# T-79.5501 Cryptology Spring 2009 Homework 6 

Tutor: Joo Y. Cho<br>joo.cho@tkk.fi

19th March 2009

Q1. Let us consider the Boolean function $t\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{1} x_{3}$.

1. Compute the values of the difference distribution table $N_{D}\left(a^{\prime}, b^{\prime}\right)$ of the function $t$, for $a^{\prime}=010$ and $a^{\prime}=111$ and $b^{\prime} \in\{0,1\}$.
2. A linear structure of a Boolean function $f$ of three variables is defined as a vector $w=\left(w_{1}, w_{2}, w_{3}\right) \neq(0,0,0)$ such that $f(x \oplus w) \oplus f(x)$ is constant. Show that $t$ has exactly one linear structure.
3. Show that $t$ preserves complementation, that is, if each input bit is complemented then the output is complemented.

A1-a). Let $x=\left(x_{0}, x_{1}, x_{2}\right), a_{1}^{\prime}=(0,1,0), a_{2}^{\prime}=(1,1,1)$,
$b_{1}^{\prime}=t(x) \oplus t\left(x \oplus a_{1}^{\prime}\right), b_{2}^{\prime}=t(x) \oplus t\left(x \oplus a_{2}^{\prime}\right)$. We get the table:

| $x_{0}$ | $x_{1}$ | $x_{2}$ | $t(x)$ | $t\left(x \oplus a_{1}^{\prime}\right)$ | $t\left(x \oplus a_{2}^{\prime}\right)$ | $b_{1}^{\prime}$ | $b_{2}^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |

Hence, the difference distribution table $N_{D}\left(a^{\prime}, b^{\prime}\right)$ has the following values for $a^{\prime}=(0,1,0), a^{\prime}=(1,1,1)$, and $b^{\prime}=\{0,1\}$ :

| $a^{\prime} \backslash b^{\prime}$ | 0 | 1 |
| :---: | :---: | :---: |
| 010 | 4 | 4 |
| 111 | 0 | 8 |

A1-b). From the ANF of $t$ we get that

$$
\begin{aligned}
t(x \oplus w)= & \left(x_{0} \oplus w_{0}\right)\left(x_{1} \oplus w_{1}\right) \oplus\left(x_{0} \oplus w_{0}\right)\left(x_{2} \oplus w_{2}\right) \\
& \oplus\left(x_{1} \oplus w_{1}\right)\left(x_{2} \oplus w_{2}\right) \\
= & t(x) \oplus\left(w_{1} \oplus w_{2}\right) x_{0} \oplus\left(w_{0} \oplus w_{2}\right) x_{1} \oplus\left(w_{0} \oplus w_{1}\right) x_{2} \oplus t(w)
\end{aligned}
$$

If we want $t(x \oplus w) \oplus t(x)$ to be constant for every $x$ the coefficients of $x_{0}, x_{1}$ and $x_{2}$ in the equation above must be zero:

$$
\begin{aligned}
& w_{1} \oplus w_{2}=0 \\
& w_{0} \oplus w_{2}=0 \\
& w_{0} \oplus w_{1}=0
\end{aligned}
$$

or, what is the same, $w_{0}=w_{1}=w_{2}$. Since we assumed that $w \neq 0$ we must have $w=(1,1,1)$ and this solution is unique.

A1-c). The complement of a bit $b$ is the bit $b \oplus 1$. From A1-a), we get $t(x) \oplus(x \oplus(1,1,1))=1$ for all $x=\left(x_{1}, x_{2}, x_{3}\right)$. Hence, $t(x \oplus(1,1,1))=t(x) \oplus 1$ for all $x=\left(x_{1}, x_{2}, x_{3}\right)$. This proves the claim.

Q2. Let $\pi_{S}$ be an $m$-bit to $n$-bit S-box and

$$
N_{L}(a, b)=2^{m-1}+\frac{1}{2} \sum_{x \in\{0,1\}^{m}}(-1)^{a \cdot x \oplus b \cdot \pi_{S}(x)}
$$

1. Problem(Stinson): Show that

$$
\sum_{a=0}^{2^{m}-1} N_{L}(a, b)=2^{2 m-1} \pm 2^{m-1}
$$

for all $n$-bit mask values $b$, where the sum is taken over all $m$-bit mask values $a$ (enumerated from 0 to $2^{m}-1$ ).
2. Check the result in (a) for the linear approximation table in Fig. 3.2 of the textbook.

A2-a). Using the expression of $N_{L}(a, b)$ we get

$$
\begin{aligned}
\sum_{a=0}^{2^{m}-1} N_{L}(a, b) & =\sum_{a \in\{0,1\}^{m}}\left(2^{m-1}+\frac{1}{2} \sum_{x \in\{0,1\}^{m}}(-1)^{a \cdot x \oplus b \cdot \pi_{S}(x)}\right) \\
& =2^{m} 2^{m-1}+\frac{1}{2} \sum_{a \in\{0,1\}^{m}} \sum_{x \in\{0,1\}^{m}}(-1)^{a \cdot x}(-1)^{b \cdot \pi_{S}(x)} \\
& =2^{2 m-1}+\frac{1}{2} \sum_{x \in\{0,1\}^{m}}(-1)^{b \cdot \pi_{S}(x)} \sum_{a \in\{0,1\}^{m}}(-1)^{a \cdot x} \\
& =2^{2 m-1}+2^{m-1}(-1)^{b \cdot \pi s(0)} .
\end{aligned}
$$

The last equality follows from the equality

$$
\sum_{y \in\{0,1\}^{m}}(-1)^{y \cdot x}= \begin{cases}2^{n}, & x=0 \\ 0, & x \neq 0\end{cases}
$$

given in Lecture 6 and Homework 5. Now $(-1)^{b \cdot \pi_{S}(0)}= \pm 1$ from which the claim follows.

A2-b). Since $m=4$, we check $\sum_{a=0}^{15} N_{L}(a, b)=128 \pm 8$ for any $b$.

|  | 0 | b |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| 0 | 16 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 1 | 8 | 8 | 6 | 6 | 8 | 8 | 6 | 14 | 10 | 10 | 8 | 8 | 10 | 10 | 8 | 8 |
| 2 | 8 | 8 | 6 | 6 | 8 | 8 | 6 | 6 | 8 | 8 | 10 | 10 | 8 | 8 | 2 | 10 |
| 3 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 2 | 6 | 6 | 10 | 10 | 6 | 6 |
| 4 | 8 | 10 | 8 | 6 | 6 | 4 | 6 | 8 | 8 | 6 | 8 | 10 | 10 | 4 | 10 | 8 |
| 5 | 8 | 6 | 6 | 8 | 6 | 8 | 12 | 10 | 6 | 8 | 4 | 10 | 8 | 6 | 6 | 8 |
| 6 | 8 | 10 | 6 | 12 | 10 | 8 | 8 | 10 | 8 | 6 | 10 | 12 | 6 | 8 | 8 | 6 |
| 7 | 8 | 6 | 8 | 10 | 10 | 4 | 10 | 8 | 6 | 8 | 10 | 8 | 12 | 10 | 8 | 10 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 6 | 10 | 10 | 6 | 10 | 6 | 6 | 2 |
| 9 | 8 | 8 | 6 | 6 | 8 | 8 | 6 | 6 | 4 | 8 | 6 | 10 | 8 | 12 | 10 | 6 |
| A | 8 | 12 | 6 | 10 | 4 | 8 | 10 | 6 | 10 | 10 | 8 | 8 | 10 | 10 | 8 | 8 |
| B | 8 | 12 | 8 | 4 | 12 | 8 | 12 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| C | 8 | 6 | 12 | 6 | 6 | 8 | 10 | 8 | 10 | 8 | 10 | 12 | 8 | 10 | 8 | 6 |
| D | 8 | 10 | 10 | 8 | 6 | 12 | 8 | 10 | 4 | 6 | 10 | 8 | 10 | 8 | 8 | 10 |
| E | 8 | 10 | 10 | 8 | 6 | 4 | 8 | 10 | 6 | 8 | 8 | 6 | 4 | 10 | 6 | 8 |
| F | 8 | 6 | 4 | 6 | 6 | 8 | 10 | 8 | 8 | 6 | 12 | 6 | 6 | 8 | 10 | 8 |

## FIGURE 3.2

Linear approximation table: values of $N_{L}(a, b)$

In this way, each of the 256 random variables is named by a (unique) pair of hexadecimal digits, representing the input and output sum.

### 3.3.3 A Linear A

Linear cryptanalysi that can be used to last round). We wi The diagram in Fig use. This diagram c random variables $w$ S-boxes are the one boxes in the approx

This approximat

- In $S_{2}^{1}$, the
- In $S_{2}^{2}$, the
- In $S_{2}^{3}$, the
- In $S_{4}^{3}$, the

The four random v value. Further, we "intermediate" ranc

If we make the then we can comp 3.1). (The random cannot provide a $n$ the approximation fore hypothesize th

Q3. Let $\mathbb{F}$ be a finite field with $q$ elements and $\beta$ a primitive element in $\mathbb{F}$. Consider the function $f: \mathbf{Z}_{q-1}=\{0,1, \ldots, q-2\} \rightarrow \mathbb{F}^{*}$, $f(x)=\beta^{x}$.

1. Show that $f$ is a bijection.
2. For $a^{\prime} \in \mathbf{Z}_{q-1}$ and $b^{\prime} \in \mathbb{F}$, let us denote

$$
N_{D}\left(a^{\prime}, b^{\prime}\right)=\#\left\{x \in \mathbf{Z}_{q-1} \mid f\left(\left(x+a^{\prime}\right) \bmod q-1\right)-f(x)=b^{\prime}\right\}
$$

Show that $N_{D}\left(a^{\prime}, b^{\prime}\right)=1$, for all $a^{\prime} \neq 0$ and $b^{\prime} \neq 0$.

A3.

1. As $\beta$ is primitive, we know $\beta^{0} \neq \beta^{1} \neq \ldots \neq \beta^{q-2}$ and $f$ is clearly one-to-one (injective). Also ord $(\beta)=\# \mathbb{F}^{\times}=\# \mathbf{Z}_{q-1}$ : the domain and codomain have the same cardinality, and it follows that $f$ is in fact bijective.
2. Primitive $\beta$ implies $\operatorname{ord}(\beta)=q-1$ so we write equivalently

$$
\begin{aligned}
N_{D}\left(a^{\prime}, b^{\prime}\right) & =\#\left\{x \in \mathbf{Z}_{q-1} \mid \beta^{x+a^{\prime}}-\beta^{x}=b^{\prime}\right\} \\
& =\#\left\{x \in \mathbf{Z}_{q-1} \mid \beta^{x}=b^{\prime}\left(\beta^{a^{\prime}}-1\right)^{-1}\right\} \\
& =\#\left\{x \in \mathbf{Z}_{q-1} \mid \beta^{x}=c\right\} \text { where } c=b^{\prime}\left(\beta^{a^{\prime}}-1\right)^{-1} \in \mathbb{F}^{\times}
\end{aligned}
$$

For all $a^{\prime} \neq 0$ and $b^{\prime} \neq 0$, we can see that $c$ is distinct. Hence, the exact number of $x$ such that $\beta^{x}=c$ holds is one. That is, given the stated restraints $N_{D}\left(a^{\prime}, b^{\prime}\right)=1$ holds.

Q4. Bob is using the RSA cryptosystem and his modulus is $n=p q=67 \cdot 41$. Show that if the plaintext is 2009 then the ciphertext is equal to 2009.

A4. The task is to show $2009^{e} \equiv 2009 \bmod 67 \cdot 41$ for any public exponent $e$. First we observe $e$ must be an odd number as $\operatorname{gcd}(e, 66 \cdot 40)=1$. Then we can obtain $2009^{e} \bmod p q$ using the chinese remainder theorem:

$$
\begin{aligned}
2009^{e} & \equiv(-1)^{e}=-1 \bmod 67 \\
2009^{e} & \equiv 0^{e}=0 \bmod 41
\end{aligned}
$$

Since $41^{-1} \equiv 18 \bmod 67$, we get
$2009^{e} \bmod 67 \cdot 41=-1 \cdot 18 \cdot 41=-738 \equiv 2009 \bmod 67 \cdot 41$.
Hence, the claim holds.

Q5. (Stinson 5.14) The aim is to prove that the RSA Cryptosystem is not secure against a chosen ciphertext attack.

1. First, show that the encryption operation is multiplicative, that is, $e_{K}\left(x_{1} x_{2}\right)=e_{K}\left(x_{1}\right) e_{K}\left(x_{2}\right)$, for any two plaintexts $x_{1}$ and $x_{2}$.
2. Next, use the multiplicative property to construct an example about how to decrypt a given ciphertext $y$ by obtaining the decryption $\hat{x}$ of a different (but related) ciphertext $\hat{y}$.

A5.

1. RSA encryption is the function $e_{K}(m)=m^{K} \bmod n$. For $m=m_{1} m_{2}$ we have $e_{K}\left(m_{1} m_{2}\right)=\left(m_{1} m_{2}\right)^{K}=m_{1}^{K} m_{2}^{K}=e_{K}\left(m_{1}\right) e_{K}\left(m_{2}\right)$.
2. We want to obtain the decryption of ciphertext $y=x^{e} \bmod n$. We choose ciphertext $\hat{y}=y s^{e} \bmod n$ with a random $s \in \mathbf{Z}_{n}$. Note $e$ is public. We then ask for the decryption of $\hat{y}$ and obtain $\hat{y}^{d} \equiv\left(y s^{e}\right)^{d} \equiv x^{e d} s^{e d} \equiv x s(\bmod n)$ and we obtain the plaintext $x$ as $x s s^{-1} \equiv x(\bmod n)$.

Q6.

1. What are the quadratic residues modulo 5 ?
2. What are the quadratic residues modulo 7 ?
3. What are the quadratic residues modulo 35 ?

Note that $\# Q R_{p}=\# Q N R_{p}=(p-1) / 2$ for $p>2$.

A6.

1. Since $1^{2}=1,2^{2}=4,3^{2} \equiv 4,4^{2} \equiv 1$, we get $Q R_{5}=\{1,4\}$.
2. Since $1^{2}=1,2^{2}=4,3^{2} \equiv 2,4^{2} \equiv 2,5^{2} \equiv 4,6^{2} \equiv 1$, we get $Q R_{7}=\{1,2,4\}$.
3. Suppose there exists $x$ such that for some $a$ and $b$

$$
x^{2}=a \bmod 5, \text { and } x^{2}=b \bmod 7
$$

By CRT, we get

$$
x^{2}=a \cdot 7 \cdot u+b \cdot 5 \cdot v=21 a+15 b \bmod 35
$$

since $u=7^{-1}=3 \bmod 5$ and $v=5^{-1}=3 \bmod 7$. Therefore, for $a \in Q R_{5}$ and $b \in Q R_{7}$, we have
$(21 a+15 b) \bmod 35 \in Q R_{35}$. Note that either $a$ or $b$ can be zero (but not both). Using (a) and (b), we get

$$
Q R_{35}=\{1,4,9,11,14,15,16,21,25,29,30\}
$$

Q7.

1. Evaluate the Jacobi symbol

$$
\left(\frac{801}{2005}\right)
$$

You should not do any factoring other than dividing out powers of 2.
2. Let $n$ be a composite integer and $a$ an integer such that $1<a<n$. Then $n$ is called Euler pseudoprime to the base $a$ if

$$
\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}(\bmod n)
$$

Show that 2005 is an Euler pseudoprime to the base 801.

A7-a). We iteratively apply the rules from the textbook.

$$
\begin{aligned}
\left(\frac{801}{2005}\right) & =\left(\frac{2005}{801}\right)=\left(\frac{403}{801}\right) \text { by property } 4 \text { then } 1 \\
& =\left(\frac{801}{403}\right)=\left(\frac{398}{403}\right) \text { by property } 4 \text { then } 1 \\
& =\left(\frac{2}{403}\right)\left(\frac{199}{403}\right)=-\left(\frac{199}{403}\right) \text { by property } 3 \text { then } 2 \\
& =\left(\frac{403}{199}\right)=\left(\frac{5}{199}\right) \text { by property } 4 \text { then } 1 \\
& =\left(\frac{199}{5}\right)=\left(\frac{4}{5}\right) \text { by property } 4 \text { then } 1 \\
& =\left(\frac{2}{5}\right)\left(\frac{2}{5}\right)=(-1)(-1)=1 \text { by property } 3 \text { then } 2
\end{aligned}
$$

A7-b). Let us set $n=2005$ and $a=801$. From A7-(a), we know that $\left(\frac{a}{n}\right)=1$. Hence, we show $a^{\frac{n-1}{2}} \bmod n=801^{1002}=1 \bmod 2005$ by using CRT as above (Problem 1) here.

$$
\begin{aligned}
& 801^{1002} \equiv 1^{1002} \equiv 1 \bmod 5 \\
& 801^{1002} \equiv(-1)^{1002} \equiv 1 \bmod 401
\end{aligned}
$$

BY the extended Euclidean algorithm, we get $401^{-1} \equiv 1 \bmod 5$ and $5^{-1} \equiv 321 \bmod 401$. Hence,

$$
801^{1002}=1 \cdot 401 \cdot 1+1 \cdot 5 \cdot 321 \equiv 1 \quad \bmod 2005
$$

Therefore, $n=2005$ is a pseudoprime to the base $a=801$.

