T-79.5501 Cryptology Homework 6

Tutor : Joo Y. Cho joo.cho@tkk.fi

Spring 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

19th March 2009

Q1. Let us consider the Boolean function $t(x_1, x_2, x_3) = x_1x_2 \oplus x_2x_3 \oplus x_1x_3$.

- 1. Compute the values of the difference distribution table $N_D(a', b')$ of the function *t*, for a' = 010 and a' = 111 and $b' \in \{0, 1\}$.
- 2. A *linear structure* of a Boolean function f of three variables is defined as a vector $w = (w_1, w_2, w_3) \neq (0, 0, 0)$ such that $f(x \oplus w) \oplus f(x)$ is constant. Show that t has exactly one linear structure.
- 3. Show that *t* preserves complementation, that is, if each input bit is complemented then the output is complemented.

A1-a). Let $x = (x_0, x_1, x_2), a'_1 = (0, 1, 0), a'_2 = (1, 1, 1),$	
$b'_1 = t(x) \oplus t(x \oplus a'_1), b'_2 = t(x) \oplus t(x \oplus a'_2)$. We get the table:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0 1 1 1 0 0 1 1	
Hence, the difference distribution table $N_D(a', b')$ has the following the following tables of	wing
values for $a' = (0, 1, 0), a' = (1, 1, 1)$, and $b' = \{0, 1\}$:	
$a' \setminus b' \mid 0 \mid 1$	
010 4 4	
111 0 8	

・ロト・日本・日本・日本・日本・日本

A1-b). From the ANF of *t* we get that

$$\begin{aligned} t(x \oplus w) &= (x_0 \oplus w_0)(x_1 \oplus w_1) \oplus (x_0 \oplus w_0)(x_2 \oplus w_2) \\ &\oplus (x_1 \oplus w_1)(x_2 \oplus w_2) \\ &= t(x) \oplus (w_1 \oplus w_2)x_0 \oplus (w_0 \oplus w_2)x_1 \oplus (w_0 \oplus w_1)x_2 \oplus t(w). \end{aligned}$$

If we want $t(x \oplus w) \oplus t(x)$ to be constant for every *x* the coefficients of x_0, x_1 and x_2 in the equation above must be zero:

$$w_1 \oplus w_2 = 0$$

$$w_0 \oplus w_2 = 0$$

$$w_0 \oplus w_1 = 0$$

or, what is the same, $w_0 = w_1 = w_2$. Since we assumed that $w \neq 0$ we must have w = (1, 1, 1) and this solution is unique.

A1-c). The complement of a bit *b* is the bit $b \oplus 1$. From A1-a), we get $t(x) \oplus (x \oplus (1, 1, 1)) = 1$ for all $x = (x_1, x_2, x_3)$. Hence, $t(x \oplus (1, 1, 1)) = t(x) \oplus 1$ for all $x = (x_1, x_2, x_3)$. This proves the claim.

Q2. Let π_S be an *m*-bit to *n*-bit S-box and

$$N_L(a,b) = 2^{m-1} + rac{1}{2} \sum_{x \in \{0,1\}^m} (-1)^{a \cdot x \oplus b \cdot \pi_S(x)}.$$

1. Problem(Stinson): Show that

$$\sum_{a=0}^{2^m-1} N_L(a,b) = 2^{2m-1} \pm 2^{m-1},$$

for all *n*-bit mask values *b*, where the sum is taken over all *m*-bit mask values *a* (enumerated from 0 to $2^m - 1$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Check the result in (a) for the linear approximation table in Fig. 3.2 of the textbook.

A2-a). Using the expression of $N_L(a, b)$ we get

$$\sum_{a=0}^{2^{m}-1} N_{L}(a,b) = \sum_{a \in \{0,1\}^{m}} \left(2^{m-1} + \frac{1}{2} \sum_{x \in \{0,1\}^{m}} (-1)^{a \cdot x \oplus b \cdot \pi_{S}(x)} \right)$$

$$= 2^{m} 2^{m-1} + \frac{1}{2} \sum_{a \in \{0,1\}^{m}} \sum_{x \in \{0,1\}^{m}} (-1)^{a \cdot x} (-1)^{b \cdot \pi_{S}(x)}$$

$$= 2^{2m-1} + \frac{1}{2} \sum_{x \in \{0,1\}^{m}} (-1)^{b \cdot \pi_{S}(x)} \sum_{a \in \{0,1\}^{m}} (-1)^{a \cdot x}$$

$$= 2^{2m-1} + 2^{m-1} (-1)^{b \cdot \pi_{S}(0)}.$$

The last equality follows from the equality

y

$$\sum_{\in \{0,1\}^m} (-1)^{y \cdot x} = \begin{cases} 2^n, & x = 0\\ 0, & x \neq 0 \end{cases}$$

given in Lecture 6 and Homework 5. Now $(-1)^{b \cdot \pi_S(0)} = \pm 1$ from which the claim follows.

A2-b). Since m = 4, we check $\sum_{a=0}^{15} N_L(a, b) = 128 \pm 8$ for any b.

84						. 1	Block	Ciph	ners an	ad the	Adva	anced	Encr	vptior	n Star	dard	Linear Cryptanal
÷.								-1						/ F · · ·			
_	<u>.</u>					1000	÷	ł	b				2				3.3.3 A Line
a	0	1	2	3	4	5	6	7	8	9	A	в	C	D	Е	F	Linear cryptan
0	16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	that can be use
1	8	8	6	6	8	8	6	14	10	10	8	8	10	10	8	8	last round). W
2	8	8	6	6	8	8	6	6	8	8	10	10	8	8	2	10	The diagram is
3	8	8	8	8	8	8	8	8	10	2	6	6	10	10	6	6	use. This diag
4	8	10	8	6	6	4	6	8	8	6	8	10	10	4	10	8	random variab
5	8	6	6	8	6	8	12	10	6	8	4	10	8	6	6	8	S-boxes are th
6	8	10	6	12	10	8	8	10	8	6	10	12	6	8	8	6	boxes in the ap
7	8	6	8	10	10	4	10	8	6	8	10	8	12	10	8	10	This approx
8	8	8	8	8	8	8	8	8	6	10	10	6	10	6	6	2	• In S ¹ ₂
9	8	8	6	6	8	8	6	6	4	8	6	10	8	12	10	6	
A	8	12	6	10	4	8	10	6	10	10	8	8	10	10	8	8	• In S ₂ ²
B	8	12	8	4	12	8	12	8	8	8	8	8	8	8	8	8	 In S³₂
C	8	6	12	6	6	8	10	8	10	8	10	12	8	10 8	8	6	 In S³₄
D	8				6		8		4	6			-				-
E	8	10	10	8	6	4	8	10	6	8	8	6	4	10 8	6 10	8	The four rand
r	0	0	4	0	0		10		0	0	12	0	0	0	10	0	value. Furthe

FIGURE 3.2

Linear approximation table: values of $N_L(a, b)$

In this way, each of the 256 random variables is named by a (unique) pair of hexadecimal digits, representing the input and output sum.

"intermediate" ran

If we make the then we can comp 3.1). (The random cannot provide a n the approximation fore hypothesize th Q3. Let \mathbb{F} be a finite field with q elements and β a primitive element in \mathbb{F} . Consider the function $f : \mathbb{Z}_{q-1} = \{0, 1, \dots, q-2\} \to \mathbb{F}^*$, $f(x) = \beta^x$.

- 1. Show that f is a bijection.
- 2. For $a' \in \mathbb{Z}_{q-1}$ and $b' \in \mathbb{F}$, let us denote

$$N_D(a',b') = \#\{x \in \mathbb{Z}_{q-1} | f((x+a') \mod q-1) - f(x) = b'\}.$$

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

Show that $N_D(a', b') = 1$, for all $a' \neq 0$ and $b' \neq 0$.

A3.

- As β is primitive, we know β⁰ ≠ β¹ ≠ ... ≠ β^{q-2} and f is clearly one-to-one (injective). Also ord(β) = #F[×] = #Z_{q-1}: the domain and codomain have the same cardinality, and it follows that f is in fact bijective.
- 2. Primitive β implies $\operatorname{ord}(\beta) = q 1$ so we write equivalently

$$N_D(a',b') = \#\{x \in \mathbf{Z}_{q-1} | \beta^{x+a'} - \beta^x = b'\}$$

= $\#\{x \in \mathbf{Z}_{q-1} | \beta^x = b'(\beta^{a'} - 1)^{-1}\}$
= $\#\{x \in \mathbf{Z}_{q-1} | \beta^x = c\}$ where $c = b'(\beta^{a'} - 1)^{-1} \in \mathbb{F}^{\times}$

For all $a' \neq 0$ and $b' \neq 0$, we can see that *c* is distinct. Hence, the exact number of *x* such that $\beta^x = c$ holds is one. That is, given the stated restraints $N_D(a', b') = 1$ holds.

Q4. Bob is using the RSA cryptosystem and his modulus is $n = pq = 67 \cdot 41$. Show that if the plaintext is 2009 then the ciphertext is equal to 2009.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

A4. The task is to show $2009^e \equiv 2009 \mod 67 \cdot 41$ for any public exponent *e*. First we observe *e* must be an odd number as $gcd(e, 66 \cdot 40) = 1$. Then we can obtain $2009^e \mod pq$ using the chinese remainder theorem:

$$2009^{e} \equiv (-1)^{e} = -1 \mod 67$$
$$2009^{e} \equiv 0^{e} = 0 \mod 41$$

Since $41^{-1} \equiv 18 \mod 67$, we get

 $2009^e \mod 67 \cdot 41 = -1 \cdot 18 \cdot 41 = -738 \equiv 2009 \mod 67 \cdot 41.$

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

Hence, the claim holds.

Q5. (Stinson 5.14) The aim is to prove that the RSA Cryptosystem is not secure against a chosen ciphertext attack.

1. First, show that the encryption operation is multiplicative, that is, $e_K(x_1x_2) = e_K(x_1)e_K(x_2)$, for any two plaintexts x_1 and x_2 .

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

2. Next, use the multiplicative property to construct an example about how to decrypt a given ciphertext y by obtaining the decryption \hat{x} of a different (but related) ciphertext \hat{y} .

A5.

- 1. RSA encryption is the function $e_K(m) = m^K \mod n$. For $m = m_1m_2$ we have $e_K(m_1m_2) = (m_1m_2)^K = m_1^K m_2^K = e_K(m_1)e_K(m_2)$.
- 2. We want to obtain the decryption of ciphertext $y = x^e \mod n$. We choose ciphertext $\hat{y} = ys^e \mod n$ with a random $s \in \mathbb{Z}_n$. Note *e* is public. We then ask for the decryption of \hat{y} and obtain $\hat{y}^d \equiv (ys^e)^d \equiv x^{ed}s^{ed} \equiv xs \pmod{n}$ and we obtain the plaintext *x* as $xss^{-1} \equiv x \pmod{n}$.

Q6.

- 1. What are the quadratic residues modulo 5?
- 2. What are the quadratic residues modulo 7?
- 3. What are the quadratic residues modulo 35?

Note that $\#QR_p = \#QNR_p = (p-1)/2$ for p > 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A6.

- 1. Since $1^2 = 1, 2^2 = 4, 3^2 \equiv 4, 4^2 \equiv 1$, we get $QR_5 = \{1, 4\}$.
- 2. Since $1^2 = 1, 2^2 = 4, 3^2 \equiv 2, 4^2 \equiv 2, 5^2 \equiv 4, 6^2 \equiv 1$, we get $QR_7 = \{1, 2, 4\}.$
- 3. Suppose there exists x such that for some a and b

$$x^2 = a \mod 5$$
, and $x^2 = b \mod 7$.

By CRT, we get

$$x^2 = a \cdot 7 \cdot u + b \cdot 5 \cdot v = 21a + 15b \mod 35$$

since $u = 7^{-1} = 3 \mod 5$ and $v = 5^{-1} = 3 \mod 7$. Therefore, for $a \in QR_5$ and $b \in QR_7$, we have $(21a + 15b) \mod 35 \in QR_{35}$. Note that either *a* or *b* can be zero (but not both). Using (a) and (b), we get

$$QR_{35} = \{1, 4, 9, 11, 14, 15, 16, 21, 25, 29, 30\}$$

Q7.

1. Evaluate the Jacobi symbol

$$\left(\frac{801}{2005}\right)$$

You should not do any factoring other than dividing out powers of 2.

2. Let *n* be a composite integer and *a* an integer such that 1 < a < n. Then *n* is called *Euler pseudoprime* to the base *a* if

$$\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \,(\bmod n) \,.$$

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

Show that 2005 is an Euler pseudoprime to the base 801.

A7-a). We iteratively apply the rules from the textbook.

$$\left(\frac{801}{2005}\right) = \left(\frac{2005}{801}\right) = \left(\frac{403}{801}\right) \text{ by property 4 then 1}$$
$$= \left(\frac{801}{403}\right) = \left(\frac{398}{403}\right) \text{ by property 4 then 1}$$
$$= \left(\frac{2}{403}\right) \left(\frac{199}{403}\right) = -\left(\frac{199}{403}\right) \text{ by property 3 then 2}$$
$$= \left(\frac{403}{199}\right) = \left(\frac{5}{199}\right) \text{ by property 4 then 1}$$
$$= \left(\frac{199}{5}\right) = \left(\frac{4}{5}\right) \text{ by property 4 then 1}$$
$$= \left(\frac{2}{5}\right) \left(\frac{2}{5}\right) = (-1)(-1) = 1 \text{ by property 3 then 2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A7-b). Let us set n = 2005 and a = 801. From A7-(a), we know that $\left(\frac{a}{n}\right) = 1$. Hence, we show $a^{\frac{n-1}{2}} \mod n = 801^{1002} = 1 \mod 2005$ by using CRT as above (Problem 1) here.

$$801^{1002} \equiv 1^{1002} \equiv 1 \mod 5$$
$$801^{1002} \equiv (-1)^{1002} \equiv 1 \mod 401$$

BY the extended Euclidean algorithm, we get $401^{-1} \equiv 1 \mod 5$ and $5^{-1} \equiv 321 \mod 401$. Hence,

 $801^{1002} = 1 \cdot 401 \cdot 1 + 1 \cdot 5 \cdot 321 \equiv 1 \mod 2005.$

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

Therefore, n = 2005 is a pseudoprime to the base a = 801.