T-79.5501 Cryptology Homework 3

Tutor : Joo Y. Cho joo.cho@tkk.fi Spring 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

12th February 2009

Q1. Consider the finite field $\mathbf{F} = \mathbf{Z}_2[x]/(f(x))$, with the polynomial $f(x) = x^5 + x^2 + 1$.

- a) Compute $(x^4 + x)(x^3 + x^2 + 1)$.
- b) Using the Extended Euclidean Algorithm, compute (x³ + x)⁻¹.
 c) Compute x³⁵.

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

A1-a) Since
$$x^5 \equiv x^2 + 1$$
, we get
 $(x^4 + x)(x^3 + x^2 + 1) = x^7 + x^6 + x^3 + x$
 $\equiv x^2(x^2 + 1) + x(x^2 + 1) + x^3 + x \equiv x^4 + x^2$

A1-b) Since $r_i = r_{i-2} - q_i r_{i-1}$ and $u_i = u_{i-2} - q_i u_{i-1}$,

i	q_i	r_i	u _i
0		$x^5 + x^2 + 1$	0
1		$x^{3} + x$	1
2			
3			
4			

A1-a) Since
$$x^5 \equiv x^2 + 1$$
, we get
 $(x^4 + x)(x^3 + x^2 + 1) = x^7 + x^6 + x^3 + x$
 $\equiv x^2(x^2 + 1) + x(x^2 + 1) + x^3 + x \equiv x^4 + x^2$

A1-b) Since $r_i = r_{i-2} - q_i r_{i-1}$ and $u_i = u_{i-2} - q_i u_{i-1}$,

i	q_i	r_i	<i>u</i> _i
0		$x^5 + x^2 + 1$	0
1		$x^{3} + x$	1
2	$x^2 + 1$	$x^2 + x + 1$	$x^2 + 1$
3			
4			

A1-a) Since
$$x^5 \equiv x^2 + 1$$
, we get
 $(x^4 + x)(x^3 + x^2 + 1) = x^7 + x^6 + x^3 + x$
 $\equiv x^2(x^2 + 1) + x(x^2 + 1) + x^3 + x \equiv x^4 + x^2$

A1-b) Since $r_i = r_{i-2} - q_i r_{i-1}$ and $u_i = u_{i-2} - q_i u_{i-1}$,

i	q_i	r_i	u _i
0		$x^5 + x^2 + 1$	0
1		$x^{3} + x$	1
2	$x^2 + 1$	$x^2 + x + 1$	$x^2 + 1$
3	x + 1	x + 1	$x^3 + x^2 + x$
4			

A1-a) Since
$$x^5 \equiv x^2 + 1$$
, we get
 $(x^4 + x)(x^3 + x^2 + 1) = x^7 + x^6 + x^3 + x$
 $\equiv x^2(x^2 + 1) + x(x^2 + 1) + x^3 + x \equiv x^4 + x^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A1-b) Since $r_i = r_{i-2} - q_i r_{i-1}$ and $u_i = u_{i-2} - q_i u_{i-1}$,

i	q_i	r_i	u_i
0		$x^5 + x^2 + 1$	0
1		$x^{3} + x$	1
2	$x^2 + 1$	$x^2 + x + 1$	$x^2 + 1$
3	x + 1	x + 1	$x^3 + x^2 + x$
4	x	1	$x^4 + x^3 + 1$

 $\Rightarrow (x^3 + x)^{-1} \mod x^5 + x^2 + 1 = x^4 + x^3 + 1.$

A1-c) Using
$$x^5 \equiv x^2 + 1$$
, we get
 $x^{10} = (x^2 + 1)^2 \equiv x^4 + 1$
 $x^{20} = (x^4 + 1)^2 = x^8 + 1 \equiv x^3(x^2 + 1) + 1 = x^3 + x^2$
 $x^{30} = x^{10}x^{20} \equiv (x^4 + 1)(x^3 + x^2) \equiv x^4 + x$

Hence,

$$x^{35} = x^{30}x^5 \equiv (x^4 + x)(x^2 + 1)$$

= $x^6 + x^4 + x^3 + x \equiv x^4 \pmod{x^5 + x^2 + 1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Q2. Let *a* and *b* be positive integers where b > a. Let r_i , u_i and v_i , i = 0, 1, ..., be the sequences produced by the Extended Euclidean algorithm. Prove that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. $r_i = u_i a \mod b$, and

2. $b = |u_{i+1}|r_i + |u_i|r_{i+1}$,

for all i = 0, 1, ...

A2-a) In the Proof of Extended Euclidean Algorithm (see lecture-3 slides), it is proved that $r_i = u_i \cdot a + v_i \cdot b$ for some positive b > a where i = 0, 1, ... Hence,

$$r_i = u_i \cdot a \pmod{b}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

A2-b)

Proof by induction : $u_i \cdot u_{i+1} < 0$ where $i = 1, 2, \dots, i = 1$:

$$u_1 \cdot u_2 = u_1 \cdot (u_0 - q_2 \cdot u_1) = -q_2 < 0.$$

We assume $u_{i-1} \cdot u_i < 0.$
Then, $u_i \cdot u_{i+1} = u_i \cdot (u_{i-1} - q_{i+1}u_i) = u_i \cdot u_{i-1} - q_{i+1}u_i^2 < 0.$
Hence, the claim holds for *i*.

A2-b) Prove the main claim by induction.
For
$$i = 0$$
, $|u_1|r_0 + |u_0|r_1 = b$.
For $i = 1$, $|u_2|r_1 + |u_1|r_2 = |-q_2| \cdot a + (b - q_2 \cdot a) = b$.
For $i - 1$, we assume that $b = |u_i|r_{i-1} + |u_{i-1}|r_i$. Then,

$$|u_{i+1}|r_i = |u_{i-1}r_i - q_{i+1}u_i|r_i$$

$$|u_i|r_{i+1} = |u_i|r_{i-1} - q_{i+1}|u_i|r_i$$

$$\Rightarrow |u_{i+1}|r_i + |u_i|r_{i+1} = |u_{i-1}r_i - q_{i+1}u_i|r_i + |u_i|r_{i-1} - q_{i+1}|u_i|r_i$$

(1) If $u_{i+1} > 0$, then $u_i < 0$ and $u_{i-1} > 0$

$$u_{i-1}r_i - q_{i+1}u_ir_i + (-u_i)r_{i-1} - q_{i+1}(-u_i)r_i = u_{i-1}r_i - u_ir_{i-1}$$

= $|u_{i-1}|r_i + |u_i|r_{i-1}$

(2) If
$$u_{i+1} < 0$$
, then $u_i > 0$ and $u_{i-1} < 0$.
 $-u_{i-1}r_i + q_{i+1}u_ir_i + u_ir_{i-1} - q_{i+1}u_ir_i = -u_{i-1}r_i + u_ir_{i-1}$
 $= |u_{i-1}|r_i + |u_i|r_{i-1}$

Hence, the claim holds for *i*.

Q3. Compute the two least significant decimal digits of the integer 2009^{2009} .

Let p be a prime and t a positive number. Then,

$$\phi(p) = p - 1$$

 $\phi(p^t) = p^t - p^{t-1}.$

A3. The task is to compute $2009^{2009} \pmod{100}$. Since $100 = 2^2 \cdot 5^2$, we compute $x \equiv 2009^{2009} \pmod{100}$ by first solving $x \pmod{4}$ and then $x \pmod{25}$. The results are combined by the Chinese Remainder Theorem.

Since $\phi(25) = 5^2 - 5 = 20$, we get

$$x \equiv (2009 \mod 4)^{2009} = 1 \pmod{4}$$

$$x \equiv (2009 \mod 25)^{100 \cdot 20 + 9} \equiv 9^9 \equiv 14 \pmod{25}.$$

Using the Extended Euclidean algorithm, we compute $4^{-1} \equiv 19 \pmod{25}$ and $25^{-1} \equiv 1 \pmod{4}$. Hence, by Chinese Remainder Theorem, we get

$$x \equiv 1 \cdot 25 \cdot 1 + 14 \cdot 4 \cdot 19 \equiv 89 \pmod{100}.$$

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

Q4. Consider the finite field $\mathbf{F} = \mathbf{Z}_2[x]/(f(x)) = GF(2^n)$ with polynomial $f(x) = x^4 + x + 1$. Plaintext consists of strings of 4 bits with a single bit 1 and 3 bits 0. Each such string occur independently and with probability $\frac{1}{4}$. The encryption method is a stream cipher with $\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathbf{F}^*$. Given a key $K = \beta \in \mathbf{F}^*$ and a plaintext sequence $x_i, i = 1, 2, ..., n$ the ciphertext sequence is computed as follows

$$y_i = \beta^i x_i, \ i = 1, 2, \ldots, n.$$

It is given that the 3rd and 4th terms of the ciphertext sequence are

$$y_3 = 1100$$
 and $y_4 = 0111$.

Then exactly two keys are possible. What are they? (Hint: To facilitate the computations you may represent the elements of \mathbb{F}^* as powers of a primitive element α . For example, if you choose $\alpha = 0010$, then the four possible plaintext terms are 1, α , α^2 or α^3 .)

A4. The multiplicative group of all non-zero elements in the Galois field $GF(2^4) = \mathbb{Z}_2[x]/(x^4 + x + 1)$ that are generated by the primitive element $\alpha = x = (0010)$:

k	α^k	k	α^k	k	α^k
1	x	6	$x^6 = x^3 + x^2$	11	$x^{11} = x^3 + x^2 + x$
2	x^2	7	$x^7 = x^3 + x + 1$	12	$x^{12} = x^3 + x^2 + x + 1$
3	x^3	8	$x^8 = x^2 + 1$	13	$x^{13} = x^3 + x^2 + 1$
4	$x^4 = x + 1$	9	$x^9 = x^3 + x$	14	$x^{14} = x^3 + 1$
5	$x^5 = x^2 + x$	10	$x^{10} = x^2 + x + 1$	15	$x^{15} = 1$

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

The possible plaintexts : $\alpha^0 = (0001)$, $\alpha^1 = (0010)$, $\alpha^2 = (0100)$ and $\alpha^3 = (1000)$. We put $\beta = x^k$. Then,

$$\alpha^{3k+r} = \alpha^6$$
 and $\alpha^{4k+s} = \alpha^{10}$,

or what is equivalent

$$3k + r \equiv 6 \pmod{15}$$

$$4k + s \equiv 10 \pmod{15}$$

where $r, s \in \{0, 1, 2, 3\}$. By simple computation, we get k = 2 or k = 6, and the two possible keys are $\beta = \alpha^2 = 0100$ and $\beta = \alpha^6 = 1100$.

ヘロト 4 回 ト 4 三 ト 4 三 ト 9 Q Q

Q5.

Solve the following congruence equations:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

a)
$$5x \equiv 4 \pmod{41}$$

b) $35x \equiv 28 \pmod{2009}$

Q5-a) By the Extended Euclidean Algorithm,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

i	q_i	r_i	Vi
0		41	0
1		5	1
2	8	1	$-8 \equiv 33$

we get $5^{-1} = 33 \pmod{41}$. Hence, $x \equiv 5^{-1} \cdot 4 \equiv 9 \pmod{41}$. Q5-b) Since GCD(35, 28, 2009) = 7, the equation is equivalent to $5x \equiv 4 \pmod{287}$. Then, by applying the Extended Euclidean Algorithm,

i	q_i	r_i	Vi
0		287	0
1		5	1
2	57	2	-57
3	2	1	$1-2\cdot-57\equiv115$

we get $5^{-1} = 115 \pmod{287}$. Hence, $x \equiv 5^{-1} \cdot 4 \equiv 173 \pmod{287}$. The original equation has now seven solutions modulo 2009:

 $x \equiv 173 + i \cdot 287 \pmod{2009}, \quad i = 0, 1, \dots, 6.$

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

Q6.

Consider a binary LFSR with connection polynomial $x^4 + x^3 + x^2 + x + 1$, that is, $c_0 = c_1 = c_2 = c_3 = 1$ in the recurrence relation (see textbook Section 1.2.5 or the attached slides).

- a) Show that the periods of the binary sequences generated by this LFSR are 1 and 5.
- b) Consider a stream cipher where the keystream sequence is generated using this LFSR. The ciphertext sequence is 111011011101010.

It is given that the 4th and 12th plaintext bits are equal to **0** and the 8th and 16th bits are equal to **1**. Find the initial state of the LFSR, that is, the four first bits of the keystream sequence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A6-a). By experiment we see that this LFSR generates three cycles of length 5 and the all zero cycle:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

0000	0001	0010	0111
	0011	0101	1111
	0110	1010	1110
	1100	0100	1101
	1000	1001	1011

It follows that the periods are 1 and 5.

A6-b) 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 = ciphertext - - - 0 - - - 1 - - - 0 - - - 1 = plaintext - - - 0 - - - 0 - - - 0 - - - 1 = keystream Since $z_i = z_{i+5}$, for all i = 1, 2, ..., we know that $z_4 = z_9 = z_{14} = 0$, $z_8 = z_3 = z_{13} = 0$ and so on. Hence, we can fill in most of the keystream terms to get:

$$1000 - 1000 - 1000 - 1 = keystream$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

From this we can read the initial state: $1 \ 0 \ 0$.