choice transition ¢ at B’ is either a firing of ¢, or it is the
firing of another transition that disables ¢. In Figure 9, there is a time Petri
net and its process. At the initial marking, ¢1 and ¢2 are choice transitions.
Both are decided by the event el; t1 is fired and ¢2 is disabled. ¢3 is an
extension transition and remains undecided. In this case, t2 never becomes
enabled, since it is disabled before its earliest firing time.

Definition 28 (complete with respect to a timing) A causal process (CN, p)
of a time Petri net, where CN = (B, E, G), is complete with respect to timing
function 7 iff for every extension transition ¢ of the process,

max{7(e) | e € E} < TOE(Cut(E),t)+ Lft(t). (65)

O

When the process is complete, none of its concurrent parts “are left behind
in time”. That is, if there is some event in the process with time 7(e), all
potential events with smaller value of 7 must be included in the process. This
property is also implicit in the definition of valid timing.

In untimed processes, the possibility of an event depends only on the causal
past of the event, its local configuration. In time processes, an event can occur
only if the history of the entire system allows it to become fireable. This forces
us to always examine complete processes, not just local configurations.

It is computationally more efficient to state completeness in terms of the final
conditions of the process. The following lemma will be used to reduce the
number of instantiated inequalities created by the completeness requirement.
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Lemma 29 If Eqn. 18 holds, Eqn. 65 is equivalent with
Vee E : ((e**=0 AN eg*B') = 7(e) <TOE(Cut(E),t) + Lft(t)). (66)

where B’ C Cut(E) is the set of conditions at which ¢ is enabled. O

Proof When Eqn. 18 holds, the causal order of events implies time order,
e <e= 7(e’) < 7(e). Then, the maximum value of 7 is obtained for some
of the the causally maximal events in the causal order. Hence, it is enough to
examine only those events in the causal order, for which e*® = (). Moreover,
if e € B' C *Cut(E), then 7(e) < TOE(Cut(E),t), and the inequality holds
automatically. O

Before going to the algorithm for constructing the set of all valid timings, we
prove the main theorem of this section. It characterizes the validness of a
timing in an alternative way. While the definition of validness is optimized
for checking known timing functions, this formulation of the validness criteria
makes it possible to talk about sets of timings. The algorithm of Section
3.3 is based on the definition and it takes advantage of the structure of the
single timing under inspection. The following theorem will result in another
algorithm in Section 5.2 that computes the set of all valid timings, but it
should not be used for checking single timings.

Theorem 30 Let TPN be a time Petri net and (CN, p) a causal process of
TPN. A timing function 7 is valid iff the validness criterion on the earliest
firing time (Eqn. 18) holds, the process is complete with respect to the timing,
and every choice transition is either an extension or decided by some event in
the process. O

Proof We have to prove that the validness criterion on the latest firing
time (Eqn. 19) holds iff the process is complete and every choice is either an
extension or decided by an event.

First, we show that validness of a timing implies completeness of the process.
Let 7 be a valid timing on a causal process (CN,p) of a time Petri net, where
CN = (B, E,G). Assume that the process is incomplete. There is some trans-
ition ¢, a set of conditions B’ and an event e € E such that *t = p(B’), B' C
Cut(E) and 7(e) > TOE(B',t) + Lft(t). Then, B' C C, = Cut(Earlier(e))
and, since C, maps injectively to places, TOE(Ce,t) = TOE(B',t). Thus,
7(e) > TOE(C,,t)+ Lft(t), which contradicts with Eqn. 19. The assumption
is false and the process is complete.

Second, we assume that a choice transition is not an extension and show that
it is decided by some event. Let 7 be valid. Let ¢ be a transition and B’
a co-set mapping injectively to places such that *¢t = p(B’) and B'* # .
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Choose some e € B'® such that 7(e) = min{7(¢’) | ¢’ € B'*}. Then, B'N
*e # . Consider first the case where 7(e) < max({7(¢') | ¢ € *B'} U {0}) =
TOE(B',t). Then, 7(e) < TOE(B',t)+Lft(t). On the other hand, let 7(e) >
max({7(e') | ¢’ € *B'} U {0}). In that case, B' C C., = Cut(Earlier(e)),
because *B’ C Earlier(e) and the choice of e guarantees fle’ € B'* : 7(¢/) <
7(e). Thus, t € Enabled(C,). The definition of valid timing (Eqn. 19) gives
7(e) <TOE(Ce,t)+ Lft(t) = TOE(B',t)+ Lft(t). Together with B'N®e # ()
this suffices to show that ¢ is decided by e.

The implication in the reverse direction remains to be shown. Let 7 be a
timing function, the process complete with respect to 7 and every choice
transition either an extension or decided by some event. Let e € E and
t € Enabled(p(Ce)). There exists a set B’ C C, such that *t = p(B’). Since
C. maps injectively to places, this set is unique and TOE(B’,t) = TOE(Ce,1).
Also, B' maps injectively to places. According to Lemma 26, B’ is a co-set.
Thus, t is a choice at B’. If ¢ is an extension, completeness of the process
guarantees that 7(e) < TOE(B',t) + Lft(t). On the other hand, if ¢ is de-
cided by event €', we have 7(¢') < TOE(B',t) + Lft(t). € & Earlier(e)
since ¢ € B'*. Thus 7(e) < 7(e) < TOE(B',t) + Lft(t). In both cases,
7(e) < TOE(C,t) + Lft(t) and Eqn. 19 holds. This concludes the proof of
Theorem 30. O

5.2 Algorithm for all valid timings

A closer look at Theorem 30 reveals that all the properties required by the
theorem from valid timings can be presented with inequalities. The three
sources for inequalities are:

1. validness criterion on the earliest firing time (Eqn. 18),
2. deciding events of choice transitions (Eqn. 64),

3. completeness of the process (Equ. 66).

Source 1 gives a set of inequalities on occurrence times that must be satisfied
by all valid timings. Source 3 produces inequalities with the function TOE
in them. Since TOFE is defined as a maximum over a set of events, these
can be expanded to sets of alternative inequalities with only occurrence times
as variables. At least one of the alternatives in each set must hold in every
valid timing. The same applies to Source 3, but these inequalities have to be
instantiated with all the events satisfying the left side of the implication in
Eqgn. 66.
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The existence of a valid timing for a causal process can be determined by
an algorithm that nondeterministically chooses one elements from each set of
alternative inequalities. If any one of the nondeterministic choices results in a
set of inequalities with a feasible solution, the solution is a valid timing. Figure
10 shows the complete nondeterministic algorithm for deciding the existence
of a valid timing on a causal process (CN,p), where CN = (B, E, Q).

The algorithm starts with an empty set of inequalities 7E. For the earliest
firing times (Source 1), it enumerates all events e in Eqn. 18. The inequalities
have the form 7(e) > TOE(%e,t) + Lft(p(e)). There are |E| such inequalities
in total. For every inequality with TOE, ones of the form 7(e) > 7(€') +
Lft(p(e)) are added to IE, one for each of the at most § preceding events
€' € **e, where (3 is the branching factor of the net. The number of inequalities
added to IE is at most S| F| and they have only occurrence times of events as
variables.

Then, the choice transitions ¢ at different co-sets B’ are enumerated. The num-
ber of such transitions is less than |T|| B|?. For each choice that is not an exten-
sion (Source 2), a potential deciding event e is selected nondeterministically.
There are at most 3 deciding events to select from. Eqn. 64 instantiated with
e, B’ and t has the form 7(e) < TOE(B',t)+ Lft(t). Since TOE is defined as
a maximum on the set B’, the inequality can be satisfied in |B'| < § ways. For
each inequality containing TOE, a condition b is chosen nondeterministically
from the set B’ and an inequality of the form 7(e) < 7(°b) + Lft(¢) is inserted
to IE. For each extension transition (Source 3), the inequality in Eqn. 66 is
instantiated with ¢, B’ and all necessary different values of e. Again, one of
the alternatives for the maximum in every TOF is chosen nondeterministic-
ally and the inequalities are added to the set IE. In the worst case, all the
choices are extension. In that case, at most |T'||B|?|E| inequalities with TOE
are obtained making at most |T'||B|?| E| nondeterministic selections among up
to (8 alternatives on the way. The number of instantiated inequalities added
to IE is also |T||B|°|E|.

The resulting inequalities in I E are all linear. There are up to (|T||B|?+8)|E]|
of them. In addition, all variables 7(e) are nonnegative. The existence of a
feasible solution for the set of a polynomial number of linear inequalities is
decidable in polynomial time [7]. There exists a valid timing for the process
iff the set of inequalities TE in one of the nondeterministic execution paths of
the algorithm has a solution. If the branching factor 3 is constant for a class
of Petri nets, the described algorithm decides in nondeterministic polynomial
time the existence of a valid timing. We state this as a theorem.

Theorem 31 In a class of time Petri nets where the branching factor § is
bounded by a constant, the existence of a valid timing can be decided by an
algorithm that is NP with respect to the size of the process. O
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IE : set of inequalities
EVS : set of events

IE =0
(* Eft *)
for each e€ E do
if **e #0 then
for each €' € *®¢ do
insert inequality 7(e) — 7(e') > Lft(p(e)) into IE
else
insert inequality 7(e) < Lft(p(e)) into IE
(* Lft =)
for each t €T do
for each B’ C B such that |B'| =|*| do
if *t = p(B') then
if B'* #( then
(* choice *)
choose nondeterministically e € B'®
EVS :={e}
else
(* extension *)
EVS:={eeE|e**=0 Neg°*B'}
for each e € EVS do
if *B' #( then
choose nondeterministically e’ € *B’
insert inequality 7(e) —7(e') < Lft(t) into IE
else
insert inequality 7(e) < Lft(t) into IE
for each e€ E do
insert inequality 7(e) >0 into IE
return true if IE has a feasible solution

Figure 10: Deciding existence of a valid timing
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The algorithm can easily be modified to compute the longest possible time
separation between two events. Furthermore, it can be generalized to optim-
ize a linear combination of the occurrence times of the events of a process.
This is done by solving a linear optimization problem for all different sets of
inequalities given by different choices of deciding events and latest precondi-
tions. These sets are obtained by enumerating all different alternatives for
the nondeterministic choices in the algorithm. The longest distance between
two events e’ and e is a special case of such linear optimization, where the
maximum of 7(e) — 7(¢’) is computed.

The constraints of the optimization problems have a very special structure.
Every variable 7(e) is nonnegative and the rest of the inequalities have the
following forms:

The inequalities of type A come from Source 1. They are always all included
in a set of inequalities; there are no alternatives. The inequalities of type
B are obtained from Sources 2 and 3. Type C is a special case of type B,
caused by transitions enabled at the initial marking. These inequalities are in
sets of alternatives. One alternative from every set has to be chosen for each
optimization problem. Thus, the optimization problems can be presented in
conjunctive normal form:

(INEQ1)

AINEQs)
AINEQs3)

AINEQy)

(
(67)
/\(INEQk+1,1 Vv INEQ]C_H,Q V-V INEQk+1,mk+1)
(
(

ANINEQg421 VINEQgi22V ---V INEQk+2,mk+2)
ANINEQy4+31VINEQg432V -+ VINEQk+3my. ;)

ANINEQn1VINEQ, 1V - VINEQ,m,)-
The number of inequalities in the disjunctions vary. Many have only one.

In many cases, the number of inequalities can be significantly reduced.
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o [f there are two equivalent inequalities in a disjunction or two equivalent
disjunctions in the conjunction, one can be removed.

e If one of two alternative inequalities implies the other, the more re-
strictive one can be removed. For instance, when 7(ez) — 7(e1) < 4 and
7(e2) — 7(e1) < 6 are in the same disjunction, the former is superfluous.
The same applies to 7(e2) — 7(e1) < 4 and 7(eg) < 4.

e If an inequality without alternatives implies one of the inequalities in
a disjunction, the entire disjunction can be removed. For example,
(t(e1) < 3 V 7(e2) — 7(e1) < 5) A (r(el) < 2) can be reduced to
T(el) < 2.

o If the upper bound of an inequality of type B or type C is oo, the entire
disjunction containing it can be removed.

The linear optimization problems will be formed by choosing one of the altern-
atives in each disjunction. If one inequality in such a problem implies another,
the stronger one can again be removed. If this rule is applied exhaustively,
the number of inequalities will be at most |E|?> + B|E|. This is because there
are |E|(|E| — 1) ways to pick e and €' in inequalities of type B and |E| pos-
sible e in type C. From the algorithm it can be seen that there are at most
B|E| inequalities of type A. In addition to these inequalities, all variables are
nonnegative.

In addition to the inequalities given by the algorithm, it is possible to impose
other linear constraints on the system under optimization. New inequalities
can simply be added to the sets. For instance, one can maximize the separ-
ation of two events, 7(eg) — 7(eg), when another event happens earlier than
a threshold time, 7(e2) < 100. This is done by adding the inequality to all
alternative optimization problems and by performing the optimization with
the new constraints.

While the size of the linear optimization problems grows reasonably with the
size of the process (O(|E|?) inequalities in each problem), the number of op-
timization problems is exponential in the size of the process. Fortunately, the
solutions to the optimization problems can be computed by changing only
one of the constraint inequalities at a time. The linear optimization algorithm
should be able to take advantage of this. In practice, most alternative sets
of inequalities have the same optimum points. This can be utilized by giving
the previous solution as an initial point for the next optimization problem.
Most of the time, the initial value will be the optimum. Also, one could
take advantage of the structure of the inequalities, for example, by using the
Bellman-Ford algorithm [7] for finding feasible solutions to the systems of dif-
ference constraints. There may be further ways of optimizing the procedure.
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It is, for instance, possible to start with partial sets of inequalities and save the
intermediate solutions when adding alternative constraints. In that way, large
groups of infeasible problems could be eliminated simultaneously. Obviously,
when we are only interested in the existence of a valid timing, it is sufficient
to find the first set of inequalities with a feasible solution. All alternatives
need to be considered only if no valid timing exists.

5.3 More about invalid timings in growing processes

In Section 3.5, we promised to return to the question of invalid timings in
growing processes. With the terminology introduced above, the ideas there can
be stated in more compact form. The following Theorem says essentially the
same thing as Theorem 17, but is more oriented towards the characterization
of validness in Theorem 30.

Theorem 32 Let (CN,p), where CN = (B, E,G), be a causal process with
timing function 7. Assume that there is a choice transition ¢ at a set B, that
is neither an extension nor decided by any event of E. If (CN,p) is an initial
subprocess of another process (C’N, p) such that B;® is equal in both processes,
then (CN, p) does not have any valid timing function whose restriction to E
equals 7. O

Proof It is easy to see that the candidates for deciding events are the same
in both processes. If none is added, the process remains invalid. O

The most common case where B;® is equal in both processes is the one where
b* € E for all b € B;. This is because when all conditions of the set B; are
consumed by some events in the smaller process, there is not room to add
any new deciding events in the larger one. Consequently the invalid situation
cannot be corrected by extending the process. This is the case for the process
of Fig. 6(a). We can now easily complete the proof that was delayed in Section
3.2.

Proof of Theorem 17 This is a special case of Theorem 32, exactly the
above discussed situation where all all conditions of the set B; are already
consumed by some event of E. d

The same problem with growing processes appears when solving the sets of
inequalities constructed in Section 5.2. When do we know that there does
not exist any valid timing, even if the process is generated further? Also, in
optimization problems, we would often like to find the optimum value in a
given process and all larger processes.
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Figure 11: Computing all timings of a process

Suppose we have constructed the constraints of an optimization problem for
a process (CN,p), where CN = (B, E,G). The inequalities that will remain

in any process having (C'N,p) as a subprocess are

1. all inequalities from Source 1,

2. the alternative inequalities from Source 2, corresponding to choice a

transition ¢ at By, only if b°* € E for all b € B;.

If this reduced set of constraints has a feasible solution, a larger process may
have a valid timing. On the other hand, if there is no solution for this smaller
problem, no processes having (C'N,p) as an initial subprocess has any valid
timing. Also, if the reduced constraints allows for a better result of an optim-
ization problem than the original constraints, the optimum in (CN, p) may be
limited by the size of the generated process. When the optimum value is not
enhanced by reducing the set of constraints, the value is, in fact, optimal for

all processes having (CN,p) as an initial subprocess.
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5.4 Example

In Figure 11, there is a causal process of the time Petri net of Fig. 5(a), with
all choice transitions. We are interested in the set of valid timings for this
process. The algorithm of Section 5.2 gives the following constraints:

(r(e1) > 1) Eft
A (7(e3) —1(e1) > 1)
A (7(e2) > 1)
A (t(es) —1(e2) > 1)
A (T(eq) — T(e3) < 3) Lft: extensions
A (7(e3) — 1(es) < 10)
A (T(e1) < 3) Lft: events
A (7(e3) —(e1) < 3)
A (1(e2) < 10)
A (1(es) — T(e2) < 10)
A(T(e1) <2 V T(e2) < 2) Lft: other choices
A(1(es) —1(e1) <2 V 7(e3) —71(e2) <2 V 7(ea) —7(e1) <2 V 7(ea) — 7(e2) < 2)
A(7(e1) —7(e2) <2 V 7(es) — 7(e2) < 2)
A(7(e3) —7(e1) <2 V 1(e2) —7(e1) <2)
A (1(e3) —1(e1) <2 V 7(e3) —1(es) < 2)
A (7(es) —71(e2) <2 V 1(eq) — 7(e3) < 2)
A (7(e2) — (e3) < 2)
A (1(e1) — T(eq) < 10)

The first four constraints are the earliest firing times of the events. The next
two guarantee the completeness of the process. Then come the alternative
reasons why each choice transition does not reach its latest firing time. Four
of the choices are decided by events that are firings of the choice transition.

These inequalities have a solution and, thus, there exists a valid timing. We
can, for instance, find the maximum of 7(e3) — 7(e2). The maximum is 5, at
7(e1) =3, 7(e2) =1, 7(e3) = 6, 7(es) = 4. We can also find maximum firing
time of event e4. The result is 7, at 7(e1) = 2, 7(e2) =6, 7(e3) =4, 7(eqg) = 7.
The latter result may appear surprising, but in order for 7(e4) to be higher,
other parts of the process should be extended. Thus, these results are only a
maximum in this process, not necessarily in larger processes. The reduced set
of constraints introduced in Section 5.3 becomes:
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(r(e1) > 1) Eft
A (7(e3) —1(e1) > 1)
A(r(e2) 2 1)
A (1(ea) —1(e2) > 1)
A (t(e1) < 3) Lft: events
A (7(e3) —1(e1) < 3)
A (7(e2) < 10)
A (1(e4) — T(e2) < 10)
A(r(e1) <2 V T(e2) < 2) Lft: other choices
A(7(e3) —71(e1) <2 V 7(e3) —7(e2) <2 V 7(esa) —7(e1) <2 V 7(eq) — 7(e2) < 2)
A(7(e1) —71(e2) <2 V 1(eq) — 7(e2) < 2)
A(7(es) —71(e1) <2 V 1(e2) — 7(e1) < 2)

In this set, the maximum of 7(e3) — 7(e2) is still 5. The result indicates that
it is the maximum in all processes having the process of Fig. 11 as an initial
subprocess. On the other hand, the maximum of e4 differs considerably from
the previous result. It is now 20, obtained for example at 7(e;) = 1, 7(e2) =
10, 7(e3) = 2, 7(e4) = 20. In order to learn the maximum firing time of event
e4, we would have consider all different ways in which the process can be
extended. The value obtained from the reduced set of inequalities, 20, is only
an upper bound for 7(es4).

5.5 Extended free choice time Petri nets

Since the computation of all valid timings is expensive in the general case, it is
necessary to find classes of models where the complexity is reasonable. We will
see that in a restricted class of time Petri nets, where no confusion occurs, the
validness criteria can be simplified and, thus, computing valid timings is much
easier. In practice, one has to find a reasonable balance between modelling
power of the net class and cost of analysis.

Extended free choice nets [3] are usually used to avoid confusion, a situation
where a conflict occurs or does not occur depending on the order of caus-
ally unrelated firings. We will see that in the confusion-free net class timing
analysis in significantly easier than in the general case. Why does confusion
complicate the timing analysis so much? The reason is twofold. First, tim-
ing determines the order of causally unrelated events. Second, a conflict in a
time Petri net does not mean that all of the alternative transitions can fire,
because the possibility of firing depends on the relative timing of these events.
Together, these two mechanisms create complex dependences between events.
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When only restricted forms of synchronization are allowed, the dependences
do not arise. The notion of extended free choice extends to time Petri nets
without any change.

Definition 33 (extended free choice) A time Petri net is eztended free
choice iff for all two transitions ¢ and ', *t N *#' # 0 implies *¢t = *¢'. O

This structural property is conserved by process generation.

Lemma 34 All processes of an extended free choice time Petri net are also
extended free choice. If a process is extended with all of its choice transitions,
the resulting net is also extended free choice. O

Proof Assume the contrary: two events e and €’ have intersecting presets,
*eNn®e # (), but they are not equal, ®e # *¢’. In that case, *p(e) N*p(e’) # 0,
but *p(e) # *p(e’). This conflicts with the extended free choice property.
Similar reasoning applies to the choice transitions. 0

The following Theorem is similar to Theorem 30, but — because of the ex-
tended free choice property — computationally much easier to handle.

Theorem 35 Let EFCTPN be an extended free choice time Petri net and
(CN,p) a causal process of EFCTPN, where CN = (B,E,G). A timing
function 7 is valid iff the criterion on the earliest firing time (Eqn. 18) holds,
the process is complete with respect to the timing, and

Vee€ E:7(e) <TOE(*e,p(e)) + min{Lft(t) | *t = *p(e)}. (68)
O
Proof A seen by comparing Theorems 30 and 35, we need to prove that

Eqgn. 68 holds iff every choice transition that is not an extension has a deciding
event.

Assume first that Eqn. 68 holds and that transition ¢ is a choice but not
an extension at a set of conditions B’. There is at least one event e with
*eN B'" # (. In an extended free choice process this means *e = B’ and
TOE(*e,p(e)) = TOE(*e,t) = TOE(B',t). Eqn. 68 gives

7(e) < TOE(*e,p(e)) + Lft(t) = TOE(B',t) + Lft(t). (69)
Hence, e decides t at B’.

On the other hand, assume that every choice transition that is not an extension
has a deciding event. Let e be an event and ¢ a transition such that *¢ = *p(e).
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The set of conditions *e C Cut(E}y) is a co-set and it maps injectively to places.
Thus, % is a choice at ®e and it must be decided by some event. Since there
are no conflicts in a process, e is the only event in (®e)®. Therefore, e has to
decide t, 7(e) < TOE(®e,t) + Lft(t). This is true for all transitions ¢ with
*t = *p(e) and, hence, Eqn. 68 holds. O

If the above validness criteria is used instead of that of Theorem 30, the num-
ber of alternatives in the sets on inequalities characterizing all valid timings
of a process will be significantly smaller. This is because with the above valid-
ness criteria, it is not necessary to consider different alternatives for deciding
events. Unfortunately, the efficient timing analysis for extended free choice
systems does not come without disadvantages. The kinds of systems that can
be modelled by extended free choice time Petri nets are limited. While the
cost of timing analysis is high in the general case and the modelling power
of the extended free choice nets is limited, it seems that processes with only
few choice transitions violating the extended free choice property can exhibit
complex behavior and be still analyzable in reasonable time.
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6 Conclusions

The objective of this thesis is to give time Petri nets a partial order semantics,
like the nonsequential processes of untimed net systems. As the main contribu-
tion, we introduce time processes for representing the behavior of contact-free
time Petri nets. The time processes are defined as causal processes with a
valid timing on the events. The relationship between the time processes and
the usual firing schedule semantics is examined in detail with the conclusion
that the approaches are compatible. We present algorithms for checking val-
idness of known timings and for constructing the set of all valid timings of a
process for use in optimization problems.

Time Petri nets are a class of Petri nets where transitions have earliest and
latest allowed firing times. They can be used to analyze absolute limits of
timing and effects of time constraints on the state space of the system. We
assume time Petri nets to be contact-free and have divergent time. Accord-
ing to our definition, a time Petri net can be contact-free even though the
underlying untimed net system is not.

Processes are partial orders of events and conditions representing firings and
marked places in the net, respectively. Unlike firing sequences, processes pre-
serve concurrency and causal relationships between events. The central new
concept in this thesis, a time process, is defined as a causal processes with
valid timing. This means that the events of the process are labeled with oc-
currence times which must satisfy specific validness criteria. The complexity
of timing analysis lies in dependences between causally unrelated events, cre-
ated by the latest firing times of transitions. With the partial order approach,
these dependences must be explicitly dealt with. They force us to look at
other enabled transitions, not only the causal past of an event, when assessing
validness of the occurrence time of the event.

An efficient algorithm for verifying validness of timings is presented. The al-
gorithm is especially effective on processes with many immediate events. This
is important, because models of practical systems often have large untimed
parts where firings take no time. Also, a sufficient condition is given for when
the invalidity of timings for larger processes can be inferred from their initial
subprocesses. The relationship between interleavings of time processes of a
time Petri net and firing schedules of the net is bijective. The relation is built
on interleavings, linearizations of the process partial order that respect both
the causal and time order of events. The results indicate that the time process
and firing schedule presentations of system behavior have essentially the same
meaning.

The definition of valid timing is optimized for checking validness of known
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timings. As such, it does not give any direct way for constructing time pro-
cesses. Therefore, an alternative characterization for validness is presented.
It is based on the idea that a decision has to be made about firing or dis-
abling every even potentially enabled transition, and the decision is made
by an actual event of the process. With the alternative formulation of the
validness criteria, the existence of a valid timing for a given process can be
decided in nondeterministic polynomial time. The algorithm can also be used
for constructing the set of all valid timings. While the algorithm for verifying
validness takes advantage of the structure of the particular process and timing
to minimize the number of comparisons, an algorithm constructing the set of
all valid timings has to go through a lot more alternatives. The timings are
presented as sets of alternative linear inequalities. With these, one can answer
questions like, what is the maximal time separation between two events. In a
net class with restricted forms of synchronization, extended free choice time
Petri nets, the validness criteria can be simplified significantly.

The presented techniques could be improved with various optimizations, for
example, in solving the sets of linear inequalities. It seems that efficient al-
gorithms could be developed for timing analysis in extended free choice time
Petri nets. Also, other restricted net classes should be considered. Interesting
topics for future research include incorporating the timing analysis with pro-
cess generation to compute properties of whole nets, not only single processes,
and extending the presented methods to time stream Petri nets. Also, the idea
of branching processes for time Petri nets is intriguing, although it is difficult
to see how the different time processes could be embedded into one partial
order.
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