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Q1. LetE be the elliptic curvey2 = x3 + 2x+ 7 defined overFF31 (see
Homework 11). Compute the decompressions of(18, 1), (3, 1),
(17, 0) and(28, 0).



A1.
The curveE is given

E(FF31) : y2 = x3 + 2x + 7. (1)

For this problem we can just look them up from the previous
computations. For example,DECOMPRESS(3,1) is

y2 = 33 + 2 · 3 + 7 = 40≡ 9 = 32 mod 31

Sincey = 3 ≡ 1 mod 2, we get (3,1). Sob = y mod 2 identifies
whichy to use—the odd one or the even one.

P1 = DECOMPRESS(18, 1) = (18, 27)

P2 = DECOMPRESS(3, 1) = (3, 3)

P3 = DECOMPRESS(17, 0) = (17, 26)

P4 = DECOMPRESS(28, 0) = (28, 6).



Q2. LetE be as above. As shown in Homework 11,#E = 39 and
P = (2, 9) is an element of order 39 inE. TheSimplified ECIES
defined onE hasFF∗

31 as its plaintext space. Suppose the private key is
a = 8.

a) ComputeQ = aP.

b) Decrypt the following string of ciphertext:

((18, 1), 21), ((3, 1), 18), ((17, 0), 19), ((28, 0), 8)



A2.

1. We compute 8P = 23P = 2(2(2P)) using three doublings.

2P = (10, 2)

4P = 2(2P) = (15, 8)

8P = 2(4P) = (8, 15).

2. We proceed as in the textbook using the decompressionsPi from
above, computingmPi :

8P1 = (15, 8)

8P2 = (2, 9)

8P3 = (30, 29)

8P4 = (14, 19).



We use thesex-coordinates to recover the plaintext:

21 · (15)−1 mod 31= 21 · 29 mod 31= 20 = ’T’

18 · (2)−1 mod 31= 18 · 16 mod 31= 9 = ’I’

19 · (30)−1 mod 31= 19 · 30 mod 31= 12 = ’L’

8 · (14)−1 mod 31= 8 · 20 mod 31= 5 = ’E’

and the plaintext is “TILE”.



Q3.
Let p be prime andp > 3. Show that the following elliptic curves over
Zp havep + 1 points:

a) y2 = x3 − x, for p ≡ 3(mod4). Hint: Show that from the two
values±r for r 6= 0 exactly one gives a quadratic residue modulo
p.

b) y2 = x3 − 1, for p ≡ 2(mod3). Hint: If p ≡ 2(mod3), then the
mappingx 7→ x3 is a bijection inZp.



A3-a). Let the mapX : FF×

p → C2 be defined byX (u) 7→
(

u
p

)

(the

Legendre symbol). SoX (u) mapsu to 1 if it has a square root, -1 if it
does not, or 0 if it is zero. It clearly follows

#{y ∈ FFp : y2 = u} = 1 + X (u)

From the Legendre symbol rules whenp ≡ 3 (mod 4) we have

X ((−x)3 − (−x)) = X (−1)X (x3 − x) = −X (x3 − x)

Hence,
∑

x∈FFp
X (x3 − x) = 0 and we have

#E(FFp) = 1+
∑

x∈FFp

(1+X (x3−x)) = 1+p+
∑

x∈FFp

X (x3−x) = 1+p.



A3-b).

• We can consider more generallyy2 = x3 + b overFFp with p ≡ 2
(mod 3).

• The problem hintsx 7→ x3 is a bijection, thus cubed roots are
unique.

• Given ay-coordinate, we solve forx usingx = 3
√

y2 − b which
has exactly one solution—that is, for everyy ∈ FFp we get
exactly one point( 3

√

y2 − b, y) ∈ E(FFp).

• This gives us#FFp = p points, and including the identityO we
find #E(FFp) = p + 1.

• In general, the following form ofsupersingularelliptic curves
havep + 1 points:E : y2 = x3 − ax overFFp wherep ≡ 3
(mod 4) andE : y2 = x3 + b overFFp wherep ≡ 2 (mod 4).



Q4.
Let E = E(FF43) be the elliptic curvey2 = x3 + 32x presented in
Lecture 11. The purpose of this problem is to show thatE is
isomorphic toZ22 × Z2. It is possible to do it without computing a
single elliptic curve point operation.
DenoteP = (41, 10) ∈ H2 andQ = (0, 0) ∈ H1. Then ord(P)= 22
and ord(Q)= 2.

1. Prove that ord(P + Q)= ord(2P + Q)= 22 andP + Q ∈ H3 and
2P + Q ∈ H1.

2. Let us consider the cyclic subgroupsH1 = 〈2P + Q〉, H2 = 〈P〉
andH3 = 〈P + Q〉. Show that, for anyS∈ E, S∈ H1 ∩ H2 ∩ H3

if and only if S= mP, wherem is even.

3. Show that all pointsS∈ E admit a unique representation in the
form aP+ bQ, wherea ∈ Z22 andb ∈ Z2.

4. Show that the mappingφ : E → Z22 × Z2, φ(aP+ bQ) = (a, b)
is an isomoprphism.



A4-a). GivenP ∈ H2, Q ∈ H1, 〈P〉 = H2 and〈Q〉 = {(0, 0),O}, we
observe〈P〉 ∩ 〈Q〉 = O. It follows that

if aP = bQ for some integersa andb, thena ≡ 0 mod 22 and
b ≡ 0 mod 2. (*)

• Claim 1: ord(P + Q) = 22.

2(P + Q) = 2P 6= O ⇒ ord(P + Q) 6= 2

11(P + Q) = 11P + 11Q 6= O by (*) ⇒ ord(P + Q) 6= 11,

• Claim 2: ord(2P + Q) = 22.

2(2P + Q) = 4P 6= O ⇒ ord(2P + Q) 6= 2

11(2P + Q) = 11Q 6= O ⇒ ord(2P + Q) 6= 11.



A4-a).

• Claim 3: (P + Q) ∈ H3

If P + Q ∈ H1, thenP ∈ H1 sinceQ ∈ H1, which is
contradiction. Hence,P + Q 6= H1. Similarly, P + Q 6= H2.
SinceE = H1 ∪ H2 ∪ H3, we concludeP + Q ∈ H3.

• Claim 4: (2P + Q) ∈ H1

Since 2P ∈ H1 andQ ∈ H1, the claim follows.



A4-b) and c).

• If 〈2P〉 ⊂ H1 ∩ H2 ∩ H3, thenmP∈ H1 ∩ H2 ∩ H3 for evenm.
To prove the contrary, letS∈ H1 ∩ H2 ∩ H3. Then, we have

S∈ H2 = 〈P〉 ⇒ S= aP, a ∈ Z22

S∈ H3 = 〈P + Q〉 ⇒ S= b(P + Q), b ∈ Z22.

By (*), bP+ bQ = aP⇒ (a− b)P = bQ. Hence,a = b mod 22
andb = 0 mod 2. It follows thata = 0 mod 2.

• Assume thatS∈ E is represented bya1P + b1Q anda2P + b2Q
wherea1 6= a2 or b1 6= b2. Then,

a1P + b1Q = a2P + b2Q ⇒ (a1 − a2)P = (b2 − b1)Q

From (*), we havea1 = a2 mod 22 andb1 = b2 mod 2 so the
claim follows.



A4-d).

• From (a),S∈ E, Scan be represented in a formaP+ bQ.

• From (c),S= aP+ bQ is a unique representation.

• Hence,φ : E → Z22 × Z2, S 7→ aP+ bQ is one-to-one.

• Since#E = 44 = #{Z22 × Z2}, φ is bijective.

• Clearlyφ represents the group operation
φ(S1 + S2) = (a1 + a2, b1 + b2) for all S1 = a1P + b1Q ∈ E and
S2 = a2P + b2Q ∈ E.



Q5. LetE be as in Problem 1 and 2.

a) Determine the NAF representation of the integer 27.

b) Using the NAF representation of 27, use Algorithm 6.5 to
compute 27P, whereP = (2, 9).



A5. NAF stands for Non-Adjacent Form—no two coefficients are
non-zero. Ifqi is odd, thenki = 2− (qi mod 4). elseki = 0. Also,
qi+1 = (qi − ki)/2.

i qi qi mod 4 ki

0 27 3 -1
1 14 — 0
2 7 3 -1
3 4 — 0
4 2 — 0
5 1 1 1

so 27= 25 − 22 − 1 and we have NAF(27)=(1,0,0,-1,0,-1) of weight 3
and length 6.



Given the NAF above andP = (2, 9), we calculate 27P as

2(2(2(2(2P)) − P)) − P

outlined below. To subtractP we add−P = (x,−y).

i ki Double Sub Result
4 0 2(2,9) = (10,2) —
3 0 2(10,2) = (15,8) —
2 -1 2(15,8) = (8,15) -(2,9) (6,24)
1 0 2(6,24) = (20,24) —
0 -1 2(20,24) = (30,2) -(2,9) (9,14)

and 27· (2, 9) = (9, 14).



Q6.
Consider a variation of El Gamal Signature Scheme inGF(2n). The
public parameters aren, q andα, whereq is a divisor of 2n − 1 andα
is an element ofGF(2n) of multiplicative orderq. A user’s secret key
is a ∈ Zq and the public keyβ is computed asβ = αa in GF(2n). To
generate a signature for messagex a user with secret keya generates a
secret valuek ∈ Z∗

q and computes the signature(γ, δ) as

γ = αk ( in GF(2n))

δ = (x− aγ′)k−1 mod q,

whereγ′ is an integer representation ofγ. Suppose Bob is using this
signature scheme, and he signs two messagesx1 andx2, and gets
signatures(γ1, δ1) and(γ2, δ2), respectively. Alice sees the messages
and their respective signatures, and she observes thatγ1 = γ2.

a) Describe how Alice can now derive information about Bob’s
private key.

b) Supposen = 8, q = 15,x1 = 1, x2 = 4, δ1 = 11,δ2 = 2, and
γ′

1 = γ′

2 = 7. What Alice can say about Bob’s private key?



A6-a.
With ki ∈R Z∗

q, observingγ1 = γ2 ⇒ k1 = k2 as ord(α) = q; the
same nonce has been used twice. We will denotek1 = k2 = k and
γ1 = γ2 = γ.

1. From the construction of theδi signature portions, we get the
following system of equations:

k = (x1 − aγ′)δ−1
1 mod q

k = (x2 − aγ′)δ−1
2 mod q.

We have two equations and two unknowns(k, a) and simply
solve algebraically for the private keya by eliminatingk. We find

a = (x2δ1 − x1δ2)(γ
′δ1 − γ′δ2)

−1 mod q.



A6-b.

• We use the above equation and find

a = (4 · 11− 1 · 2)(7 · 11− 7 · 2)−1 = 12 · (3)−1 mod 15

• but 3 is not relatively prime to 15 and has no inverse.

• We do however find

3a = 12 mod 15⇒ 3a = 12+15i ⇒ a = 4+5i ⇒ a ≡ 4 (mod 5)

and thusa ∈ {4, 9, 14}. Given a public key we could easily test
these three values.


