T-79.5501 Cryptology Spring 2009

Homework 3

Tutor: Joo Y. Cho
joo.cho@tkk.fi

12th February 2009

Q1. Consider the finite field $\mathbb{F}=\mathbf{Z}_{2}[x] /(f(x))$, with the polynomial $f(x)=x^{5}+x^{2}+1$.
a) Compute $\left(x^{4}+x\right)\left(x^{3}+x^{2}+1\right)$.
b) Using the Extended Euclidean Algorithm, compute $\left(x^{3}+x\right)^{-1}$.
c) Compute x^{35}.

A1-a) Since $x^{5} \equiv x^{2}+1$, we get

$$
\begin{aligned}
\left(x^{4}+x\right)\left(x^{3}+x^{2}+1\right) & =x^{7}+x^{6}+x^{3}+x \\
& \equiv x^{2}\left(x^{2}+1\right)+x\left(x^{2}+1\right)+x^{3}+x \equiv x^{4}+x^{2}
\end{aligned}
$$

A1-b) Since $r_{i}=r_{i-2}-q_{i} r_{i-1}$ and $u_{i}=u_{i-2}-q_{i} u_{i-1}$,

i	q_{i}	r_{i}	u_{i}
0		$x^{5}+x^{2}+1$	0
1		$x^{3}+x$	1
2			
3			
4			

A1-a) Since $x^{5} \equiv x^{2}+1$, we get

$$
\begin{aligned}
\left(x^{4}+x\right)\left(x^{3}+x^{2}+1\right) & =x^{7}+x^{6}+x^{3}+x \\
& \equiv x^{2}\left(x^{2}+1\right)+x\left(x^{2}+1\right)+x^{3}+x \equiv x^{4}+x^{2}
\end{aligned}
$$

A1-b) Since $r_{i}=r_{i-2}-q_{i} r_{i-1}$ and $u_{i}=u_{i-2}-q_{i} u_{i-1}$,

i	q_{i}	r_{i}	u_{i}
0		$x^{5}+x^{2}+1$	0
1		$x^{3}+x$	1
2	$x^{2}+1$	$x^{2}+x+1$	$x^{2}+1$
3			
4			

A1-a) Since $x^{5} \equiv x^{2}+1$, we get

$$
\begin{aligned}
\left(x^{4}+x\right)\left(x^{3}+x^{2}+1\right) & =x^{7}+x^{6}+x^{3}+x \\
& \equiv x^{2}\left(x^{2}+1\right)+x\left(x^{2}+1\right)+x^{3}+x \equiv x^{4}+x^{2}
\end{aligned}
$$

A1-b) Since $r_{i}=r_{i-2}-q_{i} r_{i-1}$ and $u_{i}=u_{i-2}-q_{i} u_{i-1}$,

i	q_{i}	r_{i}	u_{i}
0		$x^{5}+x^{2}+1$	0
1		$x^{3}+x$	1
2	$x^{2}+1$	$x^{2}+x+1$	$x^{2}+1$
3	$x+1$	$x+1$	$x^{3}+x^{2}+x$
4			

A1-a) Since $x^{5} \equiv x^{2}+1$, we get

$$
\begin{aligned}
\left(x^{4}+x\right)\left(x^{3}+x^{2}+1\right) & =x^{7}+x^{6}+x^{3}+x \\
& \equiv x^{2}\left(x^{2}+1\right)+x\left(x^{2}+1\right)+x^{3}+x \equiv x^{4}+x^{2}
\end{aligned}
$$

A1-b) Since $r_{i}=r_{i-2}-q_{i} r_{i-1}$ and $u_{i}=u_{i-2}-q_{i} u_{i-1}$,

i	q_{i}	r_{i}	u_{i}
0		$x^{5}+x^{2}+1$	0
1		$x^{3}+x$	1
2	$x^{2}+1$	$x^{2}+x+1$	$x^{2}+1$
3	$x+1$	$x+1$	$x^{3}+x^{2}+x$
4	x	1	$x^{4}+x^{3}+1$

$\Rightarrow\left(x^{3}+x\right)^{-1} \bmod x^{5}+x^{2}+1=x^{4}+x^{3}+1$.

A1-c) Using $x^{5} \equiv x^{2}+1$, we get

$$
\begin{aligned}
x^{10} & =\left(x^{2}+1\right)^{2} \equiv x^{4}+1 \\
x^{20} & =\left(x^{4}+1\right)^{2}=x^{8}+1 \equiv x^{3}\left(x^{2}+1\right)+1=x^{3}+x^{2} \\
x^{30} & =x^{10} x^{20} \equiv\left(x^{4}+1\right)\left(x^{3}+x^{2}\right) \equiv x^{4}+x
\end{aligned}
$$

Hence,

$$
\begin{aligned}
x^{35} & =x^{30} x^{5} \equiv\left(x^{4}+x\right)\left(x^{2}+1\right) \\
& =x^{6}+x^{4}+x^{3}+x \equiv x^{4}\left(\bmod x^{5}+x^{2}+1\right)
\end{aligned}
$$

Q2. Let a and b be positive integers where $b>a$. Let r_{i}, u_{i} and v_{i}, $i=0,1, \ldots$, be the sequences produced by the Extended Euclidean algorithm. Prove that

$$
\text { 1. } r_{i}=u_{i} a \bmod b \text {, and }
$$

2. $b=\left|u_{i+1}\right| r_{i}+\left|u_{i}\right| r_{i+1}$,
for all $i=0,1, \ldots$.

A2-a) In the Proof of Extended Euclidean Algorithm (see lecture-3 slides), it is proved that $r_{i}=u_{i} \cdot a+v_{i} \cdot b$ for some positive $b>a$ where $i=0,1, \ldots$. Hence,

$$
r_{i}=u_{i} \cdot a \quad(\bmod b)
$$

A2-b)
Proof by induction : $u_{i} \cdot u_{i+1}<0$ where $i=1,2, \ldots . . i=1$:
$u_{1} \cdot u_{2}=u_{1} \cdot\left(u_{0}-q_{2} \cdot u_{1}\right)=-q_{2}<0$.
We assume $u_{i-1} \cdot u_{i}<0$.
Then, $u_{i} \cdot u_{i+1}=u_{i} \cdot\left(u_{i-1}-q_{i+1} u_{i}\right)=u_{i} \cdot u_{i-1}-q_{i+1} u_{i}^{2}<0$.
Hence, the claim holds for i.

A2-b) Prove the main claim by induction.
For $i=0,\left|u_{1}\right| r_{0}+\left|u_{0}\right| r_{1}=b$.
For $i=1,\left|u_{2}\right| r_{1}+\left|u_{1}\right| r_{2}=\left|-q_{2}\right| \cdot a+\left(b-q_{2} \cdot a\right)=b$.
For $i-1$, we assume that $b=\left|u_{i}\right| r_{i-1}+\left|u_{i-1}\right| r_{i}$. Then,

$$
\begin{aligned}
\left|u_{i+1}\right| r_{i} & =\left|u_{i-1} r_{i}-q_{i+1} u_{i}\right| r_{i} \\
\left|u_{i}\right| r_{i+1} & =\left|u_{i}\right| r_{i-1}-q_{i+1}\left|u_{i}\right| r_{i} \\
\Rightarrow\left|u_{i+1}\right| r_{i}+\left|u_{i}\right| r_{i+1} & =\left|u_{i-1} r_{i}-q_{i+1} u_{i}\right| r_{i}+\left|u_{i}\right| r_{i-1}-q_{i+1}\left|u_{i}\right| r_{i}
\end{aligned}
$$

(1) If $u_{i+1}>0$, then $u_{i}<0$ and $u_{i-1}>0$

$$
\begin{aligned}
u_{i-1} r_{i}-q_{i+1} u_{i} r_{i}+\left(-u_{i}\right) r_{i-1}-q_{i+1}\left(-u_{i}\right) r_{i} & =u_{i-1} r_{i}-u_{i} r_{i-1} \\
& =\left|u_{i-1}\right| r_{i}+\left|u_{i}\right| r_{i-1}
\end{aligned}
$$

(2) If $u_{i+1}<0$, then $u_{i}>0$ and $u_{i-1}<0$.

$$
\begin{aligned}
-u_{i-1} r_{i}+q_{i+1} u_{i} r_{i}+u_{i} r_{i-1}-q_{i+1} u_{i} r_{i} & =-u_{i-1} r_{i}+u_{i} r_{i-1} \\
& =\left|u_{i-1}\right| r_{i}+\left|u_{i}\right| r_{i-1}
\end{aligned}
$$

Hence, the claim holds for i.

Q3. Compute the two least significant decimal digits of the integer 2009^{2009}.

Let p be a prime and t a positive number. Then,

$$
\begin{aligned}
\phi(p) & =p-1 \\
\phi\left(p^{t}\right) & =p^{t}-p^{t-1}
\end{aligned}
$$

A3. The task is to compute $2009^{2009}(\bmod 100)$. Since $100=2^{2} \cdot 5^{2}$, we compute $x \equiv 2009^{2009}(\bmod 100)$ by first solving $x(\bmod 4)$ and then $x(\bmod 25)$. The results are combined by the Chinese Remainder Theorem.
Since $\phi(25)=5^{2}-5=20$, we get

$$
\begin{aligned}
& x \equiv(2009 \bmod 4)^{2009}=1(\bmod 4) \\
& x \equiv(2009 \bmod 25)^{100 \cdot 20+9} \equiv 9^{9} \equiv 14(\bmod 25)
\end{aligned}
$$

Using the Extended Euclidean algorithm, we compute $4^{-1} \equiv 19$ $(\bmod 25)$ and $25^{-1} \equiv 1(\bmod 4)$. Hence, by Chinese Remainder Theorem, we get

$$
x \equiv 1 \cdot 25 \cdot 1+14 \cdot 4 \cdot 19 \equiv 89 \quad(\bmod 100)
$$

Q4. Consider the finite field $\mathbb{F}=\mathbf{Z}_{2}[x] /(f(x))=G F\left(2^{n}\right)$ with polynomial $f(x)=x^{4}+x+1$. Plaintext consists of strings of 4 bits with a single bit 1 and 3 bits 0 . Each such string occur independently and with probability $\frac{1}{4}$. The encryption method is a stream cipher with $\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathbb{F}^{*}$. Given a key $K=\beta \in \mathbb{F}^{*}$ and a plaintext sequence $x_{i}, i=1,2, \ldots, n$ the ciphertext sequence is computed as follows

$$
y_{i}=\beta^{i} x_{i}, i=1,2, \ldots, n
$$

It is given that the 3rd and 4th terms of the ciphertext sequence are

$$
y_{3}=1100 \text { and } y_{4}=0111
$$

Then exactly two keys are possible. What are they? (Hint: To facilitate the computations you may represent the elements of \mathbb{F}^{*} as powers of a primitive element α. For example, if you choose $\alpha=0010$, then the four possible plaintext terms are $1, \alpha, \alpha^{2}$ or α^{3}.)

A4. The multiplicative group of all non-zero elements in the Galois field $G F\left(2^{4}\right)=\mathbf{Z}_{2}[x] /\left(x^{4}+x+1\right)$ that are generated by the primitive element $\alpha=x=(0010)$:

k	α^{k}	k	α^{k}	k	α^{k}
1	x	6	$x^{6}=x^{3}+x^{2}$	11	$x^{11}=x^{3}+x^{2}+x$
2	x^{2}	7	$x^{7}=x^{3}+x+1$	12	$x^{12}=x^{3}+x^{2}+x+1$
3	x^{3}	8	$x^{8}=x^{2}+1$	13	$x^{13}=x^{3}+x^{2}+1$
4	$x^{4}=x+1$	9	$x^{9}=x^{3}+x$	14	$x^{14}=x^{3}+1$
5	$x^{5}=x^{2}+x$	10	$x^{10}=x^{2}+x+1$	15	$x^{15}=1$

The possible plaintexts : $\alpha^{0}=(0001), \alpha^{1}=(0010), \alpha^{2}=(0100)$ and $\alpha^{3}=(1000)$.

We put $\beta=x^{k}$. Then,

$$
\alpha^{3 k+r}=\alpha^{6} \text { and } \alpha^{4 k+s}=\alpha^{10}
$$

or what is equivalent

$$
\begin{aligned}
3 k+r & \equiv 6(\bmod 15) \\
4 k+s & \equiv 10(\bmod 15)
\end{aligned}
$$

where $r, s \in\{0,1,2,3\}$.
By simple computation, we get $k=2$ or $k=6$, and the two possible keys are $\beta=\alpha^{2}=0100$ and $\beta=\alpha^{6}=1100$.

Q5.
Solve the following congruence equations:
a) $5 x \equiv 4(\bmod 41)$
b) $35 x \equiv 28(\bmod 2009)$

Q5-a) By the Extended Euclidean Algorithm,

i	q_{i}	r_{i}	v_{i}
0		41	0
1		5	1
2	8	1	$-8 \equiv 33$

we get $5^{-1}=33(\bmod 41)$.
Hence, $x \equiv 5^{-1} \cdot 4 \equiv 9(\bmod 41)$.

Q5-b) Since $\operatorname{GCD}(35,28,2009)=7$, the equation is equivalent to $5 x \equiv 4(\bmod 287)$. Then, by applying the Extended Euclidean Algorithm,

i	q_{i}	r_{i}	v_{i}
0		287	0
1		5	1
2	57	2	-57
3	2	1	$1-2 \cdot-57 \equiv 115$

we get $5^{-1}=115(\bmod 287)$. Hence, $x \equiv 5^{-1} \cdot 4 \equiv 173(\bmod 287)$. The original equation has now seven solutions modulo 2009:

$$
x \equiv 173+i \cdot 287 \quad(\bmod 2009), \quad i=0,1, \ldots, 6
$$

Q6.
Consider a binary LFSR with connection polynomial $x^{4}+x^{3}+x^{2}+x+1$, that is, $c_{0}=c_{1}=c_{2}=c_{3}=1$ in the recurrence relation (see textbook Section 1.2.5 or the attached slides).
a) Show that the periods of the binary sequences generated by this LFSR are 1 and 5.
b) Consider a stream cipher where the keystream sequence is generated using this LFSR. The ciphertext sequence is 1110110111100010 .
It is given that the 4th and 12th plaintext bits are equal to $\mathbf{0}$ and the 8 th and 16 th bits are equal to $\mathbf{1}$. Find the initial state of the LFSR, that is, the four first bits of the keystream sequence.

A6-a). By experiment we see that this LFSR generates three cycles of length 5 and the all zero cycle:

	0000	0001	0010
0011	0101	1111	
0110	1010	1110	
1100	0100	1101	
1000	1001	1011	

It follows that the periods are 1 and 5 .

A6-b)
$\begin{array}{lllllllllllllllll}1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & =\text { ciphertext }\end{array}$

- - 0 - - 1 - - 0 - - $1=$ plaintext
- - 0 - - 0 - - 0 - - 1 = keystream

Since $z_{i}=z_{i+5}$, for all $i=1,2, \ldots$, we know that $z_{4}=z_{9}=z_{14}=0$, $z_{8}=z_{3}=z_{13}=0$ and so on.
Hence, we can fill in most of the keystream terms to get:

$$
1000-1000-1000-1=\text { keystream }
$$

From this we can read the initial state: 10000.

