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Introduction

• During the course we’ve seen VC’s on Erdös-Renyi random
graphs

• Real-worlds graphs are more complicated

– Non-poissonian degree distributions (often fat tails)

– Degree–degree correlations

• VC’s on such graphs are important since they have applications
in, for instance, network traffic monitoring
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GCRG’s

• A set on undirected graphs
with N vertices and an arbi-
trary degree distribution pd

• An important quantity is the
excess degree distribution

qd =
(d + 1)pd+1

〈d〉
(1)
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GCRG’s (cont’d)

• Choose an edge randomly: the endpoints have excess degrees
d and d′ with probability

(2 − δd,d′)edd′ (2)

• edd′ is related to the conditional probability that a vertex of
degree d is reached coming from a vertex of degree d′

P (d|d′) =
edd′

qd′

(3)

• For uncorrelated graphs edd′ = qdqd′
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Lattice gas

• Consider an arbitrary undirected graph with adjacency matrix Jij

• A general lattice gas on the graph is defined by the Hamiltonian

−βH =
∑
i<j

Jijw(xi, xj) + µ
∑

i

xi (4)

• The microscopic degrees of freedom xi = 0, 1

• µ is the chemical potential

• The ferromagnetic Ising model is recovered by choosing
w(xi, xj) = (2xi − 1)(2xj − 1)
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Lattice gas (cont’d)

• Vázquez and Weigt perform a cavity cal-
culation of the system

• In the end, it will be applied the VC’s to
estimate the relative size of the minimum
vertex cover

• The calculation touches the issue of
replica symmetry breaking without actu-
ally being an RSB calculation

• In this talk, I will next go through the main
parts of the calculation
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Partition functions

• Usually the partition function
reads

Z =
∑

all states

e−βH (5)

• Assume the graph is locally
treelike

• Now consider an arbitrary
edge (i, j) and the subtree
rooted in i with edge (i, j) re-
moved

i

j

k
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Partition functions (cont’d)

• Write down the partition functions with xi

fixed to value x

Z
(i|j)
0 =

∏
k 6=j|Jik=1

(ew(0,0)Z
(k|i)
0 +ew(0,1)Z

(k|i)
1 )

Z
(i|j)
1 = eµ

∏
k 6=j|Jik=1

(ew(1,0)Z
(k|i)
0 +ew(1,1)Z

(k|i)
1 )

k k

Z Z

Z

w(0,x  )w(0,x  )

x =0

(k |i) (k |i)

1 2

k k

(i|j)
0i

1

1

2

2
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Effective fields

• Define the effective fields as

h(i|j) = ln
Z

(i|j)
1

Z
(i|j)
0

(6)

• Physical meaning: an isolated particle with −βH = hx, Z1 = eh,
Z0 = 1 and h = ln(Z1/Z0)

• Using Eqs. from the previous slide we get

h(i|j) = µ +
∑

k 6=j|Jik=1

u(hk|i) (7)

u(hk|i) = ln(
ew(1,0) + ew(1,1)+h(k|i)

ew(0,0) + ew(0,1)+h(k|i)
) (8)
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Iteration and RS

• The equation for h(i|j) on the previous slide defines an iteration:
for each step the h’s can be substituted on the right-hand side,
and new h’s obtained

• The assumption that this iteration converges to a well-defined
probability distribution P (h) of the h’s corresponds to the
assumption that the replica symmetry is not broken.

• Pd(h) for nodes of degree d is given by

Pd(h) =

∫ ∞

−∞

d∏
l=1

(dhl

∞∑
d′=0

p(d′|d)Pd′(hl))δ(h − µ −

d∑
l=1

u(hl)) (9)
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Back to vertex covers

• The lattice gas is a vertex cover with the choice

ew(xi,xj) = 1 − xixj (10)

• Here, xi = 0 refers to a covered node and xi = 1 to an
uncovered one.

• The VC is minimum if the number of nodes with xi = 1 is
maximum.

• Therefore, take the limit µ → ∞ (scale the field by h = µz).
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Back to vertex covers (cont’d)

• The equation for the probability distribution becomes

Pd(z) =

∫ ∞

−∞

d∏
l=1

(dzl

∞∑
d′=0

p(d′|d)Pd′(zl))δ(h − µ −
d∑

l=1

max(0, zl))

(11)

• By a clever Ansatz this equation can be solved
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The solution

• Omitting details, details, and details, one arrives at

χc = 1 −

∞∑
d=0

pd(1 − πd−1)
d−1(1 +

d − 2

2
πd−1) (12)

• The auxiliary variables πd obey the self-consistency equation

πd =
∞∑

dl=0

p(dl|d)(1 − πdl

dl
) (13)

• Physically πd is the probability that an edge arriving at a vertex of
degree d + 1 carries a constraint, i.e. is not covered.

• This is “the same” as the iteration for the fields h but now for
vertex classes.
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Numerics

• Protocol for solving χc

– Iterate the equation for the πd’s

– Convergence =⇒ evaluate χc

– Divergence =⇒ RSB; no valid solution

• Compare this to what the leaf-removal algorithm gives for test
graphs

– Power-law degree distribution pd ∝ d−γ with γ = 2.5

– Positive degree–degree correlations
edd′ = qd[rδd,d′ + (1 − r)qd′ ]
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Generating graphs

• Randomize degrees di independently for vertices using pd’s

• Create a set S of stubs such that each vertex i appears in it di

times (|S| = 2m)

• For each edge, select first one endpoint randomly from S

• With probability r, select the other endpoint randomly from those
with the same degree; otherwise randomly from all stubs

• Might lead to wanted correlations, but a bit suspicious
(Catanzaro et al., PRE 71, 027103)
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Applications

• Real-world networks come typically with two kinds of
correlations: disassortative (r < 0) for technological nets and
assortative (r > 0) for social networks (Newman, PRE 67,
026126 (2003)).

• These nets also have quite often fat tails, thus power-law is good
as a rough approximation (Dorogovtsev and Mendes, Advances
in Physics 51, 1079 (2002)).

• So, solving for the VC of a real technological net should be easy
with the leaf-removal algorithm.

• This is of importance since the deployment of a network traffic
monitoring system that is capable of observing all edges is
essentially a vertex cover.
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From GnuMap by Gregory Bray
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Conclusions

• There is an analytical replica-symmetric solution for the size of
the minimum vertex cover in correlated random nets with
arbitrary degree distribution

• This comes in the form of a self-consistency equation;
convergence of the iteration in different cases reveals if RS holds
or not

• Testing for prototype networks, positive correlations tend to
break the replica symmetry

• VC’s on real networks have applications in network traffic
monitoring, for instance
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Thanks for attention
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