
Maria
Modular Reachability Analyzer for Algebraic System Nets

20 June 2003, Maria Version 1.3.4

by Marko Mäkelä

Copyright c© 1998-2000, 2002-2003 Marko Mäkelä. Copyright c© 2001 Marko Mäkelä and
Helsinki University of Technology, Laboratory for Theoretical Computer Science.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” and this permission notice may be included in translations
approved by the copyright holder instead of in the original English.

Introduction 1

Introduction

Maria, or Modular Reachability Analyzer, is a reachability analyzer for Algebraic System
Nets. It will generate reachability graphs for Algebraic System Nets, detect deadlocks and
check properties expressed using temporal logic formulae.

Maria is remotely based on Prod, a reachability analyzer for Proposition/Transition Nets
developed earlier at the Laboratory for Theoretical Computer Science. Its data type system
and expression syntax are heavily inspired by the C programming language. In order to
understand this manual, you should be familiar with the basic concepts of Petri Nets and
also have some knowledge in C.

Maria was written by Marko Mäkelä in a research project at the Helsinki University of
Technology in the Laboratory for Theoretical Computer Science. The project is financed
by the National Technology Agency of Finland (TEKES), Nokia Research Center, Nokia
Networks, the Helsinki Telephone Corporation and the Finnish Rail Administration.

Many of the ideas implemented in Maria were brought up in discussions among the
laboratory staff. Ideas expressed by Dr. Kimmo Varpaaniemi, Dr. Nisse Husberg, Keijo
Heljanko and Tommi Junttila have influenced the design. Dr. Varpaaniemi sketched the
first version of the unification algorithm (see Section 3.1 [Unification], page 52), and he
helped in debugging by stressing the analyzer with quite obscure examples. Also Simo
Blom, who was the first one to use the analyzer for something real, reported some bugs,
which have now been fixed.

The model-checking functionality (see Section 3.2 [Model Checking], page 54) is based
on the ideas of Keijo Heljanko and others, and the algorithms were initially implemented
by Timo Latvala.

This edition corresponds to version 1.3.4 of Maria.

Chapter 1: The Net Description Language 2

1 The Net Description Language

Petri Nets are often represented as directed bipartite graphs using a graphical notation.
An entirely graphical notation only works for relatively simple nets that can be represented
on one sheet of paper. We decided to use a purely textual notation, since it avoids many
problems, such as creating an optimal graphical layout for an automatically generated Petri
Net model and creating a graphical user interface that works flawlessly on various hardware
and software platforms.

1.1 Design Criteria

As an admirer of the programming languages C and C++, I decided to make the net
description language resemble C as closely as possible. Users familiar with C should feel
comfortable with the way data types are defined and expressions are written in the net
description language.

In the following, we will present the grammar of the net description language using regu-
lar expressions (see section “Patterns” in The Flex Manual) and the Extended Backus−Naur
Form (see section “Languages and Context-Free Grammars” in The GNU Bison Manual).

1.2 Lexical Conventions

The lexical conventions of the Maria Petri Net description language determine how to
format net descriptions in text files, including the mechanisms for embedding explanatory
comments.

1.2.1 Formatting

The net description language is not sensitive to the presence or absence of white space be-
tween language elements provided that all keywords and identifiers are distinguished. Thus
the user has the same degree of freedom that C and C++ allow in formatting code. White
space includes these characters: space (‘’ ’’), newline (‘’\n’’), carriage return (‘’\r’’),
form feed (‘’\f’’), horizontal tabulator (‘’\t’’) and vertical tabulator (‘’\v’’).

1.2.2 Comments

Comments are indicated as they are in the C++ programming language. Two contiguous
slashes (‘//’) indicate the start of a comment that continues to the end of the current line.
A slash immediately followed by an asterisk (‘/*’) indicates a comment that continues until
the reverse sequence (‘*/’) is encountered. Comments may not be nested, and comments
are interpreted only between language elements (e.g., not inside names enclosed in double
quotes).

1.2.3 Lexical Tokens

Lexical tokens are the atomic constituents of the language, consisting of characters or
character sequences.

Chapter 1: The Net Description Language 3

1.2.3.1 Reserved Words

There are quite a few reserved words in the net description language:
atom cardinality const deadlock
empty enabled enum equals
false fatal gate hide
id in infinite intersect
is map max min
minus out place prop
queue reject release stack
strongly_fair struct subnet subset
trans true typedef undefined
union until weakly_fair

In order to use any of these words as an identifier (see Section 1.2.3.4 [Identifiers], page 4),
you will have to enclose it in double quotation marks (‘"’).

1.2.3.2 Numeric Constants

Maria has three interchangeable ways of entering integer numeric constants. The
constants can be entered using one of three different notations: with decimal numbers
(‘[1-9][0-9]*’), octal numbers (‘0[0-7]*’) or hexadecimal numbers (‘0x[0-9a-fA-F]+’).
When a numeric constant is too long to fit in the internal representation, the lexical
analyzer will detect it and issue a diagnostic message. Decimal numbers are always
unsigned, but the hexadecimal and octal representations are translated directly to the
system-dependent internal representation, which usually is a 32-bit word interpreted as a
signed integer using two’s complement arithmetic.

1.2.3.3 Character Constants

Character constants are just like in the C programming language: a single character
enclosed in apostrophes (‘’’). The backslash (‘\’) is used for entering special characters:

‘\a’ alert, bell (BEL)

‘\b’ backspace (BS)

‘\t’ horizontal tabulator (HT)

‘\n’ newline, line feed (LF)

‘\v’ vertical tabulator (VT)

‘\f’ form feed (FF)

‘\r’ carriage return (CR)

‘\[0-7]{1,3}’
octal notation

‘\x[0-9a-fA-F]{1,2}’
hexadecimal notation

Chapter 1: The Net Description Language 4

‘\c ’ character c (c != ’\n’)

Any other characters than the apostrophe or the backslash can be entered verbatim between
the apostrophes.

Any non-special character quoted with the backslash will be entered as such, i.e. the
backslash will be ignored. Thus, ‘’\c’’ is equivalent to ‘’c’’. The line break character is a
special case. In order to maintain consistence with the quoted identifiers discussed below, a
backslash followed by a line break and any amount of white space containing no line breaks
will be ignored.

1.2.3.4 Identifiers

Maria uses textual names for identifying places, transitions, data types, variables, enu-
meration constants and many other things. None of the identifiers become reserved words.
For instance, ‘bool’ may be a type name, a place name or the name of a structure compo-
nent. Anything of the form ‘[A-Za-z_][A-Za-z0-9_]*’ that is not a reserved word is an
identifier.

Identifiers can also be enclosed in double quotation marks. As with single-character
constants, only the backslash and the quotation mark must be escaped with a backslash, and
the backslash notation (see Section 1.2.3.3 [Character Constants], page 3) can be used for
entering non-printable characters. Non-printable characters need not be escaped, though.
The only character that is not allowed in identifiers is the NUL character.

The backslash character (‘\’) can be used to break up long identifiers. A backslash
followed by a line break and any amount of white space containing no line breaks will be
ignored in the input. Also, backslashes can be used to quote the following character. For
instance, ‘in\ k’ is equivalent to ‘"in k"’.

In double quotes, the newline character is just as significant as any other character.
Sometimes one wants to split a long quoted identifier to several lines without the line breaks
being significant. This can be achieved by putting a backslash immediately before the line
break. The lexical analyzer will ignore the backslash, the line break and the immediately
following white space (not line break).

1.2.4 Preprocessor Directives

The language contains a subset of the directives implemented in the C language pre-
processor. Conditional compilation and macro definitions are not supported in the current
version.

Preprocessor directives are indicated with a number sign (‘#’) located in the first (left-
most) column. The number sign may be followed by any amount of lexical comments and
other white space than newline. The line, which must be terminated with a newline, must
contain exactly one preprocessor directive.

1.2.4.1 Embedding Other Files: ‘#include’

The ‘#include’ directive works just like in the C preprocessor, except that the file name
must be enclosed in double quotes and never in angle brackets (‘<’ and ‘>’). The string in
double quotes is interpreted as a quoted identifier (see Section 1.4.2.5 [Identifier], page 14).

Chapter 1: The Net Description Language 5

1.2.4.2 Conditional Processing

The ‘#ifdef’, ‘#ifndef’, ‘#else’ and ‘#endif’ directives work just like in the C prepro-
cessor, expecting an argument of the form ‘[A-Za-z_][A-Za-z0-9_]*’. Note that there is
no ‘#if’ directive and that the ‘#define’ directive only takes one argument, the name of
the symbol. The preprocessor symbols are not macros; no macro expansion will take place.

Conditional processing can be used to avoid problems with multiple inclusions of a file or
to add some parameterization to the net model. Preprocessor symbols can also be defined
on the command line.

1.2.4.3 Setting the Line Number: ‘#line’

Code generation tools usually generate ‘#line’ directives for excerpts that are to be
embedded verbatim in the generated code. This allows the compiler to refer to the relevant
input file of the code generator in its diagnostic messages.

The Maria languages implement the ‘#line’ directive in order to better support the
diagnostics of automatically generated net descriptions. The ‘line’ keyword is followed by
a numeric constant and a character string constant indicating the line number and the file
name of the following line.

1.2.4.4 Preprocessor Comment: ‘#!’

The special preprocessor directive ‘#!’, which causes the rest of the line to be ignored,
was added in order to make it possible for Maria input files to also be executable scripts in
systems having an appropriate exec system call.

1.3 Constructs for Defining Nets

1.3.1 Type Definitions: ‘typedef’

In the Maria languages, only the predefined data types ‘bool’, ‘int’, ‘unsigned’ and
‘char’ can be used without naming them using the grammatical construct

type: TYPEDEF typedefinition name

inspired by C. The built-in type names are not reserved words. For instance, any reference to
the type ‘int’ following the definition typedef int (-64..63) int; will refer to an integer
representable with 7 bits.

For a comprehensive description of the data type system, see Section 1.4 [Data Types],
page 12. Here we will only present the syntax, not the semantics.

Some of the syntax for defining data types resembles the C programming language very
closely:

Chapter 1: The Net Description Language 6

typedefinition:
ENUM ’{’ enum_item (delim enum_item)* ’}’
|
STRUCT ’{’ comp_list ’}’
|
UNION ’{’ comp_list ’}’
|
typereference

typereference:
name

enum_item:
name [[’=’] number]

comp_list:
comp (delim comp)* [delim]

comp:
typedefinition name

number:
expr

delim:
’,’
|
’;’

The extra leaf data types include an empty ‘struct’, often used for denoting black
tokens, and an identifier type used for identifying e.g. processes or objects. Note that if
you intend to compile the model (see Section 2.1.2 [Maria Options], page 29), the empty
‘struct’ does not work on all C compilers.

typedefinition:
STRUCT ’{’ ’}’
|
ID ’[’ number ’]’

It is a good idea to define an alias (see Section 1.3.2 [Functions], page 7) for the black token,
so that its definition can be changed easily:

typedef struct {} token;
// typedef unsigned (0) token;
token token = <token;

The alert reader may have noticed that we have not introduced arrays yet. Arrays in
Maria are not necessarily indexed by integers, but by any type having a limited set of
possible values. One can also define a finite-capacity buffer that uses either a queue or a
stack discipline.

typedefinition:
typedefinition ’[’ typedefinition ’]’
|
typedefinition ’[’ QUEUE number ’]’
|
typedefinition ’[’ STACK number ’]’

Chapter 1: The Net Description Language 7

Last but not least, it is possible to limit the set of possible values for a type by defining
constraints, unions of closed or semi-open ranges of constant values.

typedefinition:
typedefinition constraint

constraint:
’(’ range (delim range)* ’)’

range:
value
|
’..’ value
|
value ’..’ value
|
value ’..’

value:
expr

1.3.2 Function Definitions

Commonly used expressions can be defined as functions, which can be viewed as macros
with strictly typed parameters. Functions are defined in the following way:

function:
typereference name (’=’|’()’) formula
|
typereference name ’(’ param_list ’)’ formula

param_list:
[param_list_item (delim param_list_item)*]

param_list_item:
typereference name

The function name and the optional parameter list are followed by a formula that usually
refers to all the function parameters. When the function is “called” (the macro is expanded),
each instance of a named parameter will be substituted with the corresponding expression
passed as an argument to the function. Parameterless functions are practical for defining
constants.

Functions can be defined both in the global scope and in the transition scope. Functions
defined in the declaration block of a transition will only be accessible to that transition,
and they will temporarily override a global function definition.

1.3.3 Place Definition: ‘place’

All persistent data in Petri Nets is stored in places that can contain a number of tokens,
which in the case of Algebraic System Nets have values. When a place is defined, it is given
a unique name, and it is assigned a type.

place:
PLACE name constraint* typedefinition
[CONST] [’:’ marking_list]

Chapter 1: The Net Description Language 8

It is possible to define a capacity constraint, a non-negative integer constraint (see Sec-
tion 1.4.4 [Constraints], page 16) that constrains the total number of tokens the place can
contain. Note that the constraint does not need to be of the form ‘(0..n)’ for some positive
integer n; it can be e.g. ‘(1)’ if the place always contains exactly one token, or ‘(0,2,4)’.
Defining constraints has two major advantages. First, they help to catch errors in the
model. Second, analysis algorithms may benefit from them, and resources can be saved
when maintaining the reachability graph (see Appendix B [Graph Files], page 66).

Places can be assigned an initial marking, a multi-set valued expression (see Section 1.6
[Multi-Sets], page 24) that evaluates to the collection of tokens that will be assigned to
the place in the system’s initial state. To parameterise initial markings, you may use the
multi-set summation operator.

Sometimes, it is necessary to introduce control places in the model whose contents re-
mains constant. It would be unnecessary to include such places in the representation of
model states, or in the unfolding (see Section 2.2.2.3 [Unfold], page 38) of the model. The
keyword ‘const’ in the place definition indicates a constant place.

When the marking of a place is a function of the marking of other places, the place is
called a redundant place. Examples of such places include counters and complement places.
It is possible to identify such places by writing initialization expressions that make use
of the ‘place name ’ operation (see Section 1.6 [Multi-Sets], page 24). Doing so not only
reduces disk space consumption; Maria will also check that such invariant properties hold
in all states it generates.

1.3.4 Transition Definition: ‘trans’

The state of a Petri system is changed by firing transitions, removing tokens from their
input places and adding tokens to their output places. A transition is enabled if its each
input place contains at least the amount of tokens the transition is about to remove. Only
enabled transitions may be fired.

transition:
TRANS [’:’] name [’!’] trans*

trans:
’{’ [var_expr (delim var_expr)* [delim]] ’}’
|
IN trans_places
|
OUT trans_places
|
GATE expr (’,’ expr)*

|
HIDE expr

|
STRONGLY_FAIR expr
|
WEAKLY_FAIR expr
|
ENABLED expr

Chapter 1: The Net Description Language 10

Maria supports a form of transition fusion, which is a key feature to constructing models
in a modular way (See also see Section 1.3.5 [Subnets], page 10). A transition whose name
is preceded with a colon (‘trans :callee’) is not an actual transition but it designates a
kind of a macro or a function body that can be substituted to other transitions, like this:
‘trans caller:trans callee’. The Maria parser would merge the definitions of ‘trans
:callee’ to the definition of ‘trans caller’.

There is a simple priority method in the search algorithm of Maria that works as follows.
When computing the successors of a marking, Maria investigates the transitions in the order
they were defined in the model, from top to bottom. Whenever a transition having a nonzero
priority class is found to be enabled, no further transitions of other priority classes will be
analyzed in the marking.

The default priority class is zero. It is worth noting that non-prioritized transitions that
are defined before any prioritized transitions are completely independent of other transitions
in the model. Any non-prioritized transitions that are defined after prioritized ones will be
analyzed only if no prioritized transitions are enabled.

The priority class can be specified by writing a non-negative integer number after the
name of the transition. The exclamation point ‘!’ is an alternative mechanism for providing
backward compatibility. It assigns a nonzero priority class to the transition from a global
counter and then decrements the counter by one, so that the next transitions marked with
‘!’ will be assigned other priority classes.

The ‘hide’ keyword affects the output of labelled state transition systems (see Sec-
tion 2.2.2.4 [LSTS], page 38) and the ‘-Y’ command line option for suppressing hidden
states (see Section 2.1 [Invoking Maria], page 29). A transition instance is hidden (renamed
to the special "tau" action) if the hiding condition (a truth-valued expression on the tran-
sition variables) holds. Transition variables can be omitted from action names by declaring
them with the ‘hide’ keyword.

1.3.5 Defining Subnets for Modular State Space Exploration

When a system being modelled consists of a number of loosely synchronised processes, it
is often useful to distinguish between the internal actions of these processes and the actions
that model the communication or synchronisation of the processes.

In Maria, it is possible to define tree-like hierarchies of high-level nets. In the outer-level
net, all transitions are visible, that is, their occurrences directly corresponds to edges in the
global reachability graph (synchronisation graph).

In a subnet, defined within a ‘subnet’ block, normal transitions model internal actions,
which do not show up in the synchronisation graph. Synchronisation or communication of
subnets is modelled with transition fusion (see Section 1.3.4 [Transitions], page 8). When
a transition in a subnet calls a transition in its parent net, its occurrences will show in the
state space of the parent net.

When the model contains subnets, modular analysis should be applied (command line
option ‘-R’ or ‘--modular’; see Section 2.1 [Invoking Maria], page 29).

subnet:
SUBNET [name] ’{’ net ’}’

Chapter 1: The Net Description Language 11

1.3.6 On-the-Fly Verification

1.3.6.1 Verifying Safety Properties

The ‘reject’ and ‘deadlock’ statements are used in conjunction with Boolean conditions
on markings. When these statements are used, the reachability analyzer reports an error
whenever

1. a state violating the ‘reject’ formula has been generated
2. the ‘deadlock’ formula holds in a marking where no transitions are enabled

If the formula cannot be evaluated, the analysis will be stopped. Thus, commanding

deadlock fatal;

will cause the analysis to stop when a deadlock is reached. The following construct can be
used to stop the analysis when an undesired state is reached:

reject place fork equals empty && fatal;

An alternative mechanism for specifying undesired states is to define “assertion” transitions
with ‘undefined’ or ‘fatal’ in their gate expressions (see Section 1.3.4 [Transitions], page 8).

verify:
REJECT expr
|
DEADLOCK expr

1.3.6.2 Defining Fairness Constraints

It is possible to define fairness sets of transition instances to guide the on-the-fly model
checker. Such sets may contain instances of a single transition (see Section 1.3.4 [Tran-
sitions], page 8) or of several transitions. The latter case is handled by identifying the
transition instances that are to be included to a set using qualifier expressions, which con-
sist of transition names followed by Boolean conditions for transition variables.

A generic fairness set definition consists of one of the reserved words ‘strongly_fair’
and ‘weakly_fair’ followed by a list of qualifier expressions. Each qualifier expression
identifies some transition instances that are to be treated fairly. All instances fulfilling a
qualifier expression will be treated as one fairness set.

The ‘enabled’ keyword allows the definition of enabledness sets of transition instances. If
no transition instances belonging to an enabledness set are enabled, the set will be reported
at the end of the analysis. Use the ‘dump’ command (see Section 2.2.2.2 [Dump], page 37)
to see the enabledness set numbers.

fairness:
STRONGLY_FAIR qual_expr (’,’ qual_expr)*
|
WEAKLY_FAIR qual_expr (’,’ qual_expr)*
|
ENABLED qual_expr (’,’ qual_expr)*

Chapter 1: The Net Description Language 12

qual_expr:
TRANS name [’:’ expr]
|
’(’ qual_expr ’)’
|

’!’ qual_expr
|
qual_expr ’&&’ qual_expr
|
qual_expr ’^^’ qual_expr
|
qual_expr ’||’ qual_expr
|
qual_expr ’<=>’ qual_expr
|
qual_expr ’=>’ qual_expr

Qualifier expressions may also be quantified. The semantics of the multi-set summation
operation is that each summand is associated with a new fairness set. Universal and ex-
istential quantification have their normal semantics, i.e. they are translated into chains of
conjunctions or disjunctions.

qual_expr:
typereference name [’(’ expr ’)’] ’:’ qual_expr
|
typereference name [’(’ expr ’)’] ’&&’ qual_expr
|
typereference name [’(’ expr ’)’] ’||’ qual_expr

1.3.6.3 Specifying State Propositions for LSTS Output

The labelled state transition systems that Maria is able to output (see Section 2.2.2.4
[LSTS], page 38) have a notion of state propositions. As they do not have a natural
counterpart in a high-level Petri net, a special construct has to be used for specifying
them.

proposition:
PROP name ’:’ expr

The ‘prop’ definition does not affect anything else except the output of labelled state
transition systems and the resolution of identifiers in the query language. The expression
must be a truth-valued state formula.

1.4 Data Types

In programming languages, user-defined structural data types became popular in the
1970s with the success of C and other high-level languages. The original Petri Net for-
malism did not make use of any data types or algebraic sorts, and its high-level variations
usually keep the data types pretty simple, often restricted to tuples of integer numbers or
enumerated data types.

Chapter 1: The Net Description Language 13

In order to efficiently analyze the behavior of parallel programs written in a high-level
language, there must exist a straightforward translation from the data types in the source
formalism to the types supported by the analyzer. Using tuples of integers, one can emulate
simple higher-level types, such as a unidimensional array of a leaf type, but anything beyond
that is next to impossible.

The data type system in Maria holds the comparison with any high-level programming
language. The only thing that is missing is pointers or references, which would entirely
break the locality principle of Petri Nets.

1.4.1 Background

The Maria software stores data in two forms: as trees formed by C++ objects, which are
easy to manipulate but use up much space, or as compact bit strings. Converting structured
values to a fixed-length bit string and vice versa requires that the number of all possible
values of a type is known and that there exists a total order among the values.

For supporting iteration through all values of a type, there are successor and predecessor
functions and functions for determining the smallest and the largest value of a type. These
are in harmony with the conversion functions: the numeric representation of the smallest
value of a type is 0, and its successor is 1 (unless the type only has one value), and so on.

1.4.2 Leaf Types

Data types that do not have any further structure are called leaf types. In Maria, all
leaf types can be represented using a machine word, an unsigned integer of usually 32 bits.

1.4.2.1 Integer Types

There are two predefined integer types: ‘int’, a signed integer in the range INT_MIN to
INT_MAX, as defined by ‘<limits.h>’ in C, and ‘unsigned’, an unsigned integer in the range
0 to UINT_MAX.

Integer literals are numeric constants, given by the regular expressions ‘[1-9][0-9]*’,
‘0[0-7]*’ and ‘0x[0-9a-fA-F]+’. Negative decimal numbers are formed using the unary ‘-’
operator.

The unconstrained built-in integer types have INT_MAX-INT_MIN+1 or UINT_MAX+1 pos-
sible values, both usually 232. The order among the values is determined by integer arith-
metics. All arithmetic operations in the expression evaluator are performed using the un-
constrained integer type. Binary operators require their operands to be either both signed
or both unsigned.

1.4.2.2 Boolean Type

The Boolean type ‘bool’ is for storing truth values. It has two literals: ‘false’ (the
smallest value) and ‘true’.

Chapter 1: The Net Description Language 14

1.4.2.3 Character Type

Characters internally use the unsigned char type in C++. Analogously with the un-
signed integer type, the smallest value is 0 and the largest UCHAR_MAX, and the total number
of different values is UCHAR_MAX+1, usually 28.

1.4.2.4 Enumerated Type

There are two variants of the enumerated type. A constrained enumerated type acts
just like an integer having some named constants. In the following we will concentrate on
the unconstrained variant of the enumerated type.

The domain of an unconstrained enumeration ranges from the smallest enumeration
constant to the largest one. The order among the enumeration constants is determined by
their integer value. Enumeration constants whose value is not explicitly specified in the
type definition get their values just like in the C programming language: it is the successor
of the value given to the last declared constant. By default, the first constant will get the
value 0.

1.4.2.5 Identifier Type

In SDL, there is a data type for process identifiers. Values of this type can only be
compared for equality and inequality, and there is an operator for obtaining a new identifier
value. SDL assumes an unlimited pool of distinct identifier values: the operator for ob-
taining a new value will always return something that is different from all previous values.
This is impossible for any practical system. The identifier type in Maria has otherwise the
same properties as the one in SDL, but one must declare the size of the identifier pool when
declaring an identifier type.

Internally, identifier values are unsigned integers ranging up to the size of the identifier
pool, exclusive. The operator for obtaining a new identifier value has not been implemented
yet, but quantification (see Section 1.6 [Multi-Sets], page 24) is possible. In the future, it is
intended to implement symmetry reductions of the state space, making use of the properties
of the identifier type.

1.4.3 Composite Types

The leaf data types represented in previous section are adequate for representing any
kind of data. Composite data types can be viewed as syntactic sugar: by defining struc-
tural types, one can group data items together, which can drastically simplify the notation
required for referring to the data items.

Composite types in Maria are constructed in a truly recursive way. There are no arbitrary
limits. For example, it is entirely possible to define a buffer of buffers containing a union
of an array and a structure.

Chapter 1: The Net Description Language 15

1.4.3.1 Structure

A structure type describes a sequentially allocated set of member objects, each of which
has a distinct name and possibly distinct type. The order of structure values is determined
in little-endian way: the most significant component is stored last. For instance, the four
values of the type ‘struct{bool a;bool b}’ are ordered ‘{false,false}’, ‘{true,false}’,
‘{false,true}’ and ‘{true,true}’.

A structure type that has n members, each member i having ci possible values, has

n∏
i=1

ci

possible values. An empty structure has only one possible value, ‘{}’.

1.4.3.2 Union

Often there is a need to pass a parameter whose type is determined dynamically.
The tagged union type in Maria serves exactly this purpose. It describes an overlapping
nonempty set of member objects, each of which have a name and a possibly distinct type.
Whenever a union value is initialized, also the union component must be identified.

The union can be viewed as a special kind of structure of two components: the actual
value inside the union and the identifier of the component to which the value belongs.
For instance, the values of the type ‘union{bool a;struct{} b;}’ are ordered ‘a=false’,
‘a=true’ and ‘b={}’. A union type that has n members, each member i having ci possible
values, has

n∑
i=1

ci

possible values.

1.4.3.3 Array

An array type describes a contiguously allocated nonempty set of objects with a par-
ticular member object, called the element type. The members (elements) of an array are
accessed by indexing the array with values of the index type of the array. The number of
possible values in the index type determines the number of elements in the array.

The order of values in an array type is determined in the little-endian manner. The
four values of the type ‘bool[bool]’ are ordered ‘{false,false}’, ‘{true,false}’,
‘{false,true}’ and ‘{true,true}’.

An array whose element type has ce possible values and index type ci possible values,
has

ce
ci

possible values.

Chapter 1: The Net Description Language 16

1.4.3.4 Buffer (Queue or Stack)

Communication protocols use queue-like transmission buffers heavily. Many algorithms
and the translation of procedural programming languages to Petri Net models require stack-
like buffers. The buffer type in Maria has a maximum size, and it has two variants, queue
and stack. A buffer is much like an array, but it may contain a variable number of items.

The order of values is determined in the little-endian manner. Shorter buffers come first.
For instance, the values of the type ‘bool[queue 2]’ are ordered ‘{}’, ‘{false}’, ‘{true}’,
‘{false,false}’, ‘{true,false}’, ‘{false,true}’ and ‘{true,true}’.

A buffer of at most n elements whose element type has ce possible values has

n∑
i=0

ci
e =

cn+1
e − 1
ce − 1

possible values.

1.4.4 Constraints

When performing reachability analysis, it is often desirable to limit the analysis in many
ways to address the problem known as the state space explosion. One of the ways is to
limit the domain of data types. Instead of considering all 32-bit integer numbers, one may
restrict the analysis to numbers ranging from 0 to 10, for instance.

In addition to limiting the search, type constraints can act as a valuable aid for detecting
errors in system models. The expression evaluator will detect and report constraint vio-
lations whenever a subexpression evaluates to an unconstrained value. The successor and
predecessor functions will, however, conveniently wrap around, so that the successor of the
largest value of a type is the smallest value.

Constraints can be applied to all types whose values can be expressed with constant
literals.1 Not only leaf types can be constrained. For instance, it is possible (while not nec-
essarily sensible) to define a type ‘bool(false)[queue 347](..{false})[int(33101)]’, a
single-element array of a buffer having two possible values: ‘{{}}’ and ‘{{false}}’.

The net description language parser computes unions and intersections of value ranges
while parsing constraints, which are internally stored as unions of disjoint ranges. In addi-
tion, it will combine adjacent constraints and eliminate overlapping constraints. The type
‘int(1..4,3,5)’ is thus equivalent with the types ‘int(1..)(..5)’ and ‘int(1..5)’, the
canonical form.

1.5 Expressions and Formulae

Expressions form the core of any language. One of the design goals of the Maria reach-
ability analyzer was to make expressions as rich as possible, to add expressive power to

1 The identifier type does not have any literals, and thus it is impossible to define constraints for types
containing it.

Chapter 1: The Net Description Language 17

the language and to make the language attractive to people who are familiar with and
accustomed to modern high-level programming languages.

Like the data type system, the expression system of Maria has been greatly inspired by
that of the programming language C. There are no pointer operations and no expressions
with side-effects, and some operators of our language have no direct counterpart in C.

1.5.1 Literals

When an expression is viewed as a tree, the leaves of the tree are called literals. There
are three kinds of literals in Maria expressions: constant values, variable names and the
reserved words ‘undefined’ and ‘fatal’. Also invocations of functions with zero arguments,
also called nullary functions or named constants, could be viewed as literals, but they can
expand to more complex expressions or formulae.

1.5.1.1 Constants

The constants in the Maria languages are type-specific. The Boolean type (types derived
from the built-in ‘bool’ type) has two constants: ‘false’ and ‘true’. Character types
(‘char’) uses single character constants enclosed in single quotes (see Section 1.2.3 [Lexical
Tokens], page 2), and integer types (‘int’ and ‘unsigned’) use decimal, octal or hexadecimal
numbers with a notation familiar from the programming language C.

There are three unary pseudo-operators that deal with type names and yield constant.
The number-of-values operator ‘#’ can be used to refer to the number of possible values a
type can receive. For instance, ‘#bool’ is equivalent to ‘2’, unless you have redefined the
built-in type ‘bool’ to be something else. The operators ‘<’ and ‘>’ refer to the smallest and
to the largest value of a type, respectively. For instance, you can use ‘<bool’ interchangeably
with ‘false’, unless the type has been redefined.

The constants of enumerated types are written either using numbers, just as with integer
types, or using the names of the enumeration symbols. The names do not have global scope,
and in the cases when the parser cannot determine the type from the context, you must
use the type casting operator (see Section 1.5.2.6 [Type Casting], page 21). If you want an
enumeration symbol to have global scope, you can define it as a nullary function or named
constant:

typedef enum { a, b, c } enum_t;
enum_t a = is enum_t a;
reject <enum_t != a;

Constants of compound types are written using the respective expressions for creating
compound values, restricting the literals in the expressions to constants. The expressions
will be evaluated while parsing them and replaced with corresponding constants. This is
called constant folding.

1.5.1.2 Variables

Variables make expressions behave dynamically. In high-level Petri Nets, variables make
the arc expressions of transitions evaluate in different ways. Each combination of variable–
value pairs (usually referred to as valuation) that enables a transition is called an enabled

Chapter 1: The Net Description Language 18

instance for the transition.2 Enabled transition instances are sought in a process called
unification (see Section 3.1 [Unification], page 52). Variables cannot be explicitly assigned
to in the high-level Petri Net formalism.

Variables can be declared either explicitly e.g. in the declaration blocks of transitions,
or implicitly in the input arc expressions of transitions.

1.5.1.3 Dynamic Errors

The ‘undefined’ and ‘fatal’ keywords can be used to catch dynamic errors in the model.
Both can be seen as type-less nullary operators. When the ‘undefined’ symbol is evaluated
while searching for enabled transition instances, the valuation built so far will be marked as
erroneous and the instance will not be fired. The ‘fatal’ keyword is similar, but evaluating
it will cause the whole analysis to be aborted.

These two keywords are usually used on the right-hand-side of the if-then-else operator
or of the logical ‘&&’, ‘||’ or ‘=>’ operators.3 To improve readability, one could define an
‘assert()’ macro. Unlike its counterpart in the C library, the following macro will return
a value.

bool assert (bool expr) expr || fatal;
place p unsigned: 42;
trans t in { place p: p; }
gate assert (p == 42);

The search for enabled transition instances is an iterative process. Because of this, ex-
pressions containing ‘undefined’ and ‘fatal’ keywords may be evaluated before the tran-
sition instance is complete. If this is not desirable, the expression for catching dynamic
errors should be placed on an output arc, perhaps on the right-hand-side of an if-then-else
operator.

If you use either keyword in a gate expression as the right-hand-side of the ‘&&’ operator,
you’d better declare the expression atomic by enclosing it with ‘atom()’, so that the parser
will not split the gate expression into two, which would break the short-circuit evaluation
of the ‘&&’ operator.

1.5.2 Operators

The operator precedence in the Maria languages is as follows. Each table row forms a
precedence class.
‘?:’
(selection)

‘!’
(output)

‘:’
(multi-sets)

‘until’ ‘release’ ‘=’
‘=>’ ‘<=>’
‘||’
‘^^’
‘&&’

2 Also the terms binding and firing mode have been used.
3 This relies on short-circuit evaluation: if the left-hand-side of one these operators alone can determine

the result of the operation, the right-hand-side will not be evaluated.

Chapter 1: The Net Description Language 19

‘<>’ ‘[]’ ‘()’
‘|’
‘^’
‘&’
‘!=’ ‘==’
‘>=’ ‘<=’ ‘<’ ‘>’
‘<<’ ‘>>’
‘+’ ‘-’
‘*’ ‘/’ ‘%’
‘#’ (binary) ‘is’
unary: ‘~’, ‘-’, ‘!’ ‘#’ ‘<’, ‘>’, ‘|’, ‘+’ ‘*’, ‘/’, ‘%’
‘cardinality’ ‘max’ ‘min’ ‘subset’

(ternary)
‘map’

‘equals’
‘subset’
‘minus’ ‘union’
‘intersect’
‘atom’ ‘is’ (cast)
‘.’ ‘[’ ‘(’

Some operators have several meanings. For instance, there are two variants of the ‘is’
operator, one that performs type conversions, and another that determines whether a union
component is active:

expr:
IS typereference expr
|
expr IS name

1.5.2.1 Integer Arithmetic

For performing integer arithmetic, the language contains all the integer operators of C:
negation (sign change, unary ‘-’), bitwise complementation (unary ‘~’), basic arithmetics
(‘+’, ‘-’, ‘/’, ‘*’, ‘%’) and bit operations (‘&’, ‘|’, ‘^’, ‘<<’, ‘>>’).

Actually there are two sets of integer operators: signed and unsigned operators. Both
operands must be either signed or unsigned, and the result is accordingly signed or unsigned.
Unsigned arithmetics is a little faster than signed arithmetics. Numeric constants, unsigned
by default, are automatically converted to signed integers. For binary integer operators,
the type of the first operand determines whether the operation is signed or unsigned.

All integer operators in Maria have been implemented in terms of the corresponding C++
operators, but some error handling has been added. The operators whose result can exceed
the limits of the built-in integer type will detect overflows. These operators are negation,
addition, subtraction and multiplication. The division and modulus operators will check
for division by zero, and the bit shifting operators will ensure that the amount to be shifted
does not exceed the size of the integer type in bits. Last but not least, if the result type
has a constraint, the result will be checked against it.

Chapter 1: The Net Description Language 20

1.5.2.2 Successor and Predecessor

The successor and the predecessor are defined for all ordered types. All other types than
the identifier type and structural types containing an identifier component are ordered. The
successor of the largest value of a type is the smallest value, whose predecessor in turn is the
largest value.4 No errors can occur while computing the successor (unary ‘+’) or predecessor
(unary ‘|’).

1.5.2.3 Comparison

The language contains the usual comparison operators (‘==’, ‘!=’, ‘<’, ‘<=’, ‘>=’ and ‘>’).
Equality and inequality comparisons are available for all types, while other comparisons
are only available for ordered types. The only error that can occur in a comparison is a
constraint violation, in case the result type is constrained.5

1.5.2.4 Boolean Logic

Boolean logic in Maria has the familiar operators from C: negation (unary ‘!’), conjunc-
tion (‘&&’) and disjunction (‘||’). There is also some syntactic sugar: implication (‘a=>b’
is equivalent to ‘!a||b’), logical equivalence (‘a<=>b’ is equivalent to ‘(a&&b)||!(a||b)’)
and logical exclusive or (‘a^^b’, equivalent to ‘!(a<=>b)’).

Also, the language supports universal and existential quantification, and translates them
to conjunctions and disjunctions:

formula:
typereference name [’(’ expr ’)’] ’&&’ formula
|
typereference name [’(’ expr ’)’] ’||’ formula

For instance, the existential quantification

char a (a>=’a’ && a<=’c’) || b==a

expands to the formula ‘b==’a’||b==’b’||b==’c’’.

In the quantified formulae, it is possible to refer to quantified variables, variables indexed
by a quantifier or the preceding value of a quantifier:

expr:
’.’ name [name]
|
’:’ name [name]

For instance, if there is a declaration ‘typedef unsigned (1..3) index_t’, the universal
quantification

index_t e && (e == <index_t || :n < .n)

is equivalent to ‘n[1]<n[2]&&n[2]<n[3]’.

4 For discussion on the order of values in types, see Section 1.3.1 [Types], page 5.
5 One does not need a constrained Boolean type very often, but nevertheless it can be defined.

Chapter 1: The Net Description Language 21

The conjunction and disjunction operators use short-circuit evaluation, meaning that
the expression is evaluated in depth-first manner from left to right, and if the value of the
left-hand-side expression of an operator alone can determine the value of the expression, no
matter what the right-hand-side evaluates to, the right-hand-side will not be evaluated.

1.5.2.5 Selection

The ternary ‘?:’ operator of C selects its second or third argument based on its first
argument interpreted as a truth value. The ‘?:’ operator in Maria is more generic. It is not
a ternary operator but n-ary, with n − 1 being the number of possible values for the type
of its first argument.

Here is an example of the ‘?:’ operator for a type having three possible values.
typedef int (1..3) i3_t;
place p i3_t: 1;
trans t
in { place p: p; }
out { place p: p ? p : |p : +p; };

The left-hand-side of the ‘?’ on the output arc of transition ‘t’ is the variable ‘p’, which is of
type ‘i3_t’ and has three possible values. When the expression has its largest value (in this
case ‘3’), the argument immediately following the ‘?’ will be selected. The second largest
value (‘2’) will select the third argument (‘|p’), and the smallest value (‘1’) will select the
last argument (‘+p’).

In this simple example, the marking of place ‘p’ will alternate between ‘1’ and ‘2’ in
two states. It really should be emphasized that it is the number of values of the type that
matters, not the number of possible (reachable) values for the left-hand-side expression.
Selecting an initial marking ‘3’ for place ‘p’ would yield only one state in the reachability
graph.

1.5.2.6 Type Casting

The type casting operator, the prefix ‘is’, has two purposes. First, it can be used
to set the context type in case it cannot be determined correctly. The parser is pretty
good at guessing the context type, but there is one remarkable case when it cannot do so.
Comparison expressions occur in Boolean context, but the arguments to the comparison
operator typically are of some other type. If the argument is an enumeration constant
or a construction expression for a compound value, the context must be set with the ‘is’
operator:

typedef enum { a, b, c } e3_t;
place p e3_t: a;
trans t
in { place p: p; }
out { place p: b; }
gate p != is e3_t a;

Boolean, integer and character literals will always be detected as such, no matter what the
context type is.

Chapter 1: The Net Description Language 22

The dynamic behavior of type casting is to convert a value of one type to an equivalent
value of another type. Type conversion is only allowed if the two types have at least one
common value. The only error that can occur during the conversion is a constraint violation.

Also compound values can be converted. Two compound types are considered compatible
for the conversion if all their components are compatible. A union-typed value can be
converted to the type of one of its components, or vice versa.

1.5.2.7 Atomicity

The parser may perform optimizations on expressions by converting them to equivalent
forms. Currently transition gate expressions containing a conjunction in the top level will
be split to several gate expressions, and it is likely that the model checker will do something
similar to temporal logic formulae.

The transformations of expressions have one disadvantage: they break short-circuit eval-
uation. If you rely on short-circuit evaluation when writing an expression, it is a good
practice to enclose the expression with ‘atom()’, e.g. ‘atom (y==0||x/y>z)’. Short-circuit
evaluation takes place with the operators ‘||’, ‘&&’, ‘=>’ and ‘?:’.

1.5.3 Structures

There are two basic operators for structures: for constructing a value of a structure type
and for accessing a structure component. Both inherit their syntax and semantics from C.

expr:
’{’ [[name ’:’] expr (’,’ [name ’:’] expr)*] ’}’
|
expr ’.’ name

In the constructor expression, the expressions for individual components may be preceded
by the name of the corresponding struct component.

Since Petri nets have no assignment statement, a special operation is needed for modi-
fying a structure component.

expr:
expr ’.’ ’{’ name expr ’}’

For instance, ‘a.{b c}’ has otherwise the same value as the structure ‘a’, but with the
component ‘b’ equal to ‘c’.

1.5.4 Unions

The union type in Maria is tagged: it is always known which component of the union has
been assigned to (or is the active component), and this information can also be enquired
by using the infix ‘is’ operator.

Chapter 1: The Net Description Language 23

expr:
name ’=’ expr
|
expr IS name
|
expr ’.’ name

The ‘.’ operator can be used to access the value of the active component. If the specified
component is not active, a union violation will occur.

Structures and unions are very practical for modeling inherited classes of object-oriented
languages. The example file ‘object.pn’ in the Maria distribution shows how a simple class
structure can be translated to Maria types and how objects can be converted between a
base class and derived classes.

1.5.5 Arrays

Array values are constructed and indexed with a syntax familiar from the C programming
language.

expr:
’{’ [expr] (’,’ [expr])* ’}’
|
expr ’[’ expr ’]’

In addition, the contents of an array can be shifted by a given number of items. The
amount to be shifted is always reduced to the modulo of number of items in the array. For
instance, shifting an array indexed by Boolean values by an even number of items has no
effect.

expr:
expr ’<<’ expr
|
expr ’>>’ expr

Since Petri nets have no assignment statement, a special operation is needed for modi-
fying an array item.

expr:
expr ’.’ ’{’ ’[’ expr ’]’ expr ’}’

For instance, ‘a.{[b] c}’ has otherwise the same value as the array ‘a’, but with the
item at ‘b’ equal to ‘c’.

1.5.6 Buffers

For ideal buffers, two operations ought to be enough: removing an item for reading,
and writing an item. Since there is no well-defined semantics for Petri Nets whose arc
expressions have side-effects, reading a buffer has to be split in two separate operations:
peeking at an item (‘*’) and removing (‘-’).

Some applications need to access buffers out of order. It is possible to specify the buffer
position using an index.

Chapter 1: The Net Description Language 24

expr:
expr index ’+’ expr
|
’-’ expr index
|
expr index ’-’ expr
|
’*’ expr index

index:
[’[’ expr ’]’]

The unary ‘-’ operator removes one item from a buffer. With the binary ‘-’ operator,
it is possible to remove several successive items. The second operand indicates the number
of items to be removed.

Many applications need to know the remaining or used buffer capacity. That is what the
unary operators ‘%’ and ‘/’ are for. It is also possible to construct the whole buffer contents
with one expression, just like struct and array values.

expr:
’{’ [expr] (’,’ [expr])* ’}’
|
’/’ expr
|
’%’ expr

1.6 Operations on Multi-Sets

The state of a Petri Net is identified by the distribution of tokens in the places. The
contents of the places, also called markings, can be represented as multi-sets, which are sets
that can contain several instances of an item, meaning that the multiplicity of an item in
the set may be greater than one.

Arc expressions of transitions and initialization expressions of the model typically make
use of two multi-set operations. The simpler one, specifying a multiplicity or a token
multiplier, makes use of the binary ‘#’ operator.

marking:
’(’ marking_list ’)’
|
expr ’#’ marking

For instance, ‘347#33101’ stands for 347 tokens having the value 33101, and ‘4#(3#2,1)’
is another way for expressing ‘12#2,4#1’, which means 12 tokens of the value 2 and four
tokens of the value 1.

The other operation, computing a multi-set sum, is called quantification.
marking:

typereference name [’(’ expr ’)’] ’:’ marking

This is equivalent to the formula ∑
n∈T∧e

m

Chapter 1: The Net Description Language 25

where n corresponds to ‘name’, T to ‘typereference’, e to ‘expr’ and m to ‘marking’.
Usually both e and m make use of n.

The construct will iterate through all the values of the type, binding each value to a
named variable. If the condition expression evaluates to true when the variable is bound
to a value, the marking expression will be evaluated using that binding, and the resulting
items will be added to the quantification result.

In transition expressions, it is possible to define quantified variables, variables indexed
by a quantifier:

expr:
’.’ name [name]
|
’:’ name [name]

For instance, writing ‘bool b: .a’ is equivalent to writing ‘"a[false]", "a[true]"’. The
optional second name refers to a quantifier variable. It is needed in nested quantifications
when indexing a variable by something else than the innermost quantifier.

The variant with the colon indexes variables based on the predecessor of the quantifier
variable. It is more useful in universal and existential quantification (see Section 1.5.2.4
[Logic], page 20).

There are two multi-set valued literals: the empty set, which is useful in subset and
equality comparisons, and the marking of a place.

In a formula, the marking of a place is a function of the current state. In the output arc
of a transition, it is defined as the multi-set of tokens that will be removed from the place
by the input arcs of the transition instance. Referring to the contents of a place in an input
arc or in a gate expression yields a dynamic error.

marking:
EMPTY
|
PLACE name

Multi-sets can be compared in two ways. Two sets are equal if both contain the same
amount of the same items. Multi-set A is subset of multi-set B if for each item in A there
are at least as many such items in B.

formula:
marking SUBSET marking
|
marking EQUALS marking

Multi-sets can be combined in three ways. The union of two multi-sets is computed by
adding the multiplicities of all items in each set together. The intersection is formed by
computing the maximum multiplicity of each item in both sets. Finally, multi-sets can be
subtracted from each other. In A−B there are only items that have a greater multiplicity
in A than in B. The multiplicity of each item is the difference of the multiplicities in A and
in B.

Chapter 1: The Net Description Language 26

marking:
marking UNION marking
|
marking INTERSECT marking
|
marking MINUS marking

As a special case of intersection, it is possible to filter multi-sets based on conditions.
A named variable will iterate through all the items in a multi-set, and if the condition
expression is true, the item will be included in the resulting set, with its original multiplicity.
This construct can be viewed as an intersection with a multi-set whose items have either
zero or infinite multiplicity.

marking:
SUBSET name ’{’ marking_list ’}’ expr

For instance, ‘subset t { 3#true, 2#false } !t’ equals ‘2#false’.

There are two mapping operations similar to the filtering operation described above.
One operation preserves the cardinality of a multi-set (the number of contained items). It
transforms a multi-set of one type to a multi-set of another type by iterating through all
the items in the source multi-set with a named variable, and by computing the items for
the target multi-set by evaluating a basic expression.

A more generic mapping iterates through a multi-set, assigning the multiplicity and the
value of each distinct item to a pair of variables, and mapping the items by evaluating a
multi-set valued expression.

marking:
MAP name ’{’ marking_list ’}’ expr
|
MAP name ’#’ name ’{’ marking_list ’}’ marking

For instance, ‘map t { 3#true, 2#false } !t’ equals ‘3#false, 2#true’, while the expres-
sion ‘map n#t { 3#true, 2#false } (t?1#!t:n#t)’ evaluates to ‘3#false’.

Last but not least, there are operations for determining the minimum or maximum
multiplicity of the items belonging to a multi-set, or for computing the cardinality, the sum
of the multiplicities. The minimum multiplicity of an empty set is UINT_MAX.

formula:
MAX marking
|
MIN marking
|
CARDINALITY marking

1.7 Temporal Logic

The grammar for temporal logic is LTL, Linear Temporal Logic. The operators “even-
tually”, “henceforth”, and “in the next state” have the digraph representations ‘<>’, ‘[]’
and ‘()’, respectively.

Chapter 1: The Net Description Language 27

’<>’ formula
|
’[]’ formula
|
’()’ formula
|
formula UNTIL formula
|
formula RELEASE formula

1.8 Non-Determinism in Transitions

Sometimes it is necessary to have non-deterministic transitions, that is, transitions that
have several possible outputs for one input. Often such behavior is modeled by adding
a ‘const’ place to the net and binding a token from the place to the non-deterministic
transition through a bidirectional arc. This approach may disturb partial order reduction
algorithms.

The Maria language contains a construct for declaring non-deterministic transition vari-
ables, called output variables.6

expr:
typereference [name] ’!’ [’(’ expr ’)’]

The expression will evaluate to the value of the output variable, which will iterate through
all the values of the type, or to all values for which the condition expression is true. The
output variable can be given a name, and doing so is recommended if the output variable
is used in several expressions or if a condition expression is used.

place p bool: true;
trans t in { place p: p } out { place p: bool! };

The default names for unnamed output variables are ‘:0’, ‘:1’, and so on, a colon followed
by a hexadecimal number. Those who want to write obfuscated net descriptions can refer
to these names using the double-quoted notation.

1.9 Scoping of Identifiers

Even though Petri Nets are a very flat formalism, there is pretty much depth in the
scoping of names. In the Petri Net level, there are three name spaces that cannot be
overridden: one for place names, one for transition names and one for data type names.
Function names can be overridden in the transition level.

In expressions (see Section 1.5.1 [Literals], page 17), names can stand for several things.
The names will be looked up in the following order:
1. function parameters (in a function definition),
2. iterator variables (multi-set operations, non-determinism)

6 With output variables, we only mean these non-deterministic variables, not all the variables that may
occur in the output arc expressions of a transition.

Chapter 1: The Net Description Language 28

3. previously declared transition variables
4. nullary functions
5. enumeration constants (in the type context)
6. state propositions (in ‘deadlock’ and ‘reject’ formulae)

If all the look-ups fail for a name, a transition variable will be declared, if a transition
definition is being parsed and if the type context is known.

The parser can issue warning messages about names that exist in several name spaces.
If you know what you are doing, these warnings can safely be ignored.

Chapter 2: Reachability Analysis with Maria 29

2 Reachability Analysis with Maria

Determining all interesting behaviors of a concurrent system is done by computing a
graph of all system states reachable from the initial state. This process is called reachability
analysis. Once a (possibly incomplete) reachability graph has been generated, it can be
examined, and one can verify temporal properties from it.

It is also possible to verify temporal properties during the generation of the reachability
graph (see Section 3.2 [Model Checking], page 54). This can guide the search and speed up
the analysis, but verifying another temporal property from the system will usually require
the reachability analysis to be performed again.

2.1 Invoking Maria

The usual way to invoke Maria is as follows:
maria -b model

Here model is the Petri Net file name, which usually ends in ‘.pn’. The base name
for reachability graph files (see Appendix B [Graph Files], page 66) is generated by re-
moving the directory name part and the file name suffix (the last part of the name start-
ing with a period ‘.’) from the Petri Net file name. Three files will be generated us-
ing the base name, with the suffixes ‘.rgd’, ‘.rgs’, ‘.rga’ and ‘.rgh’. Thus, ‘maria -b
dining.pn’ yields ‘dining.rgd’, ‘dining.rgs’, ‘dining.rga’ and ‘dining.rgh’, and ‘maria
-d test/order.pn’ yields ‘order.rgd’, ‘order.rgs’, ‘order.rga’ and ‘order.rgh’, in the
current directory.

2.1.1 Interrupting the Reachability Analysis

Maria traps the interrupt signal (SIGINT), which is usually bound to C-c. When it
catches the signal, it will stop processing new states. After Maria has finished with the state
it is currently processing, analyzing all the enabled transition instances and generating the
successor states, it will update the reachability graph directory and stop the analysis.

Analyzing and firing enabled transition instances in a state may take a long time. Be
patient or issue a SIGQUIT (normally bound to C-\) or a SIGKILL signal to abort the process
immediately, leaving the reachability graph files in an inconsistent state.

2.1.2 Options

Maria supports both traditional single-letter options and mnemonic long option names
(if compiled with ‘getopt_long’, see Appendix C [Compiling], page 67). Long option names
are indicated with ‘--’ instead of ‘-’. Abbreviations for option names are allowed as long
as they are unique. When a long option takes an argument, like ‘--include’, connect
the option name and the argument with ‘=’ or provide the argument in the immediately
following command line argument.

The options are interpreted in the order they are entered on the command line. In
other words, the options for interpreting a model should be specified before loading the

Chapter 2: Reachability Analysis with Maria 30

model. For instance, ‘maria -b dbm.pn -DUNUSED’ does not make much sense, while ‘maria
-DUNUSED -b dbm.pn’ does.

Here is a list of options that can be used with Maria, alphabetized by short option. It
is followed by a cross key alphabetized by long option.

‘-a limit ’
‘--array-limit=limit ’

Limit the size of array index types to limit possible values. A limit of 0 disables
the checks.

‘-b model ’
‘--breadth-first-search=model ’

Generate the reachability graph of model using breadth-first search. Equivalent
to ‘-m model -e breadth’.

‘-C directory ’
‘--compile=directory ’

Generate C code in directory for evaluating expressions and for the low-level
routines of the transition instance analysis algorithm (see Section 3.1.5 [Instance
Analysis], page 54). In order for this option to work, the program must have
been compiled with support for compiled expressions enabled (see Appendix C
[Compiling], page 67). Also, the compilation script ‘progname-cso’ must be
found in the search path, where ‘progname ’ is the name used to invoke the
analyzer. It is a good idea to have a look at the compilation script, and to
adjust the variable definition INCLUDES, so that the required header files can
always be found.

You may also want to adjust the variables DEFINES, CC, CFLAGS, LD and LDFLAGS
either in the script or in the environment of the reachability analyzer. For
instance, if you are using Bourne shell or one of its descendants, prefixing the
command line for invoking Maria with ‘DEFINES="" CFLAGS=""’ disables all
compiler optimizations for the model being analyzed. This may be useful if the
optimization algorithms of the C compiler would consume too many resources.

Applying this option should not affect the behaviour of the model (i.e. it is
a bug if it does). When this option is used, evaluation errors are reported in
a slightly different way. The interpreter displays the valuation and expression
that caused the first error in a state; the compiled code displays the number of
errors. For performance reasons, the generated code does not check for overflow
errors when adding items to multi-sets.

‘-c’
‘--no-compile’

The opposite of ‘-C’. Evaluate all expressions in the built-in interpreter. This
is the default behavior.

‘-D symbol ’
‘--define=symbol ’

Define the preprocessor symbol symbol. See Section 1.2.4.2 [Conditions], page 5.

Chapter 2: Reachability Analysis with Maria 31

‘-d model ’
‘--depth-first-search=model ’

Generate the reachability graph of model using depth-first search. Equivalent
to ‘-m model -e depth’.

‘-E interval ’
‘--edges=interval ’

When generating the reachability graph, report the size of the graph after every
interval generated edges.

‘-e string ’
‘--execute=string ’

Execute string. See Section 2.2 [Maria Shell], page 36.

‘-g graphfile ’
‘--graph=graphfile ’

Load a previously generated reachability graph from ‘graphfile.rgh’.

‘-H h[,f[,t]]’
‘--hashes=h[,f[,t]]’

Configure the parameters for lossy verification (‘-P’ or ‘-M’). For ‘-P’, allocate
t universal hash functions of f elements and corresponding hash tables of h bits
each. For ‘-M’, allocate a f bytes for all h elements of the hash table. The value
h (and for ‘-P’, also the value f) will be rounded up to suitable values.

‘-?’
‘-h’
‘--help’ Print a summary of the command-line options to Maria and exit.

‘-I directory ’
‘--include=directory ’

Append directory to the list of directories searched for include files.

‘-i columns ’
‘--width=columns ’

Set the right margin of the output to columns. The default is 80.

‘-j processes ’
‘--jobs=processes ’

When checking safety properties (options ‘-L’, ‘-M’ and ‘-P’), use this many
worker processes to speed up the analysis on a multiprocessor computer. See
also ‘-k’ and ‘-Z’. Note that on Digital UNIX, this option may not work prop-
erly if the model is generating successor states too fast (especially when using
the ‘-C’ option).

‘-k port[/host]’
‘--connect=port[/host]’

Distribute safety model checking (options ‘-L’, ‘-M’ and ‘-P’) in a TCP/IP
network. For the server, only port is specified as a 16-bit unsigned integer,
usually between 1024 and 65535. For the worker processes, port/host specifies
the port and the address of the server. See also ‘-j’.

Chapter 2: Reachability Analysis with Maria 32

All processes should use the same command line options, except that on the
server, the ‘-k’ switch takes only the port argument, and the worker processes
exit after executing the ‘breadth’ or ‘depth’ command. To gain best perfor-
mance, start the server and one client on the fastest computer of the network.
Note that when a computer arranges machine words in the big endian byte
order, all computers must be big endian and have the same word length. Little
endian computers interoperate regardless of their word lengths.

‘-L model ’
‘--lossless=model ’

Load model and prepare for analysing it by constructing a set of reachable
states in disk files. See also ‘-M’, ‘-P’, ‘-j’ and ‘-k’.

‘-m model ’
‘--model=model ’

Load model and clear its reachability graph. See also ‘-b’ and ‘-d’.

‘-M model ’
‘--md5-compacted=model ’

Load model and prepare for analysing it by constructing an overapproximation
of the set of reachable states in the main memory by using a technique called
hash compaction. See also ‘-P’, ‘-L’, ‘-j’ and ‘-k’.

‘-N cregexp ’
‘--name=cregexp ’

Specify the names allowed in context c as the extended regular expression reg-
exp; See section “Regular Expressions” in GNU GREP Manual. In order for
this option to work, the program must have been compiled with the POSIX
regular expression library enabled (see Appendix C [Compiling], page 67). The
context is identified by the first character of the parameter string; the suc-
ceeding characters constitute the regular expression that allowed names must
match:

‘P’ place name

‘T’ transition name

‘t’ type name

‘e’ name of enumeration constant

‘c’ name of struct or union component

‘f’ function name

‘p’ function parameter name

‘v’ transition variable name

‘i’ iterator variable name

‘-n cregexp ’
‘--no-name=cregexp ’

Specify the names not allowed in context c as the extended regular expression
regexp.

Chapter 2: Reachability Analysis with Maria 33

If both ‘-N’ and and ‘-n’ are specified for a context c, then the allowing match
takes precedence. For instance, to require that all user defined type names be
terminated with ‘_t’, specify ‘-nt -Nt’_t$’’. The quotes in the latter param-
eter are required to remove the special meaning from ‘$’ in the command line
shell you are probably using to invoke Maria.

‘-P model ’
‘--probabilistic=model ’

Load model and prepare for analysing it by constructing an overapproximation
of the set of reachable states in the main memory by using a technique called
bitstate hashing. See also ‘-M’, ‘-L’, ‘-j’ and ‘-k’.

‘-p command ’
‘--property-translator=command ’

Specify the command to use for translating property automata. The command
should read a formula from the standard input and write a corresponding au-
tomaton description to the standard output. The translator ‘lbt’ (available
separately) is compatible with this option.

‘-q limit ’
‘--quantification-limit=limit ’

Prevent quantification (multi-set sum) of types having more than limit possible
values. A limit of 0 disables the checks.

‘-R’
‘--modular’

Explore the state space in a modular way. See Section 1.3.5 [Subnets], page 10.

‘-r’
‘--no-modular’

Consider only one state space. This is the default.

‘-t limit ’
‘--tolerance=limit ’

Abort the analysis when limit non-fatal errors have been reported. A limit of
0, the default, allows an infinite number of errors to occur.

‘-U symbol ’
‘--undefine=symbol ’

Undefine the preprocessor symbol symbol. See Section 1.2.4.2 [Conditions],
page 5.

‘-u [M][f[outfile]]’
‘--unfold=[M][f[outfile]]’

Unfold the net (optionally reducing it by constructing a coverable marking (‘M’))
and write it in format f to outfile. If outfile is not specified, dump the unfolded
net to the standard output. Possible formats are ‘m’ (Maria (human-readable),
default), ‘l’ (LoLA), ‘p’ (PEP), and ‘r’ (PROD).
When the PROD output is chosen, outfile must be specified and end in ‘.net’.
Since PROD has no low-level input format, the transitions in the low-level net
are grouped to equivalence classes based on the input and output arc weights.

Chapter 2: Reachability Analysis with Maria 34

Each equivalence class is folded to a high-level transition. The translation makes
use of tables that are written to a separate file. If outfile is ‘out.net’, the tables
are written to ‘out.src/tables.c’.

‘-V’
‘--version’

Print the version number of Maria and exit.

‘-v’
‘--verbose’

Display verbose information on different stages of the analysis.

‘-W’
‘--warnings’

Enable warnings about suspicious net constructs. This is the default behavior.

‘-w’
‘--no-warnings’

The opposite of ‘-W’. Disable all warnings.

‘-x numberbase ’
‘--radix=numberbase ’

Specify the number base for diagnostic output. Allowed values for numberbase
are ‘oct’, ‘octal’, ‘8’, ‘hex’, ‘hexadecimal’, ‘16’, ‘dec’, ‘decimal’ and ‘10’.
The default is to use decimal numbers.

‘-Y’
‘--compress-hidden’

Reduce the set of reachable states by not storing the successor states of tran-
sitions instances for which a ‘hide’ condition holds. The hidden successors are
stored to a separate state set. This option may save memory (‘-L’ or ‘-m’) or re-
duce the probability that states are omitted (‘-M’ or ‘-P’), and it may improve
the efficiency of parallel analysis (‘-j’ or ‘-k’), but it may also considerably
increase the processor time requirement. The option also works with liveness
model checking, but there is no guarantee that the truth values of liveness
properties remain unchanged. This option can be combined with ‘-Z’.

‘-y’
‘--no-compress-hidden’

The opposite of ‘-Y’. This is the default behavior.

‘-Z’
‘--compress-paths’

Reduce the set of reachable states by not storing intermediate states that have
at most one successor. This option may save memory (‘-L’ or ‘-m’) or reduce
the probability that states are omitted (‘-M’ or ‘-P’), and it may improve the
efficiency of parallel analysis (‘-j’ or ‘-k’), but it may also considerably increase
the processor time requirement. The option also works with liveness model
checking, but there is no guarantee that the truth values of liveness properties
remain unchanged. This option can be combined with ‘-Y’.

Chapter 2: Reachability Analysis with Maria 35

‘-z’
‘--no-compress-paths’

The opposite of ‘-Z’. This is the default behavior.

2.1.3 Option Cross Key

Here is a list of options, alphabetized by long option, to help you find the corresponding
short option.
--array-limit=limit . -a
--breadth-first-search=model . -b
--compile=directory . -C
--compress-hidden . -Y
--compress-paths . -Z
--connect=port[/host] . -k
--define=symbol . -D
--depth-first-search=model . -d
--edges=interval . -E
--execute=string . -e
--graph=graphfile . -g
--hashes=h[,f[,t]] . -H
--help . -h
--include=directory . -I
--jobs=processes . -j
--lossless=model . -L
--md5-compacted=model . -M
--model=model . -m
--modular . -R
--name=cregexp . -N
--no-compile . -c
--no-compress-hidden . -y
--no-compress-paths . -z
--no-modular . -r
--no-name=cregexp . -n
--no-warnings . -w
--probabilistic=model . -P
--property-translator=command . -p
--quantification-limit=limit . -q
--radix=numberbase . -x
--tolerance=limit . -t
--undefine=symbol . -U
--unfold=[M][f[outfile]] . -u
--verbose . -v
--version . -V
--warnings . -W
--width=columns . -i

Chapter 2: Reachability Analysis with Maria 36

2.2 The Maria Shell

The Maria shell can be used to interactively examine the reachability graph of a model
or to check temporal properties in it.

2.2.1 The Line Editor

The Maria shell has a command-line driven user interface. When support for the GNU
Readline library has been enabled at compile time (see Appendix C [Compiling], page 67),
using the command line is pretty comfortable. Without Readline, you have to cope with
the system’s default line editor, which certainly lacks command line history and completion
features.

When invoked, Maria will greet you with the prompt ‘@0$’, where ‘0’ is the number
of the current state, or ‘$’ if no model has been loaded. The initial state always has the
number zero. Command lines may be split over multiple physical lines. When there is an
unbalanced single or double quote or a multi-line (C-style) comment, or when the line ends
in a backslash ‘\’, Maria will present the continuation prompt ‘@n>’. In case of a typing
mistake, EOF will tell Maria to abort reading continuation lines.

2.2.1.1 Name Completion

This is by no means a complete list of Readline features. See section “Command Line
Editing” in GNU Readline Library , if you are not familiar with Readline.

One of the nicest features of the Readline library is context-sensitive completion of names.
The Maria shell completes names of data types (immediately following the ‘is’ keyword),
places (following ‘place’), transitions (‘trans’), and keywords. Let us now assume that you
have generated the reachability graph for the dining philosopher example (see Section D.1
[Dining], page 70). The following example illustrates how the context-sensitive completion
of names works.

$graph diningRET
@0$paTAB
@0$path @29 plTAB
@0$path @29 place "fTAB
@0$path @29 place "fork" eqTAB
@0$path @29 place "fork" equals emTAB
@0$path @29 place "fork" equals empty RET

shortest path from condition to @29 (2 nodes):
@74:state (
state:
{3,thinking},{1,hungry},{4,hungry},{5,hungry},{2,eating}

)
4 predecessors
1 successor

Chapter 2: Reachability Analysis with Maria 37

transition finish->@29
<
p:2
>

@29:state (
fork:
2,3

state:
{2,thinking},{3,thinking},{1,hungry},{4,hungry},{5,hungry}

)
4 predecessors
3 successors
@0$exit RET

Unfortunately backslash-quoted names cannot be completed. This is due to a limitation
of the Readline library, which will only call the dequoting function if its built-in filename
completion function is being used. This is why the keyword completer adds a double
quotation mark after keywords that are likely to be followed by a name.

2.2.2 The Query Language

Maria uses a script language in which statements are separated by semicolons (‘;’). See
Section 2.2.3.1 [Separating Statements], page 48, for other considerations.

There are commands for moving around in the graph and for evaluating formulae in
different graph nodes. Maria shell commands are reserved words only in the beginning of a
statement: there is no need to quote a place name ‘exit’, for instance.

2.2.2.1 Loading a Model

statement:
GRAPH name
|
MODEL name

The ‘graph’ command loads a previously generated reachability graph. The supplied
name must exclude the ‘.rgh’ suffix.

The ‘model’ command loads a Petri net model and initializes its reachability graph. Be
careful with this command; it will delete a previously generated reachability graph of the
model, if one exists in the current directory.

2.2.2.2 Displaying a Model

statement:
[VISUAL] DUMP

The ‘dump’ command displays the syntax tree of the current model in the modelling
language. When the ‘visual’ prefix is present, the Petri net will be displayed graphically
(see Section 2.2.4 [Visual], page 48). This command may be useful when trying to find

Chapter 2: Reachability Analysis with Maria 38

out how Maria expands multi-set summations (see Section 1.6 [Multi-Sets], page 24) or
quantifications (see Section 1.5.2.4 [Logic], page 20).

2.2.2.3 Unfolding a Model

statement:
UNFOLD [name]

The ‘unfold’ command unfolds the currently loaded Petri net model. The argument
takes the same format as the command line option ‘-u’ (see Section 2.1.2 [Maria Options],
page 29).

2.2.2.4 Exporting a Labelled State Transition System

statement:
LSTS [name]

Maria is able to export the reachability graph or parts thereof as a labelled state transi-
tion system. The ‘lsts’ command specifies a file name for an LSTS. When the command
is invoked without a file name, any currently open LSTS files are closed and the function
cancelled.

The ‘lsts’ command affects exhaustive analysis (see Section 2.2.2.6 [Depth and Breadth],
page 39), non-visual path queries (see Section 2.2.2.17 [Path], page 45) and the representa-
tion of counterexample paths of liveness properties (see Section 3.2.2 [Liveness], page 54).

In exhaustive analysis, the command should be invoked before any states have been
explored, right after the model has been loaded. When using the path commands, the ‘lsts’
command should be issued right before generating the counterexample. These measures are
necessary, because for efficiency reasons, the ‘lsts’ command has been implemented so that
all generated states and arcs are exported to LSTS files if ones have been opened. The path
query commands export results to LSTS if the files are open, and close the files immediately
after that. It is impossible to combine several query results into one exported LSTS.

The LSTS output can be controlled by hiding variables or transition instances (see
Section 1.3.4 [Transitions], page 8) and by specifying state propositions (see Section 1.3.6.3
[Propositions], page 12).

2.2.2.5 Exporting the Reachability Graph

statement:
[VISUAL] DUMPGRAPH

The command ‘dumpgraph’ exports the portion of the reachability graph that has been
generated so far. When the ‘visual’ prefix is present, the reachability graph will be dis-
played graphically (see Section 2.2.4 [Visual], page 48). See Section 2.2.2.6 [Depth and
Breadth], page 39, for information on generating the reachability graph.

Chapter 2: Reachability Analysis with Maria 39

2.2.2.6 Exhaustive Analysis

statement:
BREADTH [STATE]
|
DEPTH [STATE]

The commands ‘breadth’ and ‘depth’ generate all states that are reachable either from
the current state or from a specified state. This exhaustive search will only be performed
if the successors of the state have not already been generated.

$model "dining.pn"
@0$breadth
"dining.pn": 82 states (3..6 bytes), 265 arcs

At the end of the search, the numbers of generated states and events are reported. The
byte range indicates the minimum and maximum lengths of encoded state representations.
This number is affected by modelling techniques, such as the use of capacity constraints and
invariants (see Section 1.3.3 [Places], page 7), and by not folding places unnecessarily. For
this particular model (see Section D.1 [Dining], page 70), the maximum length of encoded
states can be reduced from 6 to 4 bytes by splitting the place that holds pairs of philosophers
and their states (thinking, hungry, eating) to three places, holding a set of those philosophers
that are in the state, and by defining an invariant initialisation expression for the "thinking"
place.

The ‘breadth’ and ‘depth’ commands can be also used in purely state-based safety
verification (command-line options ‘-L’, ‘-M’ and ‘-P’), without generating a reachability
graph. If either command is given a safety LTL formula as an argument, the model contained
in the file will be verified against the property. When the command is preceded by a ‘visual’
keyword, any path that violates the formula will be displayed graphically (see Section 2.2.4
[Visual], page 48).

statement:
[VISUAL] BREADTH formula
|
[VISUAL] DEPTH formula

2.2.2.7 Evaluating Expressions and Formulae

statement:
[VISUAL] [EVAL] [STATE] formula

Expressions and formulae can be evaluated either in the current state or in a given state.
@0$place fork
fork:
1,2,3,4,5

@0$eval @4 place fork
fork:
1,2,3,5

When the ‘visual’ keyword is present and a temporal formula is being evaluated, a path
violating the formula is displayed graphically (see Section 2.2.4 [Visual], page 48).

Chapter 2: Reachability Analysis with Maria 40

2.2.2.8 Displaying Markings

With the ‘show’ command it is possible to view the marking of a node in the reachability
graph. When a node is not specified, the current node will be shown.

The command can also be used to view the nodes in a strongly connected component
(see Section 2.2.2.16 [Strong], page 44). It is possible to specify a Boolean condition to
select a subset of the states in the strongly connected component to be displayed.

statement:
[VISUAL] SHOW [STATE]
|
[VISUAL] [SHOW] COMP [expr]
|
[VISUAL] SHOW STATE STATE (STATE)*

When the keyword ‘show’ is followed by a sequence of at least two state numbers, Maria
displays the sequence of states in the same way as the ‘path’ command does (see Sec-
tion 2.2.2.17 [Path], page 45). This command is most useful with the ‘visual’ prefix, since
it can be used for visualizing a previously reported path.

@0$show @4
@4:state (
fork:
1,2,3,5

state:
{1,thinking},{2,thinking},{3,thinking},{5,thinking},{4,hungry}

)
4 predecessors
5 successors

2.2.2.9 Excluding Places from Displayed Markings

Petri net models often contain a large number of places whose contents are of less signifi-
cance when investigating a particular property of the model. The ‘hide’ command controls
which places are displayed by the ‘show’ command (see Section 2.2.2.8 [Show], page 40) and
in the graphical interface (see Section 2.2.4 [Visual], page 48).

statement:
HIDE [’!’] [[PLACE] name (’,’ [PLACE] name)*]

When followed by an exclamation point, the command selects places to be shown (instead
of to be hidden). An empty list of place names selects all places. Typically, one can issue
the command ‘hide’ followed by ‘hide ! placename ’ for each place to be shown.

2.2.2.10 Selecting the Active Subnet

When the model contains subnets (see Section 2.2.2.10 [Subnet], page 40) and Maria
has been told to generate a reachability graph and apply modular analysis (see Section 2.1
[Invoking Maria], page 29), the ‘subnet’ command can be used for navigating in the state
spaces of the modules.

Chapter 2: Reachability Analysis with Maria 41

The ‘subnet’ command can be used for navigating in the hierarchy tree in a similar way
as the ‘cd’ command navigates in the directory tree. It takes a sequence of subnet identifiers
separated by slashes. The string ‘..’ denotes the parent net.

When invoked without parameters, ‘subnet’ selects the root net, which represents the
whole system. If the parameter string starts with a slash, the tree is selected relative to the
root net. Otherwise, it is selected relative to the currently selected net.

Nets that have been given a name (see Section 2.2.2.10 [Subnet], page 40) can be referred
to by that name. All nets can be referred to by their index number in the parent net. The
subnets are numbered starting from zero.

statement:
SUBNET [[netid] (’/’+ netid)* ’/’*]

netid: ’..’ | name | number

2.2.2.11 Listing Successor Nodes

The ‘succ’ command lists all successors of a state, or possible events in the state. If
no successors have been generated for the state, they will be generated on demand. This
makes Maria suitable for simulating or debugging a Petri Net model without generating the
complete reachability graph: to create the interesting part of the reachability graph, one
can keep listing the successors of the states he is interested in.

The command can also be used to view the successors of a strongly connected component
(see Section 2.2.2.16 [Strong], page 44).

statement:
[VISUAL] SUCC [’!’] [STATE]
|
[VISUAL] SUCC COMP

When the ‘visual’ keyword is present, the successor states or components are displayed
graphically (see Section 2.2.4 [Visual], page 48).

When the ‘succ’ keyword is followed by an exclamation point (‘!’), Maria will follow
the chain of successor states until a state with several successors is encountered.

@0$succ
transition left->@1
<
p:1
>

transition left->@2
<
p:2
>

transition left->@3
<
p:3
>

Chapter 2: Reachability Analysis with Maria 42

transition left->@4
<
p:4
>

transition left->@5
<
p:5
>

2.2.2.12 Listing Predecessor Nodes

The ‘pred’ command lists all the generated predecessors of a state, or all events leading
to the state.

The command can also be used to view the predecessors of a strongly connected com-
ponent (see Section 2.2.2.16 [Strong], page 44).

statement:
[VISUAL] PRED [’!’] [STATE]
|
[VISUAL] PRED COMP

When the ‘visual’ keyword is present, the predecessor states or components are dis-
played graphically (see Section 2.2.4 [Visual], page 48).

When the ‘pred’ keyword is followed by an exclamation point (‘!’), Maria will follow
the chain of predecessor states until a state with several predecessors is encountered.

@0$pred
transition finish<-@20
<
p:5
>

transition finish<-@18
<
p:4
>

transition finish<-@15
<
p:3
>

transition finish<-@11
<
p:2
>

transition finish<-@6
<
p:1
>

Chapter 2: Reachability Analysis with Maria 43

2.2.2.13 Moving in the Graph

Moving from a state to another is as simple as entering the state number. To make
scripts more readable, you may also use the ‘go’ keyword.

statement:
[GO] STATE

@0$@4
@4$go @0
@0$

2.2.2.14 Anonymous Transitions

Sometimes, when modelling a complex system, it may be useful to specify a different
initial state as a starting point for the analysis. For instance, one might want to slightly
modify the marking of an erroneous state to see how the analysis would proceed from there.

In Maria, new states can be computed by entering an anonymous transition that will be
evaluated in a specified state, or in the current state if no state is specified. No arcs will be
added to the reachability graph. The generated states will be displayed either textually or
graphically.

statement:
[VISUAL] [STATE] TRANS atrans*

atrans:
’{’ [avar_expr (delim avar_expr)* [delim]] ’}’
|
IN trans_places
|
OUT trans_places
|
GATE expr (’,’ expr)*

avar_expr:
typereference name
|
typereference name ’!’ [’(’ expr ’)’]

@0$trans in { place fork: 1 } out { place fork: 2 }
@82:unprocessed state (
fork:
2#2,3,4,5

state:
{1,thinking},{2,thinking},{3,thinking},{4,thinking},{5,thinking}

)
@0$

Chapter 2: Reachability Analysis with Maria 44

2.2.2.15 Defining Functions

All the functions defined in the Petri Net are available in the query tool. It is also
possible to define additional functions by using the ‘function’ keyword.

statement:
FUNCTION function

@0$function bool assert (bool f) f || fatal
@0$assert (false);
<fatalExpression:

fatal
>

If there are many function definitions, it is advisable to write them in a Maria command
file, e.g. ‘dining’:

#!/usr/local/bin/maria
graph dining;
function bool assert (bool f) f || fatal;

The definitions can be loaded in at least three different ways:

$maria dining
@0$exit

$./dining #the script must be executable
@0$exit

$maria
$#include "dining"

2.2.2.16 Strongly Connected Components

A strongly connected component of a directed graph (e.g. a reachability graph) is a set of
nodes that are reachable from each other by following the arcs. If the reachability graph of a
model has only one strongly connected component, it is guaranteed to be free of deadlocks,
since the initial state is reachable from all states.

A strongly connected component, or a node of a component graph, may be trivial,
meaning that it contains only one node of the underlying graph. A terminal component
does not have any successors.

Maria computes the strongly connected components by starting from a specified state (by
default, the current state) and considering a transitive closure of its generated successors
in the reachability graph. It is possible to limit the transitive closure by specifying a
condition. States for which the condition does not evaluate to ‘true’ are ignored by the
search algorithm.

Once the component graph has been generated, it is possible to list all its non-trivial
terminal components, or all components. Also the ‘show’, ‘succ’ and ‘prev’ commands can
be used to examine the component graph. The ‘visual’ keyword selects graphical display
(see Section 2.2.4 [Visual], page 48).

Chapter 2: Reachability Analysis with Maria 45

statement:
STRONG [STATE] [expr]
|
TERMINAL
|
[VISUAL] COMPONENTS
|

[VISUAL] [SHOW] COMP [expr]
|
[VISUAL] (SUCC | PRED) COMP

@0$strong
dining: 82 states (3..6 bytes), 265 arcs, 2 components, 1
terminal component
@0$@@0
terminal trivial strongly connected component @@0: @71
@0$pred @@0
@@1

Maria deploys Tarjan’s algorithm for computing strongly connected components. The
algorithm was implemented in Prod by Vesa Hirvisalo and initially ported to Maria by
Emil Falck. His port was rewritten by Marko Mäkelä to optimize memory usage. The
implementation requires two bits for each node in the reachability graph, and one search
stack whose length is limited by the length of the longest cycle or acyclic path in the
generated reachability graph. Everything else is managed in disk files.

2.2.2.17 Shortest Paths

The ‘path’ command lets one to find out the shortest path between a specific state and
a set of states.

statement:
[VISUAL] PATH (STATE | COMP | expr) [STATE] [’,’ expr]
|
[VISUAL] PATH STATE (COMP | expr) [’,’ expr]

The command takes up to three arguments: the target state, the source state, and an
optional condition that all states on the path must fulfill. If the source state is omitted,
the command finds out the shortest path to the given target state. Either the source or
the target state must be specified; the other end of the path may be identified with a state
formula or with a strongly connected component number.

When the ‘visual’ keyword is present, the path is displayed graphically (see Section 2.2.4
[Visual], page 48).

@0$path @6
shortest path from @0 to @6 (3 nodes):

Chapter 2: Reachability Analysis with Maria 46

@0:state (
fork:
1,2,3,4,5

state:
{1,thinking},{2,thinking},{3,thinking},{4,thinking},{5,thinking}

)
5 predecessors
5 successors

transition left->@2
<
p:2
>

@2:state (
fork:
1,3,4,5

state:
{1,thinking},{3,thinking},{4,thinking},{5,thinking},{2,hungry}

)
4 predecessors
5 successors

transition left->@6
<
p:1
>

@6:state (
fork:
3,4,5

state:
{3,thinking},{4,thinking},{5,thinking},{1,hungry},{2,hungry}

)
4 predecessors
4 successors

A third variant of the ‘path’ command finds the shortest path from the current state to
a loop. In order to avoid an ambiguity in the grammar, the loop must consist of at least
three states.

statement:
[VISUAL] PATH STATE STATE STATE (STATE)* [’,’ expr]

Maria does not check whether the given states really form a loop; it just finds the shortest
path to any of the specified states so that the optional condition holds in all states along
the path. When the path enters a state that is not the first (and last) state specified, the
loop is shifted. The result is an acyclic path leading to a cycle, resembling the shape of the
number 6.

Chapter 2: Reachability Analysis with Maria 47

2.2.2.18 Miscellanous Commands

The ‘help’ command displays a short list of all commands. The ‘stats’ command
displays some statistical information of the graph being analyzed. The ‘time’ command
displays timing statistics since the last invocation of the ‘time’ command, or since the time
when the analyzer was started.

The ‘cd’ command can be used to switch the current directory. Without a parame-
ter, it tries to switch to the directory the environment variable HOME expands to. The
‘translator’ command is used to specify the program for translating temporal logic for-
mulae into property automata. When the command is invoked without arguments, the
verification of temporal formulae is disabled.

In order for the ‘compiledir’ command to work, Maria must have been compiled with
support for compiled expressions enabled (see Appendix C [Compiling], page 67). This
command specifies the directory that will be used for generating executable code from the
model. Invoking the command without arguments disables the code generator.

The ‘log’ command allows the textual output of query language commands to be redi-
rected to a file, or to the standard error stream when no file name is specified to the
command.

The ‘prompt’ command may be useful when Maria is executed as a subprocess. When
the command is invoked with a non-null character constant argument, this character will be
echoed on its own line before the command prompt is shown. The plain ‘prompt’ command
disables this feature again.

HELP
|

STATS
|

TIME
|

CD [name]
|

TRANSLATOR [name]
|

COMPILEDIR [name]
|

LOG [name]
|

PROMPT [’c’]

@0$stats
dining: 82 states (3..4 bytes), 265 arcs

2.2.2.19 Exiting

The query tool can be exited either by issuing the command ‘exit’ or by typing the
end-of-file character EOF at the command prompt.

Chapter 2: Reachability Analysis with Maria 48

2.2.3 Some Quirks with the Query Language

Due to the way the query language and the preprocessor (see Section 1.2.4 [Preprocessor],
page 4) have been implemented, there are some things that are not obvious for the novice
user.

2.2.3.1 Separating Statements

Maria uses a script language in which statements are separated by semicolons (‘;’).
The separator is optional at the end of input. In the interactive mode, every logical line is
parsed separately and semicolons are only required when issuing multiple commands on one
command line. In script files, semicolons are mandatory between the statements. Consider
the following example:

#!/usr/local/bin/maria
graph dining;
function bool eval () false;
eval;
eval

This example will evaluate the function twice. If the semicolon was omitted, the function
would be evaluated only once, since ‘eval’ would be treated as a keyword in that case.

2.2.3.2 Conditional Processing in the Editor

The line editor of Maria performs simple lexical analysis to find out whether the line
entered is complete. For instance, if the line contains an unbalanced amount of quotes, a
continuation prompt will be presented and further lines will be read until all quotes and
multi-line comments are balanced or the entry is aborted by typing EOF at the beginning of
a continuation line.

However, preprocessor directives for conditional processing are not detected by the com-
mand line interpreter. In case you want to enter conditional statements (which must span
several physical lines) interactively, you must enter the physical lines as one logical line by
quoting all newline characters but the last one. This can be achieved on many systems by
typing C-v C-j.

2.2.4 Visualizing Graphs and Paths

Many commands in the query language can be preceded by the ‘visual’ keyword. When
this keyword is present, the results of the command will be displayed in a separate visual-
ization process. The visual variant often displays more information, such as edge attributes
(transition names and valuations) in displayed paths.

2.2.4.1 GraphViz, the Graph Visualizer

In order for this option to work, a software package for drawing graphs called Graphviz
(http://www.graphviz.org) must be installed. The ‘lefty’ command, belonging to the

http://www.graphviz.org

Chapter 2: Reachability Analysis with Maria 49

package, must be in the search path, and the script ‘dotty.lefty’ must be located either
in the default ‘lefty’ search path or in a directory specified in LEFTYPATH. Also, the
visualization script ‘progname-vis’ must be found in the search path, where ‘progname ’ is
the name used to invoke the analyzer.

On the Microsoft Windows platform, Maria does not invoke GraphViz as a subprocess.
Instead, it writes the visualization data to the file ‘maria-vis.out’ in the current direc-
tory. This file must be slightly edited before feeding it to the ‘dotty’ or ‘dot’ programs of
GraphViz.

The visualization program reacts to some keyboard and mouse commands. Pressing the
left or middle mouse button while the mouse pointer is located on a graph node requests for
the successors or predecessors of the node to be generated. Holding down the right mouse
button brings up a menu whose contents depends on whether the mouse pointer is located
above a node, an edge or somewhere else in the graph. There exist keyboard short-cuts for
most menu entries.

The visualization program communicates fully asynchronously with Maria via its stan-
dard input and output. It reads commands and graph descriptions from standard input
and writes Maria commands to standard output. Maria is ready to read and execute these
commands whenever it is sitting in the command prompt waiting for input.

Maria uses two commands of the visualization program. It issues the ‘new();’ command
followed by a graph description whenever a query language command is preprended with a
‘visual’ keyword. This command causes a new graph to be displayed. The ‘add();’ com-
mand is issued whenever a query language command is prepended with several ‘visual’
keywords. This command causes the visualization program to merge the immediately fol-
lowing graph description with the last graph the user has interacted with. The visualization
program always issues query language commands prepended with ‘visual visual’, causing
the currently displayed graph to be extended.

If you want to access the visualization commands generated by Maria, you can rename
the ‘maria-vis’ script and replace it with something like the following script:

#!/bin/sh
tee /tmp/maria-vis.out | exec maria-vis-orig "$@"

In order to print a visualized graph, you can save it to a file by selecting a command in the
graphical user interface, and then input this file to the ‘dot’ command. Alternatively, you
can use a script like the above one and extract the graph descriptions from the intercepted
log file. As the ‘dot’ command does not directly support the DIN A4 paper size, you may
want to try out one of the following command lines:

dot -Gsize=11.69,8.26 -Gcenter=1 -Gmargin=0 -Grotate=90 -Tps
dot -Gsize=8.26,11.69 -Gcenter=1 -Gmargin=0 -Tps

The former line is for horizontal layouts and the latter is for vertical layouts. You may
want to add ‘-Grankdir=LR’ to force left-to-right layouting of the graph instead of the
default top-to-bottom. The attributes in the graph file override the command line switches.

Both command lines act as filters, reading the graph description from standard input and
writing the Postscript code to standard output. The Postscript can be printed directly as
such, or embedded in a document, since it follows the Encapsulated Postscript conventions.

Chapter 2: Reachability Analysis with Maria 50

2.2.4.2 Known Bugs in the Visualizer

Graphical user interfaces are more challenging to program than plain textual programs.
We have avoided most of the problems by choosing an external tool that lays out directed
graphs. The GraphViz developer team has been very responsive and nice towards us, even
though it has limited resources.

Two bugs that may not be fixed soon concern labels in the graph. Some GraphViz
utilities fail if labels are longer than about one thousand characters. You can use the
‘hide’ command (see Section 2.2.2.9 [Hide], page 40) to shorten node labels. Also backslash
characters in labels may be handled incorrectly.

There are also some known bugs in Maria. Presently, Maria identifies paths only by state
numbers. When a path is displayed graphically, Maria displays all transitions between each
neighboring state along the path.

This treatment of transitions may be confusing especially when displaying counterexam-
ple paths (see Section 3.2.2 [Liveness], page 54), since Maria omits the property automaton
states from the counterexample. Effectively, it projects the product of the reachability graph
and the property automaton on the reachability graph. If there are several enabled actions
between two states, or if fairness constraints are present, the presented counterexample path
may contain extraneous transitions.

2.3 Editing Petri Nets with GNU Emacs

We recommend that you use GNU Emacs for editing Petri Net models. There is an
Emacs major mode for editing Maria Petri Nets. Its main features are context-sensitive
indentation and syntax highlighting. If you are not familiar with these features of Emacs,
it is recommended that you read the Emacs tutorial (press C-h t, that is, first hold down
the Control key, press h, then release Control and press t) and learn about these features
from the on-line help system of Emacs e.g. with the commands C-h i (M-x info) and C-h

a (M-x apropos-command).

2.3.1 Installing the Petri Net mode

The Petri Net mode ‘pn-mode’ has been written for GNU Emacs, versions 20.3 and
21. It does not work in version 19.34, which lacks ‘cc-mode’ and some features of
‘font-lock-mode’ the Petri Net mode requires.

Installing the Petri Net mode is simple. Just add the name of the directory containing
‘pn-mode.el’ to load-path and do ‘(require ’pn-mode)’. To do this, you can add e.g. the
following lines to your ‘.emacs’ file.

(cond ((>= emacs-major-version 20)
(let ((pn-lisp-dir (expand-file-name "~/elisp")))
(cond ((file-readable-p pn-lisp-dir)

(add-to-list ’load-path pn-lisp-dir))
(require ’pn-mode)
(setq pn-font-lock-extra-types

’("token" "\\sw+_t")))))))

Chapter 2: Reachability Analysis with Maria 51

In this example, we also set the variable pn-font-lock-extra-types so that the word ‘token’
and all words ending in ‘_t’ will be treated as type names.

2.3.2 Syntax Highlighting

If you are not familiar with the current syntax highlighting features of Emacs
(‘font-lock-mode’), you should read the documentation (using the Info system and maybe
also the C-h f and C-h v commands).

Adding the following declarations to your ‘.emacs’ file will enable maximum degree of
syntax highlighting in all Emacs modes. You may want to consult the documentation of
the variable font-lock-maximum-decoration if you want to limit the degree of highlighting
in some modes.

(global-font-lock-mode t)
(setq font-lock-maximum-decoration t)
(turn-on-font-lock)

2.3.3 Customizing Emacs

One of the most frequent problems of Emacs newcomers is how to convince Emacs to
use 8-bit characters, as in the character set standardized by ISO 8859-1, also known as the
Latin-1 alphabet. The default 7-bit character set will suffice for editing Petri Net models.
But since this section is about fine-tuning, here is something for your ‘.emacs’ file:

(standard-display-european t)
(set-input-mode nil nil ’dummy)
(cond ((< emacs-major-version 20)

(require ’iso-syntax))
(t
(setq default-enable-multibyte-characters nil)
(set-language-environment "Latin-1")))

In the following you will see some more definitions from my ‘.emacs’ file. Feel free to
use any of them. In order for ‘pn-mode’ to automatically register the ‘.pn’ extension with
‘speedbar’, the latter should be loaded first.

(setq next-line-add-newlines nil);no accidentally inserted empty lines
(setq make-backup-files nil) ;unless you like the ‘~’ files
(setq mouse-yank-at-point t) ;for more accurate yanking (pasting)
(setq inhibit-startup-message t) ;disable the startup message
(if (null window-system)

(menu-bar-mode -1) ;hide the menu line in text mode
(if (>= emacs-major-version 20)

(speedbar-frame-mode t))) ;enable speedbar, the navigator
(setq visible-bell t) ;do not beep—flash instead
(line-number-mode t) ;show line numbers in the mode line
(column-number-mode t) ;show column numbers in the mode line
(show-paren-mode t) ;highlight matching parentheses
(auto-compression-mode t);transparently (de)compress ‘.gz’ files

Chapter 3: Algorithms used in Maria 52

3 Algorithms used in Maria

3.1 The Unification Algorithm

Enabled transition instances are sought in a process called unification.

3.1.1 Concepts

There are some concepts related to the unification process that may be somewhat unclear,
even though you know the basics of high level Petri Nets.

input arc An arc leading from a place to a transition, labelled with a multi-set expres-
sion evaluating to the tokens that are to be removed from the place when the
transition fires

output arc
An arc leading from a transition to a place, labelled with a multi-set expression
evaluating to the tokens that are to be inserted to the place when the transition
fires

variable A named and strictly typed entity that may be assigned a value

output variable
A variable occurring only on output arcs of a transition; the value will be picked
non-deterministically at the end of the unification process

input variable
A variable occurring on the input arcs of a transition

valuation
binding A binding of values to variables

expression A formula that evaluates to a value; expressions in net descriptions do not
contain temporal logic operators or other set operations than multi-set summing

arc expression
A multi-set valued expression occurring on an input or output arc

gate
gate expression

A condition for the valuation of the input variables; if omitted, it is treated as
identically true

token an entity having a value; moved between places by the firing of transitions

concrete token
a token contained in a place

abstract token
an item of an arc expression

lvalue Left-hand-side value of an assignment; a data object (in our case, an input
variable) that is assigned to

Chapter 3: Algorithms used in Maria 53

rvalue Right-hand-side value of an assignment, evaluating to the value that will be
assigned to the lvalue

3.1.2 Expanding Quantifications

Arc expressions may contain multi-set sums (see Section 1.6 [Multi-Sets], page 24) or
universal or existential quantification with fixed or variable bounds. They are expanded at
parsing time. Consider the following net description:

place p bool: false, true;
place r bool: 2#(2#false, true);
trans t in {
place p: p;
place r: bool s: (s, bool t (p): s && t);

};

The arc expression is expanded as follows:
trans t in {
place p: p;
place r: false, true, (p?3:0)#false, (p?1:0)#true;

};

3.1.3 Matching Concrete and Formal Tokens

The Petri Net formalism does not have the concept of assignment as known in program-
ming languages. Also, expressions may not have any side-effects. The only way a Petri
system can change its state is through the firing of an enabled transition.

Assignments in the high level Petri Net formalism are implicit. In order for a high-level
transition to be enabled, its variables must be bound to suitable values. Values for input
variables will be found by matching concrete tokens in places with abstract ones on input
arc expressions.

For each abstract token with known multiplicity, all concrete tokens in the input place
that have not been associated with other abstract tokens will be considered. If the tokens
are compatible (given the valuation generated so far, each component of the abstract token
evaluates to the corresponding component of the concrete token or is undefined), a quantity
of the concrete token will be associated with the abstract token. For instance, if the place
contains ‘3#true,2#false’ and the abstract token is ‘2#x’, the unification algorithm will
associate 2 of the 3 ‘true’ tokens or all the ‘false’ tokens with the abstract token.

If the abstract token contains assignment candidates (see Section 3.1.4 [Lvalues],
page 53), the valuation will be extended. Continuing our example, the variable ‘x’ in the
abstract token ‘2#x’ is an lvalue, and it can be assigned the corresponding value of the
concrete token, in this case ‘true’ or ‘false’.

3.1.4 Finding Assignment Candidates

Assignment candidates, or left-hand-side values of assignments (lvalues), are expressions
that can be assigned to. In Maria, they are variables or array variables indexed by a known

Chapter 3: Algorithms used in Maria 54

index. Lvalues must occur either as such (an abstract token is an lvalue) or in components
of structured expressions.

For example, the abstract token ‘42#{x,{y+1,z},+t}’ has two lvalues, the variables ‘x’
and ‘z’. The abstract token ‘x#y’ has one lvalue, ‘y’; the token cannot be matched with a
concrete one until the value of ‘x’ is known. The token ‘|x’ does not have any lvalues.

3.1.5 Transition Instance Analysis

A preprocessor sorts the input arcs of each transition in such a way that they can be
processed in one pass. Static analysis finds out for each input arc the set of variables that
are assigned a value based on the token assigned to the arc expression.

Tokens are assigned to input arcs by a depth-first search algorithm. If no variables are
unified from an arc, the arc is "constant" under the assignment gathered so far. In this case,
the corresponding input place is searched for the token the arc evaluates to. Otherwise, the
arc is matched with each token in the input place, one at a time, and the assignment is
augmented in such a way that evaluating the arc expression under the augmented (but still
incomplete) assignment can yield the token picked from the input place.

In general, the less variables there are in the arc inscriptions and the less tokens in the
input places, the faster the instance analysis can be completed.

3.2 Model Checking Algorithms

The on-the-fly model checker in Maria verifies properties expressed in temporal logic by
computing a product of a property automaton (which corresponds to a formula) and the
reachability graph interpreted as an automaton.

3.2.1 Checking Safety Properties

Safety properties can be specified with ‘deadlock’ and ‘reject’ conditions (see Sec-
tion 1.3.6.1 [Assertions], page 11), as well as with so-called safe LTL formulae that can
be translated to automata on finite words. Also some built-in features of the modelling
language, such as capacity constraints, marking-dependent initialization expressions, and
checks for expression evaluation errors, can be viewed as safety checking.

While exploring the reachable state space, Maria reports all violations of safety properties
and may abort the analysis in case of a fatal violation.

Safety properties can be verified without constructing a reachability graph; it is sufficient
to construct the set of reachable states. The command line options ‘-M’, ‘-P’ and ‘-L’ are
more efficient than ‘-m’, and the search can be distributed on multiple processors.

3.2.2 Checking Liveness Properties

Currently, the ‘eval’ command (see Section 2.2.2.7 [Eval], page 39) supports LTL for-
mulae on state properties. It is possible to examine counterexamples (paths violating the
property being verified), and the algorithm respects both weak and strong fairness condi-
tions.

Appendix A: The Grammar 55

Appendix A The Grammar

This appendix presents the grammar of the Maria languages using a Bison-like
Backus−Naur Form (see section “Languages and Context-Free Grammars” in The GNU
Bison Manual) with the following extensions inspired by regular expressions (see section
“Patterns” in The Flex Manual):

1. Square brackets (‘[]’) indicate optional symbols

2. Asterisk (‘*’) denotes any amount repetition (0 or more instances)

3. Parentheses (‘()’) are used for grouping grammar symbols

A.1 Terminal Symbols

By convention, terminal symbols are written in all-uppercase letters or as character
strings enclosed in single quotation marks, and non-terminal symbols are written in all-
lowercase letters. The non-trivial terminal symbols used in the grammar are as follows.

‘NUMBER’ decimal (‘[1-9][0-9]*’), octal (‘0[0-7]*’) or hexadecimal (‘0x[0-9a-fA-F]+’)

‘CHARACTER’
‘’c’’: Section 1.2.3.3 [Character Constants], page 3

‘STATE’ number of a state in the reachability graph: ‘@[1-9][0-9]*’, ‘@0[0-7]*’ or
‘@0x[0-9a-fA-F]+’

‘COMP’ number of a strongly connected component of (part of) the reachability graph
‘@@[1-9][0-9]*’, ‘@@0[0-7]*’ or ‘@@0x[0-9a-fA-F]+’

‘name’ ‘[a-zA-Z_][0-9a-zA-Z_]*|"c*"’: Section 1.2.3.4 [Identifiers], page 4

Reserved words are not listed in the above table. For instance, the symbol ‘PLACE’ stands
for the keyword ‘place’.

In addition, there are a few low-level grammar rules that are almost like terminal symbols
in their nature:

delim:
’,’
|
’;’

A.2 The Net Description Language

net:
(netcomponent ’;’)*

Appendix A: The Grammar 56

netcomponent:
type
|
function
|
place
|
transition
|
verify
|
fairness
|
proposition
|
subnet

subnet:
SUBNET [name] ’{’ net ’}’

A.2.1 Type

type:
TYPEDEF typedefinition name

typedefinition:
ENUM ’{’ enum_item (delim enum_item)* ’}’
|
STRUCT ’{’ [comp_list] ’}’
|
UNION ’{’ comp_list ’}’
|
ID ’[’ number ’]’
|
typereference
|
typedefinition constraint
|
typedefinition ’[’ typedefinition ’]’
|
typedefinition ’[’ QUEUE number ’]’
|
typedefinition ’[’ STACK number ’]’

typereference:
name

enum_item:
name [[’=’] number]

Appendix A: The Grammar 57

comp_list:
comp (delim comp)* [delim]

comp:
typedefinition name

number:
expr

A.2.1.1 Constraint

constraint:
’(’ range (delim range)* ’)’

range:
value
|
’..’ value
|
value ’..’ value
|
value ’..’

value:
expr

A.2.2 Function

function:
typereference name eq formula
|
typereference name ’(’ param_list ’)’ formula

eq: ’=’ | ’()’
param_list:

[param_list_item (delim param_list_item)*]
param_list_item:

typereference name

A.2.3 Place

place:
PLACE name constraint* typedefinition
[CONST] [’:’ marking_list]

A.2.4 Transition

transition:
TRANS [’:’] name [’!’] trans*

Appendix A: The Grammar 58

trans:
’{’ [var_expr (delim var_expr)* [delim]] ’}’
|
IN trans_places
|
OUT trans_places
|
GATE expr (’,’ expr)*

|
HIDE expr

|
STRONGLY_FAIR expr
|
WEAKLY_FAIR expr
|
ENABLED expr

|
’:’ [TRANS] name
|
NUMBER

var_expr:
[HIDE] typereference name
|
[HIDE] typereference name ’!’ [’(’ expr ’)’]
|
function

trans_places:
’{’ place_marking (’;’ place_marking)* ’}’

place_marking:
[PLACE] name ’:’ marking_list

A.2.5 State Properties

verify:
REJECT expr
|
DEADLOCK expr

fairness:
STRONGLY_FAIR qual_expr (’,’ qual_expr)*
|
WEAKLY_FAIR qual_expr (’,’ qual_expr)*
|
ENABLED qual_expr (’,’ qual_expr)*

proposition:
PROP name ’:’ expr

Appendix A: The Grammar 59

A.3 The Query Language

Keywords of the query language are reserved words only in the beginning of a statement.
For instance, ‘eval eval’ will try to evaluate the symbol ‘eval’ in the current state.

script:
[statement (’;’ statement)* [’;’]]

statement:
MODEL name
|
GRAPH name
|
[VISUAL] DUMP
|
UNFOLD name
|
LSTS [name]
|
[VISUAL] DUMPGRAPH
|
(BREADTH | DEPTH) [STATE]
|
[VISUAL] (BREADTH | DEPTH) formula
|

[VISUAL] [EVAL] [STATE] formula
|
[VISUAL] SHOW [STATE]
|
[VISUAL] SHOW STATE STATE (STATE)*
|
HIDE [’!’] [[PLACE] name (’,’ [PLACE] name)*]
|
[VISUAL] (SUCC | PRED) [’!’] [STATE]
|
[GO] STATE
|
[VISUAL] [STATE] TRANS atrans*

atrans:
’{’ [avar_expr (delim avar_expr)* [delim]] ’}’
|
IN trans_places
|
OUT trans_places
|
GATE expr (’,’ expr)*

Appendix A: The Grammar 60

avar_expr:
typereference name
|
typereference name ’!’ [’(’ expr ’)’]

statement:
STRONG [STATE] [expr]
|
TERMINAL
|
[VISUAL] COMPONENTS
|
[VISUAL] (SUCC | PRED) COMP
|
[VISUAL] [SHOW] COMP [expr]
|

[VISUAL] PATH (STATE | COMP | expr) [STATE] [’,’ expr]
|
[VISUAL] PATH STATE (COMP | expr) [’,’ expr]
|
[VISUAL] PATH STATE STATE STATE (STATE)* [’,’ expr]

FUNCTION function
|

STATS
|
TIME
|

CD [name]
|
TRANSLATOR [name]
|
COMPILEDIR [name]
|
LOG [name]
|

PROMPT [’c’]
|

HELP
|
EXIT

A.4 Formulae and Expressions

expr:
formula

Appendix A: The Grammar 61

marking:
formula

marking_list:
marking (’,’ marking)*

A.4.1 Literals

formula:
TRUE | FALSE
|
NUMBER
|
CHARACTER
|
UNDEFINED | FATAL
|
’#’ typereference
|
’<’ typereference | ’>’ typereference
|
name

A.4.2 Functions

formula:
name ’()’
|
name ’(’ arg_list ’)’

arg_list:
[formula (’,’ formula)*]

A.4.3 Basic Formulae

formula:
’(’ formula ’)’
|
ATOM formula
|

Appendix A: The Grammar 62

formula ’<’ formula
|
formula ’==’ formula
|
formula ’>’ formula
|
formula ’>=’ formula
|
formula ’!=’ formula
|
formula ’<=’ formula
|

’-’ formula
|
formula ’+’ formula
|
formula ’-’ formula
|
formula ’/’ formula
|
formula ’*’ formula
|
formula ’%’ formula
|

’|’ formula | ’+’ formula
|
’*’ formula
|
’/’ formula | ’%’ formula
|
’~’ formula
|

formula ’<<’ formula
|
formula ’>>’ formula
|
formula ’&’ formula
|
formula ’^’ formula
|
formula ’|’ formula
|

formula ’?’ formula (’:’ formula)*
|

Appendix A: The Grammar 63

’{’ [name ’:’] [expr] (’,’ [name ’:’] [expr])* ’}’
|
formula ’.’ name
|
formula ’.’ ’{’ name expr ’}’
|
formula ’[’ formula ’]’
|
formula ’.’ ’{’ ’[’ expr ’]’ expr ’}’
|

’!’ formula
|
formula ’&&’ formula
|
formula ’^^’ formula
|
formula ’||’ formula
|
formula ’<=>’ formula
|
formula ’=>’ formula

A.4.4 Typecasting and Union Values

formula:
IS typereference formula
|
name ’=’ formula
|
formula IS name

A.4.5 Non-Determinism and Quantification

formula:
typereference [name] ’!’ [’(’ expr ’)’]
|
typereference name [’(’ expr ’)’] ’:’ formula
|
typereference name [’(’ expr ’)’] ’&&’ formula
|
typereference name [’(’ expr ’)’] ’||’ formula
|
’.’ name [name]
|
’:’ name [name]

Appendix A: The Grammar 64

A.4.6 Multi-Set Operations

formula:
EMPTY
|
’(’ marking_list ’)’
|
formula ’#’ marking
|
PLACE name
|

marking SUBSET marking
|
marking INTERSECT marking
|
marking MINUS marking
|
marking UNION marking
|
marking EQUALS marking
|

CARDINALITY marking
|
MAX marking
|
MIN marking
|

SUBSET name ’{’ marking_list ’}’ expr
|
MAP name ’{’ marking_list ’}’ expr
|
MAP name ’#’ name ’{’ marking_list ’}’ marking

A.4.7 Temporal Logic

’<>’ formula
|
’[]’ formula
|
’()’ formula
|
formula UNTIL formula
|
formula RELEASE formula

Appendix A: The Grammar 65

qual_expr:
TRANS name [’:’ expr]
|
’(’ qual_expr ’)’
|

’!’ qual_expr
|

qual_expr ’&&’ qual_expr
|

qual_expr ’^^’ qual_expr
|

qual_expr ’||’ qual_expr
|

qual_expr ’<=>’ qual_expr
|
qual_expr ’=>’ qual_expr

Appendix B: The Graph Files 66

Appendix B The Graph Files

For maximum flexibility and performance, the reachability graph is laid out in disk files
in machine dependent format. Please refer to the files ‘Graph/fileformats.html’ and
‘Graph/Graph.C’ in the Maria source code for exact information.

Note that when Maria has been compiled for using a memory mapped file interface (see
Section C.2 [Configuring], page 67), the sizes of the graph files will be rounded up to a power
of two while Maria is running. This arrangement reduces the number of costly system calls.

Appendix C: Compiling Maria 67

Appendix C Compiling Maria

C.1 System Requirements

Special care has been taken to ensure the quality and portability of the Maria source code.
The code should compile on any ISO/IEC 14882 compliant C++ compiler. Unfortunately
the standard is fairly new (summer 1998), and until 2001 or 2002, many C++ compilers did
not support even the subset of it that compiling Maria requires.

We use the GNU Compiler Collection (gcc) on Debian GNU/Linux as the develop-
ment platform. GCC should be able to compile the program also on FreeBSD, NetBSD,
OpenBSD and IBM AIX systems. Furthermore, the code can be compiled with the na-
tive compilers of Digital UNIX 4.0 and 5.1, HP-UX 11.22, Sun Solaris 8, SGI IRIX 6.2 and
Apple Darwin 5.3.

It is recommended that you install the freely available gcc 2.95 or later on your system
if you have problems compiling the code.

We would like to hear success reports from people using other compilers. Patches, even
to the ‘Makefile’ files, are welcome.

C.2 Editing the ‘Makefile’ files

In the top-level directory, in ‘Makefile’ and in ‘Makefile’.system, there are a couple of
variable definitions that you should check before invoking the compilation by typing ‘make’.
It is recommended to make ‘reallyclean’ before re-starting the compilation after making
modifications.1

‘HAS_READLINE’
‘LIBREADLINE’
‘INCREADLINE’

Set ‘HAS_READLINE=yes’ if the GNU Readline library is available, and ensure
that the directories have been set up properly. The library is not a necessity;
See Section 2.2.1 [Line Editor], page 36, for the features it provides. On some
systems, you may need to add ‘-lncurses’ to the list of libraries.

‘EXPR_COMPILE’
Set ‘EXPR_COMPILE=yes’ if your system supports dynamic loading of shared li-
braries and if you want to enable the ‘-C’ command line option (see Section 2.1.2
[Maria Options], page 29), which will considerably speed up the reachability
graph generation.

‘EXTRA_DEFINES’
Extra definitions for the macro preprocessor. Set ‘-DUSE_MMAP’ in order to
enable memory mapped access to the reachability graph files on systems that
implement the POSIX.1b mmap(2) interface. This option can considerably

1 If the ‘make’ command on your system does not seem to come along with the ‘Makefile’, use GNU Make.

Appendix C: Compiling Maria 68

speed up the analysis of models that have a relatively small number of high-
level transitions. Please note that with this option, 32-bit systems can only
handle graph files whose total size is less than 4 gigabytes, maybe even less
than 1 gigabyte, depending on the operating system.

‘DEBUG’ Debugging flags. Usually ‘-DNDEBUG’ for compiling the production version and
‘-g’ for the debugging version.

‘PROF’ Profiling flags. Usually empty.

‘CXX’
‘CC’ Commands for compiling modules written in C++ and C, respectively.

‘EXTRA_INCLUDES’
Define ‘EXTRA_INCLUDES=-Idummy’ if your compiler does not implement the
‘<slist>’ extension to the Standard Template Library.

‘EXTRA_LIBS’
Define ‘EXTRA_LIBS=-ldl’ or similar, if you want to enable support for com-
piled expressions and the dynamic loader routines are not part of the standard
libraries on your system.

‘DEFINES’ Extra flags e.g. for enabling the usage of the POSIX regular expression li-
brary (‘-DHAS_REGEX’), of the ‘getopt_long’ function (‘-DHAS_GETOPT_LONG’),
a GNU extension to the standard, and of some extensions to the Standard
Template Library (‘-DHASH_MAP_LOC’ and ‘-DSLIST_LOC’).

‘CFLAGS’
‘CXXFLAGS’

Flags for the C and C++ compilers e.g. for enabling optimizations.

C.3 Installing Maria

The file ‘Makefile’ in the top-level directory contains rules for installing the ‘maria’
executable and some related files on Unix-like systems. The installation is invoked by
typing ‘make install installman installinfo’. You may want to redefine some of the
following variables either in the ‘Makefile’ or on the ‘make’ command line:

PREFIX The base directory where Maria should be installed. You might want to change
this to ‘/usr/local’. The default is ‘/usr’.

INSTALLDIR
INSTALLBIN
INSTALLDATA

The commands for creating directories, installing executable files and installing
data files. On Apple Darwin, you will need to add the ‘-c’ switch to the latter
two commands.

C.4 Compiling Maria for Debugging

Compiling a debugging version of Maria is simple: in ‘Makefile’, define ‘DEBUG=-g’,
and you are all set. You could also disable ‘assert()’ macros by defining ‘-DNDEBUG’, but

Appendix C: Compiling Maria 69

they are very useful, since they often catch errors introduced by modifying code that seems
completely unrelated to the failed assertion at first sight.

For detecting and debugging memory management issues, you can use the Electric Fence
Library, Valgrind for GNU/Linux, the Debug Malloc Library (See Info file ‘dmalloc’, node
‘Top’ or http://www.dmalloc.com) or commercial tools such as Third Degree (‘third’) on
Digital UNIX.

Debuggers often have problems with C++. For us, the GNU debugger (gdb 5.0) and
has worked pretty well on Debian GNU/Linux. Version 4.18 has problems calling virtual
methods.

Defining the ‘YYDEBUG’ macro enables grammar debugging. An executable compiled with
this macro defined will look for the environment variable DEBUG. When DEBUG=1, the parser
will print out more than enough information on the parsing process. Often it makes sense
to set a conditional breakpoint on the lexical analyzer function based on the input line
number, and to enable the parser debugging output only for a certain region of the input
by setting or clearing the status variable in the debugger.

C.5 Reporting Bugs

Every non-trivial program is likely to contain bugs. Fatal bugs, such as assertion failures
or segmentation faults, are easiest to locate. Our intention has been to make the parsers in
Maria bullet-proof: no matter what the input is, the program should not crash.

Sometimes a program may behave in a counter-intuitive way, doing something else than
one would except. Such situations can be caused by a bug, or the program might behave just
as planned. The latter case is often fixed by rephrasing or extending the documentation.

Bug reports and suggestions are welcome at ‘msmakela@tcs.hut.fi’. In the bug reports,
please mention which platform you are using (including version numbers of the operating
system and the relevant compilers and libraries) and include a stripped-down input file
that is enough for triggering the bug. You can also compile the analyzer with support for
debugging enabled, since it can help tracking down the error. Please use the ‘diff -c’
format for any patches you send.

http://www.dmalloc.com

Appendix D: Examples 70

Appendix D Examples

More examples can be found in the Maria source code, in the directory ‘parser/test’.

D.1 Dining Philosophers (‘dining.pn’)

#!/usr/local/bin/maria
typedef unsigned (1..5) philosopher;
typedef struct {

philosopher p,
enum { thinking, hungry, eating } s

} status;

place fork (0..#philosopher) philosopher: philosopher p: p;
place state (#philosopher) status: philosopher p: { p, thinking };

trans left
in { place state: { p, thinking }; place fork: p; }
out { place state: { p, hungry }; };

trans right
in { place state: { p, hungry }; place fork: +p; }
out { place state: { p, eating }; };

trans finish
in { place state: { p, eating }; }
out { place state: { p, thinking }; place fork: p, +p; };

D.2 Distributed Database Management (‘dbm.pn’)

The parameter of the model, the number of database agents, is only present in the data
type definition. The initial marking expression and the arc expressions are independent of
that parameter, thanks to the multi-set sum operator.

typedef unsigned (1..10) db_t;
typedef struct {
db_t first;
db_t second;

} db_pair_t;

place waiting (0..1) db_t;
place performing (0..#db_t-1) db_t;
place inactive (0..#db_t) db_t: (db_t d: d)

minus (place waiting union place performing);
place exclusion (0..1) struct {}: (place waiting equals empty)#{};

place sent (0..#db_t-1) db_pair_t;
place received (0..#db_t-1) db_pair_t;
place acknowledged (0..#db_t-1) db_pair_t;

place unused (1+#db_pair_t-2*#db_t,#db_pair_t-#db_t) db_pair_t:
(db_pair_t p (p.first != p.second): p)

minus (db_t t: (map s { place waiting } {s, t}));

Appendix D: Examples 71

trans update_and_send_messages
in {
place inactive: s;
place exclusion: {};
place unused: db_t t (t != s): { s, t };

}
out {

place waiting: s;
place sent: db_t t (t != s): { s, t };

};

trans receive_acknowledgements
in {

place waiting: s;
place acknowledged: db_t t (t != s): { s, t };

}
out {

place inactive: s;
place exclusion: {};
place unused: db_t t (t != s): { s, t };

};

trans receive_message
in {

place inactive: r;
place sent: { s, r };

}
out {
place performing: r;
place received: { s, r };
}
gate s != r;

trans send_acknowledgement
in {

place performing: r;
place received: { s, r };

}
out {

place inactive: r;
place acknowledged: { s, r };

}
gate s != r;

GNU GENERAL PUBLIC LICENSE 72

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE 73

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 74

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

GNU GENERAL PUBLIC LICENSE 75

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 76

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 77

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 78

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Index 79

Index

!
! . 20, 26
!, transitions . 8
!= . 20

#
. 24
#! . 5
#, unary . 61
#define . 5
#else . 5
#endif . 5
#ifdef . 5
#ifndef . 5
#include . 4
#line . 5
#undef . 5

%
% . 19
%, unary . 23

&
& . 19
&& . 20, 26

(
() . 26

*
* . 19
*, unary . 23

+
+ . 19
+, buffer . 23
+, unary . 20

-
- . 19
-, unary . 19
-, unary, buffer . 23

.

. 22

.. 16

/
/ . 19
/, unary . 23

:
:, arc expressions . 8
:, initial marking . 7

<
< . 20
<, unary . 61
<< . 19
<= . 20
<=>. 20, 26
<> . 26

=
= . 22
== . 20
=> . 20, 26

>
> . 20
>, unary . 61
>= . 20
>> . 19

?
?, unary . 23
?: . 21

[
[] . 26

^
^ . 19
^^ . 20, 26

|
| . 19
|, unary . 20
|| . 20, 26

~
~, unary . 19

Index 80

A
assertions . 11, 18
assignments . 53
atom . 22

B
bool . 13
breadth, query language . 39
buffers . 23
bugs, reporting . 69

C
capacity constraint . 7
cardinality . 24
catching dynamic errors . 18
cd, query language . 47
char . 14
character constants . 3
command line interface . 36
command line options, ‘maria’ 29
compiledir, query language 47
compiling . 67
completion of names . 36
components, query language 44
concepts, unification . 52
conditional processing . 5
conditional processing, interactively 48
const . 7
constants. 17
constants, character . 3
constants, numeric . 3

D
data types . 12
data types, array . 15
data types, boolean . 13
data types, buffer . 16
data types, character . 14
data types, conversions . 21
data types, defining . 5
data types, enumerated . 14
data types, identifier . 14
data types, integer . 13
data types, limiting with constraints 16
data types, structure . 15
data types, union . 15
deadlock . 11
debugging ‘maria’. 68
depth, query language. 39
dining philosophers (example) 70
distributed database management (example) . . . 70
dump, query language . 37
dumpgraph, query language 38

E
Emacs . 50

Emacs, customizing . 51

empty . 24

enabled . 8, 11

enum . 14

equals . 24

eval, query language . 39

exit, query language . 47

expressions, arithmetic . 19

expressions, arrays . 23

expressions, atomicity . 22

expressions, comparison . 20

expressions, evaluating . 39

expressions, logic . 20

expressions, multi-set valued 24

expressions, overview . 16

expressions, predecessor . 20

expressions, prohibiting transformations 22

expressions, selection . 21

expressions, short-circuit evaluation 20

expressions, structures . 22

expressions, successor . 20

expressions, temporal . 26

expressions, unions . 22

F
fairness sets . 8, 11

false . 61

fatal . 61

FIFO buffers . 23

function, query language . 44

functions, defining . 7, 44

G
gate . 8

go, query language . 43

grammar, summary . 55

graph, query language. 37

GraphViz . 48

H
help, query language . 47

hide . 8

hide, query language . 40

Index 81

I
id . 14
identifiers, syntax of . 4
if-then-else, generalized . 21
in . 8
include files . 4
indentation . 50
initial marking . 7
installing ‘maria’ . 68
int . 13
intersect . 24
invoking ‘maria’ . 29
is . 22
is, unary . 21

L
lexical conventions . 2
LIFO buffers . 23
line counter, setting . 5
log, query language . 47
lsts, query language . 38
LTL . 26
lvalue . 53

M
‘Makefile’ . 67
marking expressions . 24
max . 24
min . 24
minus . 24
model checking . 39
model checking, liveness . 54
model checking, safety . 54
model, query language. 37
modeling . 2
modules . 8, 10, 40
multi-sets . 24
multiplicity . 24

N
name spaces . 27
names, completion of . 36
nets, composing . 2
nets, constructs . 5
nets, on-the-fly verification 11
nets, place definition . 7
nets, transition definition . 8
non-determinism . 27
numeric constants. 3

O
operator precedence . 18
out . 8
output variables . 27

P
path, query language . 45
Petri Net mode . 50
place . 7, 8, 24
places, input . 8
places, output . 8
pred, query language . 42
preprocessor . 4
preprocessor symbols . 5
printing . 48
priority transitions . 8
prompt, query language . 47
prop . 12

Q
quantification . 24
quantification, expanding . 53
query language . 37, 59
queue . 16
queues . 23

R
random behavior . 27
reachability analysis . 29
reachability graph, examining 36
reachability graph, file format 66
reachability graph, generating. 29
Readline . 36
redundant places . 7
reject . 11
release . 26
reserved words . 3

S
scoping, identifiers . 27
sets . 24
shadowing declarations . 27
show, query language . 40
simulating . 41
stack . 16
stacks . 23
state propositions . 12
state space explosion, avoiding 16
stats, query language. 47
strong, query language . 44
strongly connected components 44
strongly_fair . 8, 11
struct . 15
subnet . 10
subnet, query language . 40
subnets . 10
subset . 24
subset, selection. 24
succ, query language . 41
successor and predecessor . 20

Index 82

syntax highlighting . 50, 51

T
temporal operators. 26
terminal component . 44
terminal, query language . 44
time, query language . 47
tokens . 7
tokens, formal and concrete 53
trans . 8
trans, query language. 43
transitions, enabled . 8
transitions, firing . 8
transitions, instance analysis 54
translator, query language 47
trivial component . 44
true . 61
typedef . 5

U

undefined . 61
unfold, query language . 38
unification . 52
unification stack . 54
union . 24
union, data type . 15
unions, active component . 22
unsigned . 13
until . 26

V
variable declarations . 8
variables . 17
variables, output . 27
visual, query language . . 37, 38, 39, 40, 41, 42, 44,

45, 48

W
weakly_fair . 8, 11

i

Table of Contents

Introduction . 1

1 The Net Description Language 2
1.1 Design Criteria . 2
1.2 Lexical Conventions . 2

1.2.1 Formatting . 2
1.2.2 Comments . 2
1.2.3 Lexical Tokens . 2

1.2.3.1 Reserved Words . 3
1.2.3.2 Numeric Constants . 3
1.2.3.3 Character Constants 3
1.2.3.4 Identifiers . 4

1.2.4 Preprocessor Directives. 4
1.2.4.1 Embedding Other Files: ‘#include’ 4
1.2.4.2 Conditional Processing 5
1.2.4.3 Setting the Line Number: ‘#line’ 5
1.2.4.4 Preprocessor Comment: ‘#!’ 5

1.3 Constructs for Defining Nets . 5
1.3.1 Type Definitions: ‘typedef’ . 5
1.3.2 Function Definitions . 7
1.3.3 Place Definition: ‘place’ . 7
1.3.4 Transition Definition: ‘trans’ . 8
1.3.5 Defining Subnets for Modular State Space

Exploration . 10
1.3.6 On-the-Fly Verification . 11

1.3.6.1 Verifying Safety Properties. 11
1.3.6.2 Defining Fairness Constraints 11
1.3.6.3 Specifying State Propositions for LSTS

Output. 12
1.4 Data Types . 12

1.4.1 Background . 13
1.4.2 Leaf Types . 13

1.4.2.1 Integer Types . 13
1.4.2.2 Boolean Type . 13
1.4.2.3 Character Type . 14
1.4.2.4 Enumerated Type . 14
1.4.2.5 Identifier Type . 14

1.4.3 Composite Types . 14
1.4.3.1 Structure . 15
1.4.3.2 Union . 15
1.4.3.3 Array . 15
1.4.3.4 Buffer (Queue or Stack) 16

1.4.4 Constraints . 16

ii

1.5 Expressions and Formulae . 16
1.5.1 Literals . 17

1.5.1.1 Constants . 17
1.5.1.2 Variables . 17
1.5.1.3 Dynamic Errors . 18

1.5.2 Operators . 18
1.5.2.1 Integer Arithmetic . 19
1.5.2.2 Successor and Predecessor 20
1.5.2.3 Comparison . 20
1.5.2.4 Boolean Logic . 20
1.5.2.5 Selection . 21
1.5.2.6 Type Casting . 21
1.5.2.7 Atomicity . 22

1.5.3 Structures. 22
1.5.4 Unions . 22
1.5.5 Arrays . 23
1.5.6 Buffers . 23

1.6 Operations on Multi-Sets . 24
1.7 Temporal Logic . 26
1.8 Non-Determinism in Transitions . 27
1.9 Scoping of Identifiers . 27

2 Reachability Analysis with Maria 29
2.1 Invoking Maria . 29

2.1.1 Interrupting the Reachability Analysis 29
2.1.2 Options . 29
2.1.3 Option Cross Key . 35

2.2 The Maria Shell . 36
2.2.1 The Line Editor . 36

2.2.1.1 Name Completion . 36
2.2.2 The Query Language . 37

2.2.2.1 Loading a Model . 37
2.2.2.2 Displaying a Model. 37
2.2.2.3 Unfolding a Model . 38
2.2.2.4 Exporting a Labelled State Transition

System . 38
2.2.2.5 Exporting the Reachability Graph 38
2.2.2.6 Exhaustive Analysis 39
2.2.2.7 Evaluating Expressions and Formulae . . . 39
2.2.2.8 Displaying Markings 40
2.2.2.9 Excluding Places from Displayed Markings

. 40
2.2.2.10 Selecting the Active Subnet 40
2.2.2.11 Listing Successor Nodes 41
2.2.2.12 Listing Predecessor Nodes 42
2.2.2.13 Moving in the Graph 43
2.2.2.14 Anonymous Transitions 43
2.2.2.15 Defining Functions 44

iii

2.2.2.16 Strongly Connected Components 44
2.2.2.17 Shortest Paths . 45
2.2.2.18 Miscellanous Commands 47
2.2.2.19 Exiting . 47

2.2.3 Some Quirks with the Query Language 48
2.2.3.1 Separating Statements 48
2.2.3.2 Conditional Processing in the Editor. . . . 48

2.2.4 Visualizing Graphs and Paths 48
2.2.4.1 GraphViz, the Graph Visualizer 48
2.2.4.2 Known Bugs in the Visualizer 50

2.3 Editing Petri Nets with GNU Emacs . 50
2.3.1 Installing the Petri Net mode 50
2.3.2 Syntax Highlighting . 51
2.3.3 Customizing Emacs . 51

3 Algorithms used in Maria 52
3.1 The Unification Algorithm . 52

3.1.1 Concepts . 52
3.1.2 Expanding Quantifications . 53
3.1.3 Matching Concrete and Formal Tokens 53
3.1.4 Finding Assignment Candidates 53
3.1.5 Transition Instance Analysis . 54

3.2 Model Checking Algorithms . 54
3.2.1 Checking Safety Properties . 54
3.2.2 Checking Liveness Properties 54

Appendix A The Grammar 55
A.1 Terminal Symbols . 55
A.2 The Net Description Language . 55

A.2.1 Type . 56
A.2.1.1 Constraint . 57

A.2.2 Function . 57
A.2.3 Place . 57
A.2.4 Transition . 57
A.2.5 State Properties. 58

A.3 The Query Language . 59
A.4 Formulae and Expressions . 60

A.4.1 Literals . 61
A.4.2 Functions . 61
A.4.3 Basic Formulae . 61
A.4.4 Typecasting and Union Values 63
A.4.5 Non-Determinism and Quantification 63
A.4.6 Multi-Set Operations . 64
A.4.7 Temporal Logic . 64

Appendix B The Graph Files 66

iv

Appendix C Compiling Maria. 67
C.1 System Requirements . 67
C.2 Editing the ‘Makefile’ files . 67
C.3 Installing Maria . 68
C.4 Compiling Maria for Debugging . 68
C.5 Reporting Bugs . 69

Appendix D Examples. 70
D.1 Dining Philosophers (‘dining.pn’) . 70
D.2 Distributed Database Management (‘dbm.pn’) 70

GNU GENERAL PUBLIC LICENSE 72
Preamble . 72
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 73
How to Apply These Terms to Your New Programs 77

Index . 79

	Introduction
	The Net Description Language
	Design Criteria
	Lexical Conventions
	Formatting
	Comments
	Lexical Tokens
	Reserved Words
	Numeric Constants
	Character Constants
	Identifiers

	Preprocessor Directives
	Embedding Other Files: #include
	Conditional Processing
	Setting the Line Number: #line
	Preprocessor Comment: #!

	Constructs for Defining Nets
	Type Definitions: typedef
	Function Definitions
	Place Definition: place
	Transition Definition: trans
	Defining Subnets for Modular State Space Exploration
	On-the-Fly Verification
	Verifying Safety Properties
	Defining Fairness Constraints
	Specifying State Propositions for LSTS Output

	Data Types
	Background
	Leaf Types
	Integer Types
	Boolean Type
	Character Type
	Enumerated Type
	Identifier Type

	Composite Types
	Structure
	Union
	Array
	Buffer (Queue or Stack)

	Constraints

	Expressions and Formulae
	Literals
	Constants
	Variables
	Dynamic Errors

	Operators
	Integer Arithmetic
	Successor and Predecessor
	Comparison
	Boolean Logic
	Selection
	Type Casting
	Atomicity

	Structures
	Unions
	Arrays
	Buffers

	Operations on Multi-Sets
	Temporal Logic
	Non-Determinism in Transitions
	Scoping of Identifiers

	Reachability Analysis with Maria
	Invoking Maria
	Interrupting the Reachability Analysis
	Options
	Option Cross Key

	The Maria Shell
	The Line Editor
	Name Completion

	The Query Language
	Loading a Model
	Displaying a Model
	Unfolding a Model
	Exporting a Labelled State Transition System
	Exporting the Reachability Graph
	Exhaustive Analysis
	Evaluating Expressions and Formulae
	Displaying Markings
	Excluding Places from Displayed Markings
	Selecting the Active Subnet
	Listing Successor Nodes
	Listing Predecessor Nodes
	Moving in the Graph
	Anonymous Transitions
	Defining Functions
	Strongly Connected Components
	Shortest Paths
	Miscellanous Commands
	Exiting

	Some Quirks with the Query Language
	Separating Statements
	Conditional Processing in the Editor

	Visualizing Graphs and Paths
	GraphViz, the Graph Visualizer
	Known Bugs in the Visualizer

	Editing Petri Nets with GNU Emacs
	Installing the Petri Net mode
	Syntax Highlighting
	Customizing Emacs

	Algorithms used in Maria
	The Unification Algorithm
	Concepts
	Expanding Quantifications
	Matching Concrete and Formal Tokens
	Finding Assignment Candidates
	Transition Instance Analysis

	Model Checking Algorithms
	Checking Safety Properties
	Checking Liveness Properties

	The Grammar
	Terminal Symbols
	The Net Description Language
	Type
	Constraint

	Function
	Place
	Transition
	State Properties

	The Query Language
	Formulae and Expressions
	Literals
	Functions
	Basic Formulae
	Typecasting and Union Values
	Non-Determinism and Quantification
	Multi-Set Operations
	Temporal Logic

	The Graph Files
	Compiling Maria
	System Requirements
	Editing the Makefile files
	Installing Maria
	Compiling Maria for Debugging
	Reporting Bugs

	Examples
	Dining Philosophers (dining.pn)
	Distributed Database Management (dbm.pn)

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	Index

