T-79.5501 Cryptology
 Spring 2009
 Homework 11

Tutor: Joo Y. Cho
joo.cho@tkk.fi

30th April 2009

Q1. Let E be the elliptic curve $y^{2}=x^{3}+2 x+7$ defined over \mathbb{F}_{31} (see Homework 11). Compute the decompressions of $(18,1),(3,1)$, $(17,0)$ and $(28,0)$.

A1.
The curve E is given

$$
\begin{equation*}
E\left(\mathbb{F}_{31}\right): y^{2}=x^{3}+2 x+7 \tag{1}
\end{equation*}
$$

For this problem we can just look them up from the previous computations. For example, DECOMPRESS $(3,1)$ is

$$
y^{2}=3^{3}+2 \cdot 3+7=40 \equiv 9=3^{2} \bmod 31
$$

Since $y=3 \equiv 1 \bmod 2$, we get $(3,1)$. So $b=y \bmod 2$ identifies which y to use-the odd one or the even one.

$$
\begin{aligned}
& P_{1}=\operatorname{DECOMPRESS}(18,1)=(18,27) \\
& P_{2}=\operatorname{DECompRESS}(3,1)=(3,3) \\
& P_{3}=\operatorname{DECOMPRESS}(17,0)=(17,26) \\
& P_{4}=\operatorname{DECOMPRESS}(28,0)=(28,6) .
\end{aligned}
$$

Q2. Let E be as above. As shown in Homework 11, $\# E=39$ and $P=(2,9)$ is an element of order 39 in E. The Simplified ECIES defined on E has \mathbb{F}_{31}^{*} as its plaintext space. Suppose the private key is $a=8$.
a) Compute $Q=a P$.
b) Decrypt the following string of ciphertext:

$$
((18,1), 21),((3,1), 18),((17,0), 19),((28,0), 8)
$$

A2.

1. We compute $8 P=2^{3} P=2(2(2 P))$ using three doublings.

$$
\begin{aligned}
& 2 P=(10,2) \\
& 4 P=2(2 P)=(15,8) \\
& 8 P=2(4 P)=(8,15)
\end{aligned}
$$

2. We proceed as in the textbook using the decompressions P_{i} from above, computing $m P_{i}$:

$$
\begin{aligned}
& 8 P_{1}=(15,8) \\
& 8 P_{2}=(2,9) \\
& 8 P_{3}=(30,29) \\
& 8 P_{4}=(14,19) .
\end{aligned}
$$

We use these x-coordinates to recover the plaintext:

$$
\begin{aligned}
21 \cdot(15)^{-1} \bmod 31 & =21 \cdot 29 \bmod 31=20={ }^{\prime} \mathrm{T}^{\prime} \\
18 \cdot(2)^{-1} \bmod 31 & =18 \cdot 16 \bmod 31=9={ }^{\prime} \mathrm{I}^{\prime} \\
19 \cdot(30)^{-1} \bmod 31 & =19 \cdot 30 \bmod 31=12={ }^{\prime} \mathrm{L}^{\prime} \\
8 \cdot(14)^{-1} \bmod 31 & =8 \cdot 20 \bmod 31=5={ }^{\prime} \mathrm{E}^{\prime}
\end{aligned}
$$

and the plaintext is "TILE".

Q3.
Let p be prime and $p>3$. Show that the following elliptic curves over \mathbf{Z}_{p} have $p+1$ points:
a) $y^{2}=x^{3}-x$, for $p \equiv 3(\bmod 4)$. Hint: Show that from the two values $\pm r$ for $r \neq 0$ exactly one gives a quadratic residue modulo p.
b) $y^{2}=x^{3}-1$, for $p \equiv 2(\bmod 3)$. Hint: If $p \equiv 2(\bmod 3)$, then the mapping $x \mapsto x^{3}$ is a bijection in \mathbf{Z}_{p}.

A3-a). Let the map $\mathcal{X}: \mathbb{F}_{p}^{\times} \rightarrow C_{2}$ be defined by $\mathcal{X}(u) \mapsto\left(\frac{u}{p}\right)$ (the Legendre symbol). So $\mathcal{X}(u)$ maps u to 1 if it has a square root, -1 if it does not, or 0 if it is zero. It clearly follows

$$
\#\left\{y \in \mathbb{F}_{p}: y^{2}=u\right\}=1+\mathcal{X}(u)
$$

From the Legendre symbol rules when $p \equiv 3(\bmod 4)$ we have

$$
\mathcal{X}\left((-x)^{3}-(-x)\right)=\mathcal{X}(-1) \mathcal{X}\left(x^{3}-x\right)=-\mathcal{X}\left(x^{3}-x\right)
$$

Hence, $\sum_{x \in \mathbb{F}_{p}} \mathcal{X}\left(x^{3}-x\right)=0$ and we have
$\# E\left(\mathbb{F}_{p}\right)=1+\sum_{x \in \mathbb{F}_{p}}\left(1+\mathcal{X}\left(x^{3}-x\right)\right)=1+p+\sum_{x \in \mathbb{F}_{p}} \mathcal{X}\left(x^{3}-x\right)=1+p$.

A3-b).

- We can consider more generally $y^{2}=x^{3}+b$ over \mathbb{F}_{p} with $p \equiv 2$ $(\bmod 3)$.
- The problem hints $x \mapsto x^{3}$ is a bijection, thus cubed roots are unique.
- Given a y-coordinate, we solve for x using $x=\sqrt[3]{y^{2}-b}$ which has exactly one solution-that is, for every $y \in \mathbb{F}_{p}$ we get exactly one point $\left(\sqrt[3]{y^{2}-b}, y\right) \in E\left(\mathbb{F}_{p}\right)$.
- This gives us $\# \mathbb{F}_{p}=p$ points, and including the identity \mathcal{O} we find $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- In general, the following form of supersingular elliptic curves have $p+1$ points: $E: y^{2}=x^{3}-a x$ over \mathbb{F}_{p} where $p \equiv 3$ $(\bmod 4)$ and $E: y^{2}=x^{3}+b$ over \mathbb{F}_{p} where $p \equiv 2(\bmod 4)$.

Q4.
Let $E=E\left(\mathbb{F}_{43}\right)$ be the elliptic curve $y^{2}=x^{3}+32 x$ presented in Lecture 11. The purpose of this problem is to show that E is isomorphic to $\mathbf{Z}_{22} \times \mathbf{Z}_{2}$. It is possible to do it without computing a single elliptic curve point operation.
Denote $P=(41,10) \in H_{2}$ and $Q=(0,0) \in H_{1}$. Then $\operatorname{ord}(P)=22$ and $\operatorname{ord}(Q)=2$.

1. Prove that $\operatorname{ord}(P+Q)=\operatorname{ord}(2 P+Q)=22$ and $P+Q \in H_{3}$ and $2 P+Q \in H_{1}$.
2. Let us consider the cyclic subgroups $H_{1}=\langle 2 P+Q\rangle, H_{2}=\langle P\rangle$ and $H_{3}=\langle P+Q\rangle$. Show that, for any $S \in E, S \in H_{1} \cap H_{2} \cap H_{3}$ if and only if $S=m P$, where m is even.
3. Show that all points $S \in E$ admit a unique representation in the form $a P+b Q$, where $a \in \mathbf{Z}_{22}$ and $b \in \mathbf{Z}_{2}$.
4. Show that the mapping $\phi: E \rightarrow \mathbf{Z}_{22} \times \mathbf{Z}_{2}, \phi(a P+b Q)=(a, b)$ is an isomoprphism.

A4-a). Given $P \in H_{2}, Q \in H_{1},\langle P\rangle=H_{2}$ and $\langle Q\rangle=\{(0,0), \mathcal{O}\}$, we observe $\langle P\rangle \cap\langle Q\rangle=\mathcal{O}$. It follows that
if $a P=b Q$ for some integers a and b, then $a \equiv 0 \bmod 22$ and $b \equiv 0 \bmod 2 .(*)$

- Claim 1: $\operatorname{ord}(P+Q)=22$.

$$
\begin{aligned}
& 2(P+Q)=2 P \neq \mathcal{O} \Rightarrow \operatorname{ord}(P+Q) \neq 2 \\
& 11(P+Q)=11 P+11 Q \neq \mathcal{O} \text { by }(*) \Rightarrow \operatorname{ord}(P+Q) \neq 11
\end{aligned}
$$

- Claim 2: $\operatorname{ord}(2 P+Q)=22$.

$$
\begin{aligned}
& 2(2 P+Q)=4 P \neq \mathcal{O} \Rightarrow \operatorname{ord}(2 P+Q) \neq 2 \\
& 11(2 P+Q)=11 Q \neq \mathcal{O} \Rightarrow \operatorname{ord}(2 P+Q) \neq 11
\end{aligned}
$$

A4-a).

- Claim 3: $(P+Q) \in H_{3}$

If $P+Q \in H_{1}$, then $P \in H_{1}$ since $Q \in H_{1}$, which is contradiction. Hence, $P+Q \neq H_{1}$. Similarly, $P+Q \neq H_{2}$. Since $E=H_{1} \cup H_{2} \cup H_{3}$, we conclude $P+Q \in H_{3}$.

- Claim 4: $(2 P+Q) \in H_{1}$

Since $2 P \in H_{1}$ and $Q \in H_{1}$, the claim follows.

A4-b) and c).

- If $\langle 2 P\rangle \subset H_{1} \cap H_{2} \cap H_{3}$, then $m P \in H_{1} \cap H_{2} \cap H_{3}$ for even m. To prove the contrary, let $S \in H_{1} \cap H_{2} \cap H_{3}$. Then, we have

$$
\begin{aligned}
& S \in H_{2}=\langle P\rangle \Rightarrow S=a P, a \in \mathbf{Z}_{22} \\
& S \in H_{3}=\langle P+Q\rangle \Rightarrow S=b(P+Q), b \in \mathbf{Z}_{22}
\end{aligned}
$$

By (*), $b P+b Q=a P \Rightarrow(a-b) P=b Q$. Hence, $a=b \bmod 22$ and $b=0 \bmod 2$. It follows that $a=0 \bmod 2$.

- Assume that $S \in E$ is represented by $a_{1} P+b_{1} Q$ and $a_{2} P+b_{2} Q$ where $a_{1} \neq a_{2}$ or $b_{1} \neq b_{2}$. Then,

$$
a_{1} P+b_{1} Q=a_{2} P+b_{2} Q \Rightarrow\left(a_{1}-a_{2}\right) P=\left(b_{2}-b_{1}\right) Q
$$

From $\left({ }^{*}\right)$, we have $a_{1}=a_{2} \bmod 22$ and $b_{1}=b_{2} \bmod 2$ so the claim follows.

A4-d).

- From (a), $S \in E, S$ can be represented in a form $a P+b Q$.
- From (c), $S=a P+b Q$ is a unique representation.
- Hence, $\phi: E \rightarrow \mathbf{Z}_{22} \times \mathbf{Z}_{2}, S \mapsto a P+b Q$ is one-to-one.
- Since $\# E=44=\#\left\{\mathbf{Z}_{22} \times \mathbf{Z}_{2}\right\}, \phi$ is bijective.
- Clearly ϕ represents the group operation $\phi\left(S_{1}+S_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$ for all $S_{1}=a_{1} P+b_{1} Q \in E$ and $S_{2}=a_{2} P+b_{2} Q \in E$.

Q5. Let E be as in Problem 1 and 2.
a) Determine the NAF representation of the integer 27.
b) Using the NAF representation of 27, use Algorithm 6.5 to compute $27 P$, where $P=(2,9)$.

A5. NAF stands for Non-Adjacent Form—no two coefficients are non-zero. If q_{i} is odd, then $k_{i}=2-\left(q_{i} \bmod 4\right)$. else $k_{i}=0$. Also, $q_{i+1}=\left(q_{i}-k_{i}\right) / 2$.

i	q_{i}	q_{i}	$\bmod 4$
k_{i}			
0	27	3	-1
1	14	-	0
2	7	3	-1
3	4	-	0
4	2	-	0
5	1	1	1

so $27=2^{5}-2^{2}-1$ and we have $\operatorname{NAF}(27)=(1,0,0,-1,0,-1)$ of weight 3 and length 6 .

Given the NAF above and $P=(2,9)$, we calculate $27 P$ as

$$
2(2(2(2(2 P))-P))-P
$$

outlined below. To subtract P we add $-P=(x,-y)$.

i	k_{i}	Double	Sub	Result
4	0	$2(2,9)=(10,2)$	-	
3	0	$2(10,2)=(15,8)$	-	
2	-1	$2(15,8)=(8,15)$	$-(2,9)$	$(6,24)$
1	0	$2(6,24)=(20,24)$	-	
0	-1	$2(20,24)=(30,2)$	$-(2,9)$	$(9,14)$

and $27 \cdot(2,9)=(9,14)$.

Q6.
Consider a variation of El Gamal Signature Scheme in $G F\left(2^{n}\right)$. The public parameters are n, q and α, where q is a divisor of $2^{n}-1$ and α is an element of $G F\left(2^{n}\right)$ of multiplicative order q. A user's secret key is $a \in \mathbf{Z}_{q}$ and the public key β is computed as $\beta=\alpha^{a}$ in $G F\left(2^{n}\right)$. To generate a signature for message x a user with secret key a generates a secret value $k \in \mathbf{Z}_{q}^{*}$ and computes the signature (γ, δ) as

$$
\begin{aligned}
\gamma & =\alpha^{k}\left(\operatorname{in} G F\left(2^{n}\right)\right) \\
\delta & =\left(x-a \gamma^{\prime}\right) k^{-1} \bmod q
\end{aligned}
$$

where γ^{\prime} is an integer representation of γ. Suppose Bob is using this signature scheme, and he signs two messages x_{1} and x_{2}, and gets signatures $\left(\gamma_{1}, \delta_{1}\right)$ and $\left(\gamma_{2}, \delta_{2}\right)$, respectively. Alice sees the messages and their respective signatures, and she observes that $\gamma_{1}=\gamma_{2}$.
a) Describe how Alice can now derive information about Bob's private key.
b) Suppose $n=8, q=15, x_{1}=1, x_{2}=4, \delta_{1}=11, \delta_{2}=2$, and $\gamma_{1}^{\prime}=\gamma_{2}^{\prime}=7$. What Alice can say about Bob's private key?

A6-a.
With $k_{i} \in_{R} \mathbf{Z}_{q}^{*}$, observing $\gamma_{1}=\gamma_{2} \Rightarrow k_{1}=k_{2}$ as $\operatorname{ord}(\alpha)=q$; the same nonce has been used twice. We will denote $k_{1}=k_{2}=k$ and $\gamma_{1}=\gamma_{2}=\gamma$.

1. From the construction of the δ_{i} signature portions, we get the following system of equations:

$$
\begin{aligned}
& k=\left(x_{1}-a \gamma^{\prime}\right) \delta_{1}^{-1} \bmod q \\
& k=\left(x_{2}-a \gamma^{\prime}\right) \delta_{2}^{-1} \bmod q .
\end{aligned}
$$

We have two equations and two unknowns (k, a) and simply solve algebraically for the private key a by eliminating k. We find

$$
a=\left(x_{2} \delta_{1}-x_{1} \delta_{2}\right)\left(\gamma^{\prime} \delta_{1}-\gamma^{\prime} \delta_{2}\right)^{-1} \quad \bmod q .
$$

A6-b.

- We use the above equation and find

$$
a=(4 \cdot 11-1 \cdot 2)(7 \cdot 11-7 \cdot 2)^{-1}=12 \cdot(3)^{-1} \bmod 15
$$

- but 3 is not relatively prime to 15 and has no inverse.
- We do however find
$3 a=12 \bmod 15 \Rightarrow 3 a=12+15 i \Rightarrow a=4+5 i \Rightarrow a \equiv 4 \quad(\bmod 5)$
and thus $a \in\{4,9,14\}$. Given a public key we could easily test these three values.

