T-79.5501 Cryptology
 Spring 2009

Homework 4

Tutor: Joo Y. Cho
joo.cho@tkk.fi

19th February 2009

Q1. Consider two LFSRs with polynomials $f(x)=x^{5}+x^{4}+1$ and $g(x)=x^{4}+x^{2}+1$. Find the shortest LFSR which generates all sequences generated by these LFSRs and its connection polynomial $h(x)$. Determine the exponents of $f(x), g(x)$ and $h(x)$. What kind of periods the sequences in $\Omega(h(x))$ may have?

A1-a) The polynomials $f(x)$ and $g(x)$ factor into:

$$
\begin{aligned}
& f(x)=x^{5}+x^{4}+1=\left(x^{3}+x+1\right)\left(x^{2}+x+1\right), \\
& g(x)=x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2} .
\end{aligned}
$$

By Theorem 2 in the lecture slides, the LFSR with the connection polynomial

$$
h(x)=\operatorname{lcm}(f(x), g(x))=\left(x^{3}+x+1\right)\left(x^{2}+x+1\right)^{2}
$$

generates all sequences in $\Omega(f(x))$ and $\Omega(g(x))$.

A1-b). The exponents of factors of $f(x)$ and $g(x)$ are

$$
\begin{aligned}
& \left(x^{3}+x+1\right): e=7, \\
& \left(x^{2}+x+1\right): e=3, \\
& \left(x^{2}+x+1\right)^{2}: e=6
\end{aligned}
$$

Hence $f(x) \mid\left(x^{21}+1\right)$ and $g(x) \mid\left(x^{6}+1\right)$ and $\operatorname{lcm}(21,6)=42 \mid e_{h}$. The polynomial $x^{42}+1$ has the factorization

$$
\begin{aligned}
x^{42}+1= & \left(x^{21}+1\right)^{2}=\left(x^{6}+x^{5}+x^{4}+x^{2}+1\right)^{2}\left(x^{6}+x^{4}+x^{2}+x+1\right)^{2} \\
& \times\left(x^{3}+x^{2}+1\right)^{2}\left(x^{3}+x+1\right)^{2}\left(x^{2}+x+1\right)^{2}(x+1)^{2} .
\end{aligned}
$$

Hence, $h(x) \mid\left(x^{42}+1\right)$ and $e_{h}=42$. Since $42=2 \cdot 3 \cdot 7$, the periods of the sequences in $\Omega(h(x))$ are divisible by 2,3 , or 7 .

Theorem

Let $g \in \mathbb{F}_{q}[x]$ be irreducible over $\mathbb{F}_{2^{m}}$ with $g(0) \neq 0$ and $\operatorname{ord}(g)=e$, and let $f=g^{b}$ with a positive integer b. Let t be the smallest integer with $2^{t} \geq b$. Then $\operatorname{ord}(f)=e \times 2^{t}$.
For example, let us find the exponent of f such that

$$
g=\left(x^{2}+x+1\right), \quad f=g^{2} .
$$

Since the exponent of g is 3 and $2^{1} \geq 2$, we get $\operatorname{ord}(f)=3 \times 2^{1}=6$.

Q2. Let e be the exponent of $f(x)$. Show that then there is a sequence $S \in \Omega(f)$ such that the period of S is equal to e.

A2-a) Suppose that the sequence $S \in \Omega(f(x))$ has the period of d with generating function

$$
S(x)=\frac{1}{f^{*}(x)}
$$

We claim that $d=e$.
i) By Theorem 3 (Lecture 4) we know that d divides e.
ii) We show that $d \geq e$.

Since S has period $d, S \in \Omega\left(1+x^{d}\right)$, and hence there is a polynomial of degree less than d such that $G(x)=\frac{P(x)}{1+x^{d}}$. Hence,

$$
\frac{P(x)}{1+x^{d}}=\frac{1}{f^{*}(x)} \Rightarrow P(x) f^{*}(x)=1+x^{d} \Rightarrow P^{*}(x) f^{* *}(x)=x^{d}+1
$$

Hence, $f(x) \mid x^{d}+1$ and the exponent $e \leq d$.

Q3. Show that the exponent of the polynomial $f(x)=x^{n}+x^{n-1}+\ldots+x^{2}+x+1=\sum_{i=0}^{n} x^{i}$ is equal to $n+1$ for all integers $n, n>1$.

A3. We have

$$
(x+1) f(x)=x f(x)+f(x)=\sum_{i=1}^{n+1} x^{i}+\sum_{i=0}^{n} x^{i}=x^{n+1}+1
$$

Hence, $f(x) \mid\left(x^{n+1}+1\right)$ for all $n>1$, and the exponent of $f(x)$ is $n+1$.

Q4. Recall that an element of a finite field of size q is primitive if it has multiplicative order $q-1$. The following fact holds: An irreducible polynomial is primitive if and only if $x=00 \ldots 010$ is a primitive element in the Galois field $G F\left(2^{n}\right)=\mathbf{Z}_{2}[x] /(f(x))$ with polynomial $f(x)$.
We know that the polynomial $x^{4}+x^{3}+x^{2}+x+1$ is irreducible but not primitive, since its exponent is 5 . Hence x is not a primitive element in the field $\mathbf{Z}_{2}[x] /\left(x^{4}+x^{3}+x^{2}+x+1\right)$. Find some primitive element in this field.

A4. The task is to find a primitive element in the field $F_{2}[x] /\left(x^{4}+x^{3}+x^{2}+1\right)$. We can start searching among small polynomials. Since x is no good, let us try $x+1$ next. Since the order of the field is 15 , the possible orders are 3,5 and 15 . (Use $x^{5} \equiv 1$.)

$$
\begin{aligned}
& (x+1)^{3}=x^{3}+x^{2}+x+1 \\
& (x+1)^{5}=(x+1)\left(x^{4}+1\right)=x^{5}+x^{4}+x+1=x^{4}+x \\
& (x+1)^{15}=\left((x+1)^{5}\right)^{3}=x^{3}\left(x^{3}+1\right)^{3}=x^{3}\left(x^{9}+x^{6}+x^{3}+1\right)=1
\end{aligned}
$$

We can find more primitive elements in a similar way.

Q5.

For each of the following 5-bit sequences determine its linear complexity and find one of the shortest LFSR that generates the sequence without using the Berlecamp-Massey algorithm.
a) 00111
b) 00011
c) 11100
d) Determine an LFSR that generates all three sequences.

Q5-a) The sequence contains two consecutive 0's. It follows that LC
≥ 3. Let's try to fit a linear recurrence of length 3 to the sequence.
Given five terms of the sequence we get the following two equations:

$$
\begin{aligned}
& c_{0} \cdot 0+c_{1} \cdot 0+c_{2} \cdot 1=1 \\
& c_{0} \cdot 0+c_{1} \cdot 1+c_{2} \cdot 1=1
\end{aligned}
$$

from where we get $c_{2}=1$ and $c_{1}=0$. We are looking for a full length three LFSR, hence $c_{0}=1$. Since we found a solution LFSR with polynomial $x^{3}+x^{2}+1$ it follows that $\mathrm{LC}=3$.

Q5-b) Similarly as in a) we see immediately that $\mathrm{LC} \geq 4$. When fitting a linear recurrence of length 4 , only one equation is obtained:

$$
c_{0} \cdot 0+c_{1} \cdot 0+c_{2} \cdot 0+c_{3} \cdot 1=1
$$

It follows that $c_{3}=1$. Hence, with $c_{0}=1$, we have four solutions. It follows that $\mathrm{LC}=4$, and that any of the four polynomials works: $x^{4}+x^{3}+c_{2} x^{2}+c_{1} x+1$.

Q5-c) The non-zero sequence contains two consecutive 0's. It follows that $\mathrm{LC} \geq 3$. Let's try to fit a linear recurrence of length 3 to the sequence. From the five terms of the sequence we get the following two equations:

$$
\begin{aligned}
& c_{0} \cdot 1+c_{1} \cdot 1+c_{2} \cdot 1=0 \\
& c_{0} \cdot 1+c_{1} \cdot 1+c_{2} \cdot 0=0
\end{aligned}
$$

from where we get $c_{0}=c_{1}$ and $c_{2}=0$. We are looking for a full length three LFSR, hence $c_{0}=1$. Since we found a solution LFSR with polynomial $x^{3}+x+1$ it follows that $\mathrm{LC}=3$.

Q5-d)

Let us try if we could find a degree 4 solution by fitting a linear recurrence of length four to the three sequences. We get three equations:

$$
\begin{aligned}
& c_{0} \cdot 0+c_{1} \cdot 0+c_{2} \cdot 1+c_{3} \cdot 1=1 \\
& c_{0} \cdot 0+c_{1} \cdot 0+c_{2} \cdot 0+c_{3} \cdot 1=1 \\
& c_{0} \cdot 1+c_{1} \cdot 1+c_{2} \cdot 1+c_{3} \cdot 0=0
\end{aligned}
$$

We get $c_{0}=c_{1}, c_{2}=0$, and $c_{3}=1$ and hence the common polynomial is $x^{4}+x^{3}+x+1$.

Q6.
Let S be a sequence of bits with linear complexity L. Its complemented sequence \bar{S} is the sequence obtained from S by complementing its bits, that is, by adding 1 modulo 2 to each bit.
a) Show that $L C(\bar{S}) \leq L+1$.
b) Show that $L C(\bar{S})=L-1$, or L, or $L+1$.

A6-a. Let I be a sequence $1111 \ldots 1 \ldots$ (finite or infinite) that is generated using the feedback polynomial $x+1$. Then, we have $\bar{S}=S \oplus I$. By Theorem 2 in the lecture slides, we know $\bar{S} \in \Omega(h)$ where $h(x)=\operatorname{lcm}(f(x),(x+1))$. If the original sequence is generated using a polynomial $f(x)$ of degree L then the complemented sequence is generated using a feedback polynomial $\operatorname{lcm}(f(x),(x+1))$, which has degree at most $L+1$. Hence, $L C(\bar{S}) \leq L C(S)+1$.

A6-b) Applying the result proved in a) for \bar{S} and observing that $\overline{\bar{S}}=S$ we get $L C(\bar{S}) \geq L C(S)-1$. Hence $L C(\bar{S} \in\{L-1, L, L+1\}$. All three cases are possible as shown by the sequences:
111111...(complemented sequence has $\mathrm{LC}=0$),
01010...(complemented sequence has the same LC),
000000....(complemented sequence has $\mathrm{LC}=1$)

