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Q1. Consider the finite fieldFF = Z2[x]/(f (x)), with the polynomial
f (x) = x5 + x2 + 1.

a) Compute(x4 + x)(x3 + x2 + 1).

b) Using the Extended Euclidean Algorithm, compute(x3 + x)−1.

c) Computex35.



A1-a) Sincex5 ≡ x2 + 1, we get

(x4 + x)(x3 + x2 + 1) = x7 + x6 + x3 + x

≡ x2(x2 + 1) + x(x2 + 1) + x3 + x ≡ x4 + x2

A1-b) Sinceri = ri−2 − qiri−1 andui = ui−2 − qiui−1,

i qi ri ui

0 x5 + x2 + 1 0
1 x3 + x 1
2
3
4



A1-a) Sincex5 ≡ x2 + 1, we get

(x4 + x)(x3 + x2 + 1) = x7 + x6 + x3 + x

≡ x2(x2 + 1) + x(x2 + 1) + x3 + x ≡ x4 + x2

A1-b) Sinceri = ri−2 − qiri−1 andui = ui−2 − qiui−1,

i qi ri ui

0 x5 + x2 + 1 0
1 x3 + x 1
2 x2 + 1 x2 + x + 1 x2 + 1
3
4



A1-a) Sincex5 ≡ x2 + 1, we get

(x4 + x)(x3 + x2 + 1) = x7 + x6 + x3 + x

≡ x2(x2 + 1) + x(x2 + 1) + x3 + x ≡ x4 + x2

A1-b) Sinceri = ri−2 − qiri−1 andui = ui−2 − qiui−1,

i qi ri ui

0 x5 + x2 + 1 0
1 x3 + x 1
2 x2 + 1 x2 + x + 1 x2 + 1
3 x + 1 x + 1 x3 + x2 + x
4



A1-a) Sincex5 ≡ x2 + 1, we get

(x4 + x)(x3 + x2 + 1) = x7 + x6 + x3 + x

≡ x2(x2 + 1) + x(x2 + 1) + x3 + x ≡ x4 + x2

A1-b) Sinceri = ri−2 − qiri−1 andui = ui−2 − qiui−1,

i qi ri ui

0 x5 + x2 + 1 0
1 x3 + x 1
2 x2 + 1 x2 + x + 1 x2 + 1
3 x + 1 x + 1 x3 + x2 + x
4 x 1 x4 + x3 + 1

⇒ (x3 + x)−1 modx5 + x2 + 1 = x4 + x3 + 1.



A1-c) Usingx5 ≡ x2 + 1, we get

x10 = (x2 + 1)2 ≡ x4 + 1

x20 = (x4 + 1)2 = x8 + 1 ≡ x3(x2 + 1) + 1 = x3 + x2

x30 = x10x20 ≡ (x4 + 1)(x3 + x2) ≡ x4 + x

Hence,

x35 = x30x5 ≡ (x4 + x)(x2 + 1)

= x6 + x4 + x3 + x ≡ x4 (mod x5 + x2 + 1)



Q2. Leta andb be positive integers whereb > a. Let ri, ui andvi,
i = 0, 1, . . ., be the sequences produced by the Extended Euclidean
algorithm. Prove that

1. ri = uia modb, and

2. b = |ui+1|ri + |ui|ri+1,

for all i = 0, 1, . . ..



A2-a) In the Proof of Extended Euclidean Algorithm (see lecture-3
slides), it is proved thatri = ui · a + vi · b for some positiveb > a
wherei = 0, 1, . . . . Hence,

ri = ui · a (mod b)

A2-b)
Proof by induction :ui · ui+1 < 0 wherei = 1, 2, . . .. i = 1:

u1 · u2 = u1 · (u0 − q2 · u1) = −q2 < 0.
We assumeui−1 · ui < 0.
Then,ui · ui+1 = ui · (ui−1 − qi+1ui) = ui · ui−1 − qi+1u2

i < 0.
Hence, the claim holds fori.



A2-b) Prove the main claim by induction.
For i = 0, |u1|r0 + |u0|r1 = b.
For i = 1, |u2|r1 + |u1|r2 = | − q2| · a + (b − q2 · a) = b.
For i − 1, we assume thatb = |ui|ri−1 + |ui−1|ri. Then,

|ui+1|ri = |ui−1ri − qi+1ui|ri

|ui|ri+1 = |ui|ri−1 − qi+1|ui|ri

⇒ |ui+1|ri + |ui|ri+1 = |ui−1ri − qi+1ui|ri + |ui|ri−1 − qi+1|ui|ri

(1) If ui+1 > 0, thenui < 0 andui−1 > 0

ui−1ri − qi+1uiri + (−ui)ri−1 − qi+1(−ui)ri = ui−1ri − uiri−1

= |ui−1|ri + |ui|ri−1

(2) If ui+1 < 0, thenui > 0 andui−1 < 0.

−ui−1ri + qi+1uiri + uiri−1 − qi+1uiri = −ui−1ri + uiri−1

= |ui−1|ri + |ui|ri−1

Hence, the claim holds fori.



Q3. Compute the two least significant decimal digits of the integer
20092009.

Let p be a prime andt a positive number. Then,

φ(p) = p − 1

φ(pt) = pt − pt−1.



A3. The task is to compute 20092009 (mod 100). Since 100= 22 · 52,
we computex ≡ 20092009 (mod 100) by first solvingx (mod 4) and
thenx (mod 25). The results are combined by the Chinese
Remainder Theorem.
Sinceφ(25) = 52 − 5 = 20, we get

x ≡ (2009 mod 4)2009 = 1 (mod 4)

x ≡ (2009 mod 25)100·20+9 ≡ 99 ≡ 14 (mod 25).

Using the Extended Euclidean algorithm, we compute 4−1 ≡ 19
(mod 25) and 25−1 ≡ 1 (mod 4). Hence, by Chinese Remainder
Theorem, we get

x ≡ 1 · 25 · 1 + 14 · 4 · 19≡ 89 (mod 100).



Q4. Consider the finite fieldFF = Z2[x]/(f (x)) = GF(2n) with
polynomialf (x) = x4 + x + 1. Plaintext consists of strings of 4 bits
with a single bit1 and 3 bits0. Each such string occur independently
and with probability1

4. The encryption method is a stream cipher with
P = C = K = FF∗. Given a keyK = β ∈ FF∗ and a plaintext sequence
xi, i = 1, 2, . . . , n the ciphertext sequence is computed as follows

yi = βixi, i = 1, 2, . . . , n.

It is given that the 3rd and 4th terms of the ciphertext sequence are

y3 = 1100 andy4 = 0111.

Then exactly two keys are possible. What are they? (Hint: To
facilitate the computations you may represent the elements ofFF∗ as
powers of a primitive elementα. For example, if you choose
α = 0010, then the four possible plaintext terms are 1,α, α2 or α3.)



A4. The multiplicative group of all non-zero elements in the Galois
field GF(24) = Z2[x]/(x4 + x + 1) that are generated by the primitive
elementα = x = (0010):

k αk k αk k αk

1 x 6 x6 = x3 + x2 11 x11 = x3 + x2 + x
2 x2 7 x7 = x3 + x + 1 12 x12 = x3 + x2 + x + 1
3 x3 8 x8 = x2 + 1 13 x13 = x3 + x2 + 1
4 x4 = x + 1 9 x9 = x3 + x 14 x14 = x3 + 1
5 x5 = x2 + x 10 x10 = x2 + x + 1 15 x15 = 1

The possible plaintexts :α0 = (0001), α1 = (0010), α2 = (0100)
andα3 = (1000).



We putβ = xk. Then,

α3k+r = α6 andα4k+s = α10,

or what is equivalent

3k + r ≡ 6(mod 15)

4k + s ≡ 10(mod 15)

wherer, s ∈ {0, 1, 2, 3}.
By simple computation, we getk = 2 or k = 6, and the two possible
keys areβ = α2 = 0100 andβ = α6 = 1100.



Q5.
Solve the following congruence equations:

a) 5x ≡ 4(mod41)

b) 35x ≡ 28(mod2009)



Q5-a) By the Extended Euclidean Algorithm,

i qi ri vi

0 41 0
1 5 1
2 8 1 −8 ≡ 33

we get 5−1 = 33 (mod 41).
Hence,x ≡ 5−1 · 4 ≡ 9 (mod 41).



Q5-b) SinceGCD(35, 28, 2009) = 7, the equation is equivalent to
5x ≡ 4 (mod 287). Then, by applying the Extended Euclidean
Algorithm,

i qi ri vi

0 287 0
1 5 1
2 57 2 −57
3 2 1 1− 2 · −57≡ 115

we get 5−1 = 115 (mod 287). Hence,x ≡ 5−1 · 4 ≡ 173 (mod 287).
The original equation has now seven solutions modulo 2009:

x ≡ 173+ i · 287 (mod 2009), i = 0, 1, . . . , 6.



Q6.
Consider a binary LFSR with connection polynomial
x4 + x3 + x2 + x + 1, that is,c0 = c1 = c2 = c3 = 1 in the recurrence
relation (see textbook Section 1.2.5 or the attached slides).

a) Show that the periods of the binary sequences generated by this
LFSR are 1 and 5.

b) Consider a stream cipher where the keystream sequence is
generated using this LFSR. The ciphertext sequence is
1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0.
It is given that the 4th and 12th plaintext bits are equal to0 and
the 8th and 16th bits are equal to1. Find the initial state of the
LFSR, that is, the four first bits of the keystream sequence.



A6-a). By experiment we see that this LFSR generates three cycles of
length 5 and the all zero cycle:

0000 0001 0010 0111
0011 0101 1111
0110 1010 1110
1100 0100 1101
1000 1001 1011

It follows that the periods are 1 and 5.



A6-b)
1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 = ciphertext
- - - 0 - - - 1 - - - 0 - - - 1 = plaintext
- - - 0 - - - 0 - - - 0 - - - 1 = keystream
Sincezi = zi+5, for all i = 1, 2, ..., we know thatz4 = z9 = z14 = 0,
z8 = z3 = z13 = 0 and so on.
Hence, we can fill in most of the keystream terms to get:

1000− 1000− 1000− 1 = keystream

From this we can read the initial state:1 0 0 0.


