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Q1. Using the Berlekamp-Massey Algorithm find an LFSR that
generates the sequence:
0 0 0 1 1 1 0 0 .
Compare your solution with the polynomial found in HW4.

Lk+1 = max{Lk, k + 1− Lk}

f k+1(x) = xLk+1−Lk f k(x) + xLk+1−k+m−Lm f m(x)



Running the Berlekamp-Massey algorithm we get:
k zk−1 Lk f (k) observingzk

2 0 0 1
3 0 0 1 z3 = 1 (the first nonzero term), set

L4 = 4 andf (4)(x) = x4 + 1
4 1 4 x4 + 1 does not work forz4 = 1, change:

L5 = max{4, 5−4} = 4 andf (5) =
x0(x4 + 1) + x4−4+3 · 1

5 1 4 x4 + x3 + 1 OK for z5 = 1, no changes
6 1 4 x4 + x3 + 1 does not work forz6 = 0, change:

L7 = max{4, 7−4} = 4 andf (7) =
x0(x4 + x3 + 1) + x4−6+3 · 1

7 0 4 x4 + x3 + x + 1 OK for z7 = 0, no changes
8 0 4 x4 + x3 + x + 1 no more sequence



Q2. Consider the 4-bit to 4-bit permutationπS defined as follows:
0 1 2 3 4 5 6 7 8 9 A B C D E F
3 F 0 6 A 1 D 8 9 4 5 B C 7 2 E

(This is the fourth row of the DES S-boxS4.) Denote by
(x1, x2, x3, x4) and by(y1, y2, y3, y4) the input bits and output bits
respectively. Find the output bityj for which the bias of
x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ yj is the largest.



x1 x2 x3 x4 S1 y1 y2 y3 y4 x1 ⊕ x2 ⊕ x3 ⊕ x4

0 0 0 0 3 0 0 1 1 0
0 0 0 1 15 1 1 1 1 1
0 0 1 0 0 0 0 0 0 1
0 0 1 1 6 0 1 1 0 0
0 1 0 0 10 1 0 1 0 1
0 1 0 1 1 0 0 0 1 0
0 1 1 0 13 1 1 0 1 0
0 1 1 1 8 1 0 0 0 1
1 0 0 0 9 1 0 0 1 1
1 0 0 1 4 0 1 0 0 0
1 0 1 0 5 0 1 0 1 0
1 0 1 1 11 1 0 1 1 1
1 1 0 0 12 1 1 0 0 0
1 1 0 1 7 0 1 1 1 1
1 1 1 0 2 0 0 1 0 1
1 1 1 1 14 1 1 1 0 0
numberni 10 4 10 8
bias value 1

8 −1
4

1
8 0



Q3. Suppose thatX1 andX2 are independent random variables which
take on values from the set{0, 1}. We useεi to denote the bias ofXi,
εi = Pr[Xi = 0] − 1

2, for i = 1, 2. Prove that the random variablesX1

andX1 ⊕ X2 are independent if and only ifε2 = 0 or ε1 = ±1
2.



A3. Claim: The random variablesX1 andX1 ⊕ X2 are independent if
and only ifε2 = 0 or ε1 = ±1

2.
Suppose thatX1 andX2 are independent random variables. Letε12

denote the bias ofX1 ⊕ X2 andε112 the bias ofX1 ⊕ (X1 ⊕ X2).
[“⇒”]
We prove thatε2 = 0 or ε1 = ±1

2 if the random variablesX1 and
X1 ⊕ X2 are independent. By the Piling-Up Lemma, we have
ε12 = 2ε1ε2 andε112 = 2ε1ε12. Hence,

ε112 = 2ε12ε1ε2 = 4ε2
1ε2.

SinceX1 ⊕ (X1 ⊕ X2) = X2, we haveε112 = ε2, and thus

4ε2
1ε2 = ε2.

This equation holds if and only if eitherε2 = 0 or ε1 = ±1
2.



[⇐]
We prove thatX1 andX1 ⊕ X2 are independent ifε2 = 0 or ε1 = ±1

2.
The proof makes use of the converse of the Piling-Up Lemma. Since
X1 andX2 are independent random variables, we have

2ε1ε12 = 4ε2
1ε2 =

{

0 if ε2 = 0,

ε2 if ε1 = ±1
2.

In other words, 2ε1ε12 = ε2 if ε2 = 0 or ε1 = ±1
2. Becauseε112 = ε2,

we getε112 = 2ε1ε12. By the converse of the Piling-Up Lemma,X1

andX1 ⊕ X2 are independent.



Q4. Suppose thatw ∈ {0, 1}n. Show that

∑

x∈{0,1}n

(−1)w·x =

{
0, for w 6= 0
2n, for w = 0

Hint. Determine the number ofx ∈ {0, 1}n such thatw · x = 0.



If w = 0, we get

∑

x∈{0,1}n

(−1)w·x =
∑

x∈{0,1}n

1 = 2n.

If w 6= 0, we get

∑

x∈{0,1}n

(−1)w·x =
∑

x : w·x=0

1 +
∑

x : w·x=1

(−1) = 2n−1 − 2n−1 = 0.

This is true because there is an equal amount ofx ∈ {0, 1}n that
satisfyw · x = 0 andw · x = 1 for w 6= 0.



To prove the latter case more strictly, we use induction on the number
of coordinates inw = (w1, . . . , wn) andx = (x1, . . . , xn). If n = 1, we
havew = 1 6= 0, and it follows that

∑

x∈{0,1}

(−1)w·x = (−1)0 + (−1)1 = 0.

Hence, the claim is true forn = 1. Suppose that the claim is true for
n = k ≥ 1. We show that the claim is true forn = k + 1. Denote
w′ = (w1, . . . , wk) andx′ = (x1, . . . , xk). Dividing the sum into
separate parts based on whetherxk+1 = 0 or xk+1 = 1, we get

∑

x∈{0,1}k+1

(−1)w·x =
∑

x′∈{0,1}k

(−1)w′·x′⊕wk+1·0 +
∑

x′∈{0,1}k

(−1)w′·x′⊕wk+1·1

=
∑

x′∈{0,1}k

(−1)w′·x′

︸ ︷︷ ︸

=0

+(−1)wk+1
∑

x′∈{0,1}k

(−1)w′·x′

︸ ︷︷ ︸

=0

= 0.

This proves the claim forn = k + 1.



Q5. Consider the example linear attack in the textbook, Section 3.3.3.
For S2

2 replace the random variableT2 by U2
6 ⊕ V2

8. Then in the third
round the random variableT3 is not needed. What is the final random
variable corresponding to Equation (3.3) and what is its bias?





A5.

• T′
2 = U2

6 ⊕ V2
8

• T3 is not needed. Hence, the arrows throughS3
2 are removed.

• U2
6 andU4

14 are removed.

• The new final variable is

X5 ⊕ X7 ⊕ X8 ⊕ U4
8 ⊕ U4

16.

• The bias of the new variableT′
2 : in the table of the S-box

(Figure 3.2)a = 0100= 4 andb = 0001= 1. Hence,
NL(a, b) = NL(4, 1) = 10. The biasε′2 = 10/16− 1/2 = 1/8.

• The biases of approximation is
23−1ε1ε

′
2ε4 = 4(1/4)(1/8)(−1/4) = −1/32.



Q6.
Consider the finite fieldGF(23) = Z2[x]/(f (x)) with polynomial
f (x) = x3 + x + 1 (see Stinson 6.4).

1. Compute the look-up table for the inversion functiong : z 7→ z−1

in GF(23), where we setg(0) = 0.

2. Compute the algebraic normal form of the Boolean function
defined by the least significant bit of the inversion function.



A6-a. The multiplication table of the finite field
GF(23) = Z2[x]/(x3 + x + 1) is given on page 253 of the textbook.
Using it we can, given a nonzero element, find another element such
that the product is equal to 1 = 001. We get:

z z−1

000 000
001 001
010 101
011 110
100 111
101 010
110 011
111 100



A6-a. Another approach to create this function table is to express the
seven elements of the multiplicative group ofZ2[x]/(x3 + x + 1) as
powers of the elementx = 010:

k xk

0 x0 = 001
1 x = 010
2 x2 = 100
3 x3 = 011
4 x4 = 110
5 x5 = 111
6 x6 = 101

Theg(z) = g(xk) = x−k = x7−k, for all k = 0, 1, . . . 6 as the order of
the multiplicative group ofZ2[x]/(x3 + x + 1) is seven.



A6-b. Using the ANF algorithm (Lecture 6) we get
k b3 b2 b1 f (b1, b2, b3)

x3 x2 x1 g(x1, x2, x3)

0 0 0 0 0 0
1 0 0 1 1 x1

2 0 1 0 1 x1 ⊕ x2

3 0 1 1 0 x1 ⊕ x2

4 1 0 0 1 x1 ⊕ x2 ⊕ x3

5 1 0 1 0 x1 ⊕ x2 ⊕ x3

6 1 1 0 1 x1 ⊕ x2 ⊕ x3 ⊕ x2x3

7 1 1 1 0 x1 ⊕ x2 ⊕ x3 ⊕ x2x3


