T-79.5501 Cryptology Spring 2009 Homework 5

Tutor: Joo Y. Cho joo.cho@tkk.fi

5th March 2009

Q1. Using the Berlekamp-Massey Algorithm find an LFSR that generates the sequence:
$0 \quad 0 \quad 0111100$.
Compare your solution with the polynomial found in HW4.

$$
\begin{aligned}
& L_{k+1}=\max \left\{L_{k}, k+1-L_{k}\right\} \\
& f^{k+1}(x)=x^{L_{k+1}-L_{k}} f^{k}(x)+x^{L_{k+1}-k+m-L_{m}} f^{m}(x)
\end{aligned}
$$

Running the Berlekamp-Massey algorithm we get:

k	z_{k-1}	L_{k}	$f^{(k)}$	observing z_{k}
2	0	0	1	
3	0	0	1	$z_{3}=1 \text { (the first nonzero term), set }$ $L_{4}=4 \text { and } f^{(4)}(x)=x^{4}+1$
4	1	4	$x^{4}+1$	does not work for $z_{4}=1$, change: $L_{5}=\max \{4,5-4\}=4$ and $f^{(5)}=$ $x^{0}\left(x^{4}+1\right)+x^{4-4+3} \cdot 1$
5	1	4	$x^{4}+x^{3}+1$	OK for $z_{5}=1$, no changes
6	1	4	$x^{4}+x^{3}+1$	does not work for $z_{6}=0$, change: $L_{7}=\max \{4,7-4\}=4$ and $f^{(7)}=$ $x^{0}\left(x^{4}+x^{3}+1\right)+x^{4-6+3} \cdot 1$
7	0	4	$x^{4}+x^{3}+x+1$	OK for $z_{7}=0$, no changes
8	0	4	$x^{4}+x^{3}+x+1$	no more sequence

Q2. Consider the 4-bit to 4-bit permutation π_{S} defined as follows:

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
3	F	0	6	A	1	D	8	9	4	5	B	C	7	2	E

(This is the fourth row of the DES S-box S_{4}.) Denote by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and by $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ the input bits and output bits respectively. Find the output bit y_{j} for which the bias of $x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus y_{j}$ is the largest.

x_{1}	x_{2}	x_{3}	x_{4}	S_{1}	y_{1}	y_{2}	y_{3}	y_{4}	$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$
0	0	0	0	3	0	0	1	1	0
0	0	0	1	15	1	1	1	1	1
0	0	1	0	0	0	0	0	0	1
0	0	1	1	6	0	1	1	0	0
0	1	0	0	10	1	0	1	0	1
0	1	0	1	1	0	0	0	1	0
0	1	1	0	13	1	1	0	1	0
0	1	1	1	8	1	0	0	0	1
1	0	0	0	9	1	0	0	1	1
1	0	0	1	4	0	1	0	0	0
1	0	1	0	5	0	1	0	1	0
1	0	1	1	11	1	0	1	1	1
1	1	0	0	12	1	1	0	0	0
1	1	0	1	7	0	1	1	1	1
1	1	1	0	2	0	0	1	0	1
1	1	1	1	14	1	1	1	0	0
number n_{i}		10	4	10	8				
bias value			$\frac{1}{8}$	$-\frac{1}{4}$	$\frac{1}{8}$	0	0		

Q3. Suppose that \mathbf{X}_{1} and \mathbf{X}_{2} are independent random variables which take on values from the set $\{0,1\}$. We use ϵ_{i} to denote the bias of \mathbf{X}_{i}, $\epsilon_{i}=\operatorname{Pr}\left[\mathbf{X}_{i}=0\right]-\frac{1}{2}$, for $i=1,2$. Prove that the random variables \mathbf{X}_{1} and $\mathbf{X}_{1} \oplus \mathbf{X}_{2}$ are independent if and only if $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$.

A3. Claim: The random variables X_{1} and $X_{1} \oplus X_{2}$ are independent if and only if $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$.
Suppose that X_{1} and X_{2} are independent random variables. Let ϵ_{12} denote the bias of $X_{1} \oplus X_{2}$ and ϵ_{112} the bias of $X_{1} \oplus\left(X_{1} \oplus X_{2}\right)$. [" \Rightarrow "]
We prove that $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$ if the random variables X_{1} and $X_{1} \oplus X_{2}$ are independent. By the Piling-Up Lemma, we have $\epsilon_{12}=2 \epsilon_{1} \epsilon_{2}$ and $\epsilon_{112}=2 \epsilon_{1} \epsilon_{12}$. Hence,

$$
\epsilon_{112}=2 \epsilon_{1} 2 \epsilon_{1} \epsilon_{2}=4 \epsilon_{1}^{2} \epsilon_{2}
$$

Since $X_{1} \oplus\left(X_{1} \oplus X_{2}\right)=X_{2}$, we have $\epsilon_{112}=\epsilon_{2}$, and thus

$$
4 \epsilon_{1}^{2} \epsilon_{2}=\epsilon_{2} .
$$

This equation holds if and only if either $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$.
[-1
We prove that X_{1} and $X_{1} \oplus X_{2}$ are independent if $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$. The proof makes use of the converse of the Piling-Up Lemma. Since X_{1} and X_{2} are independent random variables, we have

$$
2 \epsilon_{1} \epsilon_{12}=4 \epsilon_{1}^{2} \epsilon_{2}= \begin{cases}0 & \text { if } \epsilon_{2}=0 \\ \epsilon_{2} & \text { if } \epsilon_{1}= \pm \frac{1}{2}\end{cases}
$$

In other words, $2 \epsilon_{1} \epsilon_{12}=\epsilon_{2}$ if $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$. Because $\epsilon_{112}=\epsilon_{2}$, we get $\epsilon_{112}=2 \epsilon_{1} \epsilon_{12}$. By the converse of the Piling-Up Lemma, X_{1} and $X_{1} \oplus X_{2}$ are independent.

Q4. Suppose that $w \in\{0,1\}^{n}$. Show that

$$
\sum_{x \in\{0,1\}^{n}}(-1)^{w \cdot x}=\left\{\begin{array}{l}
0, \text { for } w \neq 0 \\
2^{n}, \text { for } w=0
\end{array}\right.
$$

Hint. Determine the number of $x \in\{0,1\}^{n}$ such that $w \cdot x=0$.

If $w=0$, we get

$$
\sum_{x \in\{0,1\}^{n}}(-1)^{w \cdot x}=\sum_{x \in\{0,1\}^{n}} 1=2^{n}
$$

If $w \neq 0$, we get

$$
\sum_{x \in\{0,1\}^{n}}(-1)^{w \cdot x}=\sum_{x: w \cdot x=0} 1+\sum_{x: w \cdot x=1}(-1)=2^{n-1}-2^{n-1}=0
$$

This is true because there is an equal amount of $x \in\{0,1\}^{n}$ that satisfy $w \cdot x=0$ and $w \cdot x=1$ for $w \neq 0$.

To prove the latter case more strictly, we use induction on the number of coordinates in $w=\left(w_{1}, \ldots, w_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$. If $n=1$, we have $w=1 \neq 0$, and it follows that

$$
\sum_{x \in\{0,1\}}(-1)^{w \cdot x}=(-1)^{0}+(-1)^{1}=0
$$

Hence, the claim is true for $n=1$. Suppose that the claim is true for $n=k \geq 1$. We show that the claim is true for $n=k+1$. Denote $w^{\prime}=\left(w_{1}, \ldots, w_{k}\right)$ and $x^{\prime}=\left(x_{1}, \ldots, x_{k}\right)$. Dividing the sum into separate parts based on whether $x_{k+1}=0$ or $x_{k+1}=1$, we get

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{k+1}}(-1)^{w \cdot x} & =\sum_{x^{\prime} \in\{0,1\}^{k}}(-1)^{w^{\prime} \cdot x^{\prime} \oplus w_{k+1} \cdot 0}+\sum_{x^{\prime} \in\{0,1\}^{k}}(-1)^{w^{\prime} \cdot x^{\prime} \oplus w_{k+1} \cdot 1} \\
& =\underbrace{\sum_{x^{\prime} \in\{0,1\}^{k}}(-1)^{w^{\prime} \cdot x^{\prime}}}_{=0}+(-1)^{w_{k+1}} \sum_{x^{\prime} \in\{0,1\}^{k}}(-1)^{w^{\prime} \cdot x^{\prime}} \\
& =0
\end{aligned}
$$

This proves the claim for $n=k+1$.

Q5. Consider the example linear attack in the textbook, Section 3.3.3. For S_{2}^{2} replace the random variable \mathbf{T}_{2} by $\mathbf{U}_{6}^{2} \oplus \mathbf{V}_{8}^{2}$. Then in the third round the random variable $\mathbf{T}_{\mathbf{3}}$ is not needed. What is the final random variable corresponding to Equation (3.3) and what is its bias?

FIGURE 3.3
A linear approximation of a substitution-permutation network

A5.

- $\mathbf{T}^{\prime}{ }_{2}=\mathbf{U}_{6}^{2} \oplus \mathbf{V}_{8}^{2}$
- $\mathbf{T}_{\mathbf{3}}$ is not needed. Hence, the arrows through S_{2}^{3} are removed.
- \mathbf{U}_{6}^{2} and \mathbf{U}_{14}^{4} are removed.
- The new final variable is

$$
\mathbf{X}_{5} \oplus \mathbf{X}_{7} \oplus \mathbf{X}_{8} \oplus \mathbf{U}_{8}^{4} \oplus \mathbf{U}_{16}^{4}
$$

- The bias of the new variable \mathbf{T}_{2}^{\prime} : in the table of the S-box (Figure 3.2) $a=0100=4$ and $b=0001=1$. Hence, $N_{L}(a, b)=N_{L}(4,1)=10$. The bias $\epsilon_{2}^{\prime}=10 / 16-1 / 2=1 / 8$.
- The biases of approximation is

$$
2^{3-1} \epsilon_{1} \epsilon_{2}^{\prime} \epsilon_{4}=4(1 / 4)(1 / 8)(-1 / 4)=-1 / 32
$$

Q6.
Consider the finite field $G F\left(2^{3}\right)=\mathbf{Z}_{2}[x] /(f(x))$ with polynomial $f(x)=x^{3}+x+1$ (see Stinson 6.4).

1. Compute the look-up table for the inversion function $g: z \mapsto z^{-1}$ in $G F\left(2^{3}\right)$, where we set $g(0)=0$.
2. Compute the algebraic normal form of the Boolean function defined by the least significant bit of the inversion function.

A6-a. The multiplication table of the finite field
$G F\left(2^{3}\right)=\mathbf{Z}_{2}[x] /\left(x^{3}+x+1\right)$ is given on page 253 of the textbook. Using it we can, given a nonzero element, find another element such that the product is equal to $1=001$. We get:

z	z^{-1}
000	000
001	001
010	101
011	110
100	111
101	010
110	011
111	100

A6-a. Another approach to create this function table is to express the seven elements of the multiplicative group of $\mathbf{Z}_{2}[x] /\left(x^{3}+x+1\right)$ as powers of the element $x=010$:

k	x^{k}
0	$x^{0}=001$
1	$x=010$
2	$x^{2}=100$
3	$x^{3}=011$
4	$x^{4}=110$
5	$x^{5}=111$
6	$x^{6}=101$

The $g(z)=g\left(x^{k}\right)=x^{-k}=x^{7-k}$, for all $k=0,1, \ldots 6$ as the order of the multiplicative group of $\mathbf{Z}_{2}[x] /\left(x^{3}+x+1\right)$ is seven.

A6-b. Using the ANF algorithm (Lecture 6) we get

k	b_{3}	b_{2}	b_{1}	$f\left(b_{1}, b_{2}, b_{3}\right)$	
	x_{3}	x_{2}	x_{1}		$g\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0	0
1	0	0	1	1	x_{1}
2	0	1	0	1	$x_{1} \oplus x_{2}$
3	0	1	1	0	$x_{1} \oplus x_{2}$
4	1	0	0	1	$x_{1} \oplus x_{2} \oplus x_{3}$
5	1	0	1	0	$x_{1} \oplus x_{2} \oplus x_{3}$
6	1	1	0	1	$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{2} x_{3}$
7	1	1	1	0	$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{2} x_{3}$

