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QL. LetE be the elliptic curvg®® = x3 + 2x + 7 defined ovefFs; (see
Homework 11). Compute the decompressiongl& 1), (3, 1),
(17,0) and(28,0).



Al.
The curveE is given

E(Fa1) : y> =X 4+ 2x+ 7. 1)

For this problem we can just look them up from the previous
computations. For exampleECOMPRES$3,1) is

vV =34+2.3+7=40=9=3mod 31

Sincey = 3= 1 mod 2, we get (3,1). So=y mod 2 identifies
whichy to use—the odd one or the even one.

P; = DECOMPRES$18 1) = (18,27)
P, = DECOMPRES$3, 1) = (3,3)

P3 = DECOMPRES$17,0) = (17, 26)
P, = DECOMPRES$28,0) = (28, 6).



Q2. LetE be as above. As shown in Homework ¥E = 39 and
P = (2,9) is an element of order 39 . TheSimplified ECIES
defined orE haslF3; as its plaintext space. Suppose the private key is
a=8.
a) ComputeQ = aP.
b) Decrypt the following string of ciphertext:

((18,1),21),((3,1),18),((17,0),19), ((28,0), 8)



A2.
1. We compute B = 23P = 2(2(2P)) using three doublings.
2P = (10,2)
4P = 2(2P) = (15,8)
8P = 2(4P) = (8,15).

2. We proceed as in the textbook using the decompres$§ioitem
above, computingnR:

8P, = (15,8)
8P, = (2,9)
8P; = (30,29)
8P, = (14, 19).



We use thesg-coordinates to recover the plaintext:

21- (157! mod 31=21-29 mod 31=20="T’
18- (2)"' mod 31=18-16 mod 31=9=""
19-(30)! mod 31=19-30 mod 31=12="U
8-(14)~' mod 31=8-20 mod 31=5="F’

and the plaintext is “TILE".



Q3.
Let p be prime ang > 3. Show that the following elliptic curves over
Zp havep + 1 points:
a) y?> = x3 — x, for p = 3(mod4). Hint: Show that from the two
valuestr forr £ 0 exactly one gives a quadratic residue modulo
p.
b) y? = x® — 1, forp = 2(mod3. Hint: If p = 2(mod3), then the
mappingx — xS is a bijection inZp.



A3-a). Let the mapt : FJ — C; be defined by¥'(u) — (g) (the

Legendre symbol). S&'(u) mapsu to 1 if it has a square root, -1 if it
does not, or O if it is zero. It clearly follows

#yecFp: Y =u} =1+ X(u)
From the Legendre symbol rules wher= 3 (mod 4) we have
X((—2° = (=) = X ()X ( —x) = —X( —X)

Hence,zxeﬂzp X (x® — x) = 0 and we have

HE(Fp) =1+ Y (1+X(C—X) = 1+p+ > X(C—x) = 1+p.
xelFp xelFp



A3-b).
 We can consider more generayfy= x> + b overFp with p = 2
(mod 3.
e The problem hintx — X3 is a bijection, thus cubed roots are
unique.

o Given ay-coordinate, we solve for usingx = /y2 — b which
has exactly one solution—that is, for every Fp we get

exactly one poinf+/y? — b,y) € E(Fp).

e This gives us#F, = p points, and including the identity we
find #E(Fp) = p+ 1.

¢ In general, the following form afupersingulatelliptic curves
havep + 1 points:E : y? = x3 — ax overFp wherep = 3
(mod 4) andE : y? = x3 + b overF, wherep = 2 (mod 4).



Q4.
Let E = E(FF43) be the elliptic curve®® = x3 4- 32 presented in
Lecture 11. The purpose of this problem is to show that
isomorphic taZ,, x Z,. Itis possible to do it without computing a
single elliptic curve point operation.
DenoteP = (41,10) € H, andQ = (0,0) € Hy. Then ordP)= 22
and ordQ)= 2.
1. Prove that ord? + Q)= ord(2P + Q)= 22 andP + Q € Hz and
2P 4 Q € Ha.
2. Let us consider the cyclic subgrouds = (2P + Q), Hy = (P)
andHs = (P + Q). Show that, foran € E, S€ Hi N H, N H3
if and only if S= mP, wheremis even.

3. Show that all point$ € E admit a unique representation in the
form aP + bQ, wherea € Z,, andb € Z,.

4. Show that the mapping : E — Z2, x Z3, ¢(aP+ bQ) = (a,b)
is an isomoprphism.



Ad4-a). GivenP € Hy, Q € Hj, (P) = Hy and(Q) = {(0,0), O}, we
observe(P) N (Q) = O. It follows that

if aP = bQfor some integera andb, thena = 0 mod 22 and
b= 0mod 2. (*)
e Claim 1: ordP + Q) = 22.

2(P+Q)=2P +# O = ord(P + Q) # 2
11(P+Q) = 11P+ 11Q # O by (*) = ord(P + Q) # 11,

e Claim 2: ord2P + Q) = 22.

2(2P+ Q) = 4P # O = ord(2P + Q) # 2
11(2P + Q) = 11Q # O = ord(2P + Q) # 11



A4-a).
e Claim3:(P+ Q) e Hs
If P+ Q € Hy, thenP € H; sinceQ € Hy, which is
contradiction. Hence? + Q # Hj. Similarly, P + Q # Ha.
SinceE = H1 U Hy U H3, we concludeéP + Q € Ha.
e Claim4:(2P+ Q) e H;
Since P € Hy andQ € Hjy, the claim follows.



A4-b) and c).
e If (2P) C Hi N Hz N Hs, thenmP € Hy N Hy N H3 for evenm.
To prove the contrary, I8 € H; N H, N H3. Then, we have

Se H2:<P>:>S:8.P,86222
Sec H3:<P+Q> = S= b(P+Q),b€Zzz.

By (*), bP+bQ = aP = (a— b)P = bQ. Hencea = b mod 22
andb = 0 mod 2. It follows thata = 0 mod 2.

e Assume thaS € E is represented bg P + b;Q andayP + b,Q
wherea; # ap or by # by, Then,

P+ le = aP+ b2Q = (8.1 — az)P = (b2 — bl)Q

From (*), we havea; = a, mod 22 andh; = b, mod 2 so the
claim follows.



A4-d).

e From (a),S€ E, Scan be represented in a foa® + bQ.
From (c),S= aP+ bQis a unique representation.
Hence : E — Zyy x Z5, S+— aP + bQis one-to-one.
Since#E = 44 = #{Zy, x Z;,}, ¢ is bijective.
Clearly ¢ represents the group operation

?(S1+ ) = (a1 +ag, by + by) forall §; = ayP + b;Q € Eand
S =aP+bQeE.



Q5. LetE be as in Problem 1 and 2.
a) Determine the NAF representation of the integer 27.

b) Using the NAF representation of 27, use Algorithm 6.5 to
compute 2P, whereP = (2,9).



A5. NAF stands for Non-Adjacent Form—no two coefficients are
non-zero. Ifg; is odd, therki = 2 — (g mod 4). elsek; = 0. Also,
G+1= (0 —ki)/2.

g g mod4 Kk

|

0 27 3 -1
1 14 — 0
2 7 -1
3 4 — 0
4 2 — 0
5 1 1 1

s0 27= 2% — 22 — 1 and we have NAF(27)=(1,0,0,-1,0,-1) of weight 3
and length 6.



Given the NAF above anl = (2,9), we calculate 2/ as
2(2(2(2(2P)) — P)) — P

outlined below. To subtrad® we add—P = (x, —y).

i kj Double Sub Result
4 0 2(2,9) =(10,2) —
3 0 2(10,2)=(15,8) —
2 -1 2(15,8)=(8,15) -(2,9) (6,24)
1 0 2(6,24)=(20,24) —
0 -1 2(20,24)=(30,2) -(2,9) (9,14)

and 27 (2,9) = (9, 14).



Q6.

Consider a variation of El Gamal Signature Schem@h{2"). The
public parameters amg g anda, whereq is a divisor of 2 — 1 anda

is an element o6F(2") of multiplicative orderg. A user’s secret key
isa € Zq and the public keys is computed ag = o® in GF(2"). To
generate a signature for messageuser with secret keg generates a
secret valuk € Z; and computes the signature, §) as

v = of(in GF(2")
§ = (x—ay)ktmodaq,

wherey’ is an integer representationof Suppose Bob is using this
signature scheme, and he signs two messggasdx,, and gets
signatureg~y1, 01) and(~2, d2), respectively. Alice sees the messages
and their respective signatures, and she observesthaty,.
a) Describe how Alice can now derive information about Bob's
private key.
b) Supposern=8,q=15,x1 = 1,% =4,01 = 11,6, = 2, and
71 = 75 = 7. What Alice can say about Bob’s private key?



A6-a.
With ki er Z, observingy; = 72 = k1 = ko as orda) = q; the
same nonce has been used twice. We will dekpte ko = k and
Y1=Y2=7-
1. From the construction of th& signature portions, we get the
following system of equations:

k= (x1—a))é; modq
k= (% —ay)s,*

mod g.
We have two equations and two unknowksa) and simply
solve algebraically for the private keyby eliminatingk. We find

1

a= (X201 — X102)(7'61 — ¥'92) "> moda.



AB-b.
e We use the above equation and find

a=(4-11-1-2)(7-11-7-2)"=12-(3)"" mod 15

e but 3 is not relatively prime to 15 and has no inverse.
¢ We do however find

3a=12 mod 15= 3a=12+15 = a=4+5i=a=4 (mod 5

and thusa € {4, 9, 14}. Given a public key we could easily test
these three values.



