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Introduction

e During the course we’ve seen VC’s on Erdos-Renyi random
graphs

e Real-worlds graphs are more complicated

— Non-poissonian degree distributions (often fat tails)

— Degree—degree correlations

e VC’s on such graphs are important since they have applications
In, for instance, network traffic monitoring
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(a) Random Network (b) Scale-free network
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GCRG's

e A set on undirected graphs
with N vertices and an arbi-

trary degree distribution p, C

e An important quantity is the
excess degree distribution

~ (d+1)pa+
dd — (d) (1)
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GCRG’s (contd)

e Choose an edge randomly: the endpoints have excess degrees
d and d’ with probability

(2 — 5d,d’)€dd’ (2)

e ¢,y IS related to the conditional probability that a vertex of
degree d is reached coming from a vertex of degree d’

P(d|d') = (3)
qa’

e For uncorrelated graphs e gy = qaqu
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Lattice gas

e Consider an arbitrary undirected graph with adjacency matrix J;;

e A general lattice gas on the graph is defined by the Hamiltonian

—ﬁH = Z Jij’w(a:i,xj) -+ ,uz.rz

1<J )
e The microscopic degrees of freedom x; = 0,1

e 1 IS the chemical potential

e The ferromagnetic Ising model is recovered by choosing
w(z;, ;) = (2x; —1)(2x; — 1)
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Lattice gas (cont'd)

e Vazquez and Weigt perform a cavity cal-
culation of the system

e In the end, it will be applied the VC’s to
estimate the relative size of the minimum
vertex cover

e The calculation touches the issue of
replica symmetry breaking without actu-
ally being an RSB calculation

e In this talk, I will next go through the main
parts of the calculation
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Partition functions

e Usually the partition function
reads

Z= ) e (5

all states

e Assume the graph is locally
treelike

e Now consider an arbitrary
edge (¢,j5) and the subtree
rooted in ¢ with edge (i, j) re-
moved
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Partition functions (cont’d)

e Write down the partition functions with z;
fixed to value x 2 e

Zé’bl]) — H (ew(O,O)Z(gk|i)_|_€w(0,1)Z£k|z')) @ @

k#jlJik=1
w(0,xy) w(0,x)
Z{im _ oH H (ew(l,O)Zékﬁ)_|_€w(1,1)Z£k|’i)) <0 0
k#j|Jir=1
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Effective fields

e Define the effective fields as
Zfélj)
Zé'”j)

e Physical meaning: an isolated particle with —3H = hz, Z; = €,
Zo =1 and h = ln(Zl/Zo)

e Using Egs. from the previous slide we get

hapy =p+ Y, ulbgg) (7)
k#j|Jik=1
w(1,0) w(l,)+hg;
e + e (k|%)
U/(hkh) — ln( ew(0,0) _|_ ew(071)+h(k|i) ) (8)
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lteration and RS

e The equation for h; ;) on the previous slide defines an iteration:

for each step the A’s can be substituted on the right-hand side,
and new h’s obtained

e The assumption that this iteration converges to a well-defined
probability distribution P(h) of the h’s corresponds to the
assumption that the replica symmetry is not broken.

e P,(h) for nodes of degree d is given by

oo d 00 d
Pd(h)=/_ 1@ > p(d'|d)Par ()5 (h = = > u(h)) (9)

=1
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Back to vertex covers

e The lattice gas is a vertex cover with the choice

w(x;,

e %) =1 -z

e Here, z; = 0 refers to a covered node and z; = 1 to an
uncovered one.

e The VC is minimum if the number of nodes with ; = 1 IS
maximum.

e Therefore, take the limit © — oo (scale the field by h = uz2).
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Back to vertex covers (cont’d)

e The equation for the probability distribution becomes

Py(z) = /_ h 1[(dz > p(d|d)Par())5(h — p =) max(0, z))
=1 d’ =0 =1 (11)

e By a clever Ansatz this equation can be solved
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The solution

e Omitting details, details, and details, one arrives at

> d— 2
Ye=1— ;pdu — 1)1+ 5 Td—1) (12)

e The auxiliary variables 7, obey the self-consistency equation
ma=y_ pldild)(1 ) (13)
d;=0

e Physically 7, is the probability that an edge arriving at a vertex of
degree d + 1 carries a constraint, i.e. is not covered.

e This is “the same” as the iteration for the fields A but now for
vertex classes.
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Numerics

e Protocol for solving ..
— lterate the equation for the m;’s
— Convergence — evaluate y..
— Divergence — RSB; no valid solution
e Compare this to what the leaf-removal algorithm gives for test
graphs
— Power-law degree distribution pg oc d=7 with v = 2.5

— Positive degree—degree correlations
eqar = qa|r0dq.qa + (1 —17)qa]
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Generating graphs

e Randomize degrees d; independently for vertices using p;’s

e Create a set S of stubs such that each vertex ¢ appears in it d;
times (|.S| = 2m)

e For each edge, select first one endpoint randomly from S

e With probability r, select the other endpoint randomly from those
with the same degree; otherwise randomly from all stubs

e Might lead to wanted correlations, but a bit suspicious
(Catanzaro et al., PRE 71, 027103)
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blue: v = 2.5; red v = 3.0; both N = 10°
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Applications

e Real-world networks come typically with two kinds of
correlations: disassortative (r < 0) for technological nets and
assortative (» > 0) for social networks (Newman, PRE 67,
026126 (2003)).

e These nets also have quite often fat tails, thus power-law is good
as a rough approximation (Dorogovtsev and Mendes, Advances
In Physics 51, 1079 (2002)).

e SO, solving for the VC of a real technological net should be easy
with the leaf-removal algorithm.

e This is of importance since the deployment of a network traffic
monitoring system that is capable of observing all edges is
essentially a vertex cover.
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From GnuMap by Gregory Bray
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Conclusions

e There is an analytical replica-symmetric solution for the size of
the minimum vertex cover in correlated random nets with
arbitrary degree distribution

e This comes in the form of a self-consistency equation;
convergence of the iteration in different cases reveals if RS holds
or not

e Testing for prototype networks, positive correlations tend to
break the replica symmetry

e VC’s on real networks have applications in network traffic
monitoring, for instance
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Thanks for attention
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