Vertex cover on other graph ensembles: the effect of degree-degree correlations

Matti Peltomäkia ${ }^{a}$
Laboratory of Physics
Helsinki University of Technology

[^0]- Introduction
- Generalized correlated random graphs (GCRG's)
- Lattice gas on GCRG
- Numerics
- Applications
- Conclusions
- Introduction
- Generalized correlated random graphs (GCRG's)
- Lattice gas on GCRG
- Numerics
- Applications
- Conclusions

Introduction

- During the course we've seen VC’s on Erdös-Renyi random graphs
- Real-worlds graphs are more complicated
- Non-poissonian degree distributions (often fat tails)
- Degree-degree correlations
- VC's on such graphs are important since they have applications in, for instance, network traffic monitoring

(a) Random Network
(b) Scale-free network
- Introduction
- Generalized correlated random graphs (GCRG's)
- Lattice gas on GCRG
- Numerics
- Applications
- Conclusions

GCRG's

- A set on undirected graphs with N vertices and an arbitrary degree distribution p_{d}
- An important quantity is the excess degree distribution

$$
\begin{equation*}
q_{d}=\frac{(d+1) p_{d+1}}{\langle d\rangle} \tag{1}
\end{equation*}
$$

GCRG's (cont'd)

- Choose an edge randomly: the endpoints have excess degrees d and d^{\prime} with probability

$$
\begin{equation*}
\left(2-\delta_{d, d^{\prime}}\right) e_{d d^{\prime}} \tag{2}
\end{equation*}
$$

- $e_{d d^{\prime}}$ is related to the conditional probability that a vertex of degree d is reached coming from a vertex of degree d^{\prime}

$$
\begin{equation*}
P\left(d \mid d^{\prime}\right)=\frac{e_{d d^{\prime}}}{q_{d^{\prime}}} \tag{3}
\end{equation*}
$$

- For uncorrelated graphs $e_{d d^{\prime}}=q_{d} q_{d^{\prime}}$
- Introduction
- Generalized correlated random graphs (GCRG's)
- Lattice gas on GCRG
- Numerics
- Applications
- Conclusions

Lattice gas

- Consider an arbitrary undirected graph with adjacency matrix $J_{i j}$
- A general lattice gas on the graph is defined by the Hamiltonian

$$
\begin{equation*}
-\beta H=\sum_{i<j} J_{i j} w\left(x_{i}, x_{j}\right)+\mu \sum_{i} x_{i} \tag{4}
\end{equation*}
$$

- The microscopic degrees of freedom $x_{i}=0,1$
- μ is the chemical potential
- The ferromagnetic Ising model is recovered by choosing $w\left(x_{i}, x_{j}\right)=\left(2 x_{i}-1\right)\left(2 x_{j}-1\right)$

Lattice gas (cont'd)

- Vázquez and Weigt perform a cavity calculation of the system
- In the end, it will be applied the VC's to estimate the relative size of the minimum vertex cover
- The calculation touches the issue of replica symmetry breaking without actually being an RSB calculation
- In this talk, I will next go through the main parts of the calculation

Partition functions

- Usually the partition function reads

$$
\begin{equation*}
Z=\sum_{\text {all states }} e^{-\beta H} \tag{5}
\end{equation*}
$$

- Assume the graph is locally treelike
- Now consider an arbitrary
 edge (i, j) and the subtree rooted in i with edge (i, j) removed

Partition functions (cont'd)

- Write down the partition functions with x_{i}

$$
\begin{aligned}
& \text { fixed to value } x \\
& Z_{0}^{(i \mid j)}=\prod_{k \neq j \mid J_{i k}=1}\left(e^{w(0,0)} Z_{0}^{(k \mid i)}+e^{w(0,1)} Z_{1}^{(k \mid i)}\right) \\
& Z_{1}^{(i \mid j)}=e^{\mu} \prod_{k \neq j \mid J_{i k}=1}\left(e^{w(1,0)} Z_{0}^{(k \mid i)}+e^{w(1,1)} Z_{1}^{(k \mid i)}\right){ }_{\mathrm{w}=0}^{\mathrm{z}_{\mathrm{F}}^{\left(k \mid, x_{k}\right)}}
\end{aligned}
$$

Effective fields

- Define the effective fields as

$$
\begin{equation*}
h_{(i \mid j)}=\ln \frac{Z_{1}^{(i \mid j)}}{Z_{0}^{(i \mid j)}} \tag{6}
\end{equation*}
$$

- Physical meaning: an isolated particle with $-\beta H=h x, Z_{1}=e^{h}$,

$$
Z_{0}=1 \text { and } h=\ln \left(Z_{1} / Z_{0}\right)
$$

- Using Eqs. from the previous slide we get

$$
\begin{gather*}
h_{(i \mid j)}=\mu+\sum_{k \neq j \mid J_{i k}=1} u\left(h_{k \mid i}\right) \tag{7}\\
u\left(h_{k \mid i}\right)=\ln \left(\frac{e^{w(1,0)}+e^{w(1,1)+h_{(k \mid i)}}}{\left.e^{w(0,0)}+e^{w(0,1)+h_{(k \mid i)}}\right)}\right. \tag{8}
\end{gather*}
$$

Iteration and RS

- The equation for $h_{(i \mid j)}$ on the previous slide defines an iteration: for each step the h 's can be substituted on the right-hand side, and new h 's obtained
- The assumption that this iteration converges to a well-defined probability distribution $P(h)$ of the h 's corresponds to the assumption that the replica symmetry is not broken.
- $P_{d}(h)$ for nodes of degree d is given by

$$
\begin{equation*}
P_{d}(h)=\int_{-\infty}^{\infty} \prod_{l=1}^{d}\left(d h_{l} \sum_{d^{\prime}=0}^{\infty} p\left(d^{\prime} \mid d\right) P_{d^{\prime}}\left(h_{l}\right)\right) \delta\left(h-\mu-\sum_{l=1}^{d} u\left(h_{l}\right)\right) \tag{9}
\end{equation*}
$$

Back to vertex covers

- The lattice gas is a vertex cover with the choice

$$
\begin{equation*}
e^{w\left(x_{i}, x_{j}\right)}=1-x_{i} x_{j} \tag{10}
\end{equation*}
$$

- Here, $x_{i}=0$ refers to a covered node and $x_{i}=1$ to an uncovered one.
- The VC is minimum if the number of nodes with $x_{i}=1$ is maximum.
- Therefore, take the limit $\mu \rightarrow \infty$ (scale the field by $h=\mu z$).

Back to vertex covers (cont'd)

- The equation for the probability distribution becomes

$$
\begin{equation*}
P_{d}(z)=\int_{-\infty}^{\infty} \prod_{l=1}^{d}\left(d z_{l} \sum_{d^{\prime}=0}^{\infty} p\left(d^{\prime} \mid d\right) P_{d^{\prime}}\left(z_{l}\right)\right) \delta\left(h-\mu-\sum_{l=1}^{d} \max \left(0, z_{l}\right)\right) \tag{11}
\end{equation*}
$$

- By a clever Ansatz this equation can be solved

The solution

- Omitting details, details, and details, one arrives at

$$
\begin{equation*}
\chi_{c}=1-\sum_{d=0}^{\infty} p_{d}\left(1-\pi_{d-1}\right)^{d-1}\left(1+\frac{d-2}{2} \pi_{d-1}\right) \tag{12}
\end{equation*}
$$

- The auxiliary variables π_{d} obey the self-consistency equation

$$
\begin{equation*}
\pi_{d}=\sum_{d_{l}=0}^{\infty} p\left(d_{l} \mid d\right)\left(1-\pi_{d_{l}}^{d_{l}}\right) \tag{13}
\end{equation*}
$$

- Physically π_{d} is the probability that an edge arriving at a vertex of degree $d+1$ carries a constraint, i.e. is not covered.
- This is "the same" as the iteration for the fields h but now for vertex classes.
- Introduction
- Generalized correlated random graphs (GCRG's)
- Lattice gas on GCRG
- Numerics
- Applications
- Conclusions

Numerics

- Protocol for solving χ_{c}
- Iterate the equation for the π_{d} 's
- Convergence \Longrightarrow evaluate χ_{c}
- Divergence \Longrightarrow RSB; no valid solution
- Compare this to what the leaf-removal algorithm gives for test graphs
- Power-law degree distribution $p_{d} \propto d^{-\gamma}$ with $\gamma=2.5$
- Positive degree-degree correlations
$e_{d d^{\prime}}=q_{d}\left[r \delta_{d, d^{\prime}}+(1-r) q_{d^{\prime}}\right]$

Generating graphs

- Randomize degrees d_{i} independently for vertices using p_{d} 's
- Create a set S of stubs such that each vertex i appears in it d_{i} times $(|S|=2 m)$
- For each edge, select first one endpoint randomly from S
- With probability r, select the other endpoint randomly from those with the same degree; otherwise randomly from all stubs
- Might lead to wanted correlations, but a bit suspicious (Catanzaro et al., PRE 71, 027103)

Vertex cover on other graph ensembles: the effect of degree-degree correlations

blue: $\gamma=2.5$; red $\gamma=3.0$; both $N=10^{6}$

- Introduction
- Generalized correlated random graphs (GCRG's)
- Lattice gas on GCRG
- Numerics
- Applications
- Conclusions

Applications

- Real-world networks come typically with two kinds of correlations: disassortative $(r<0)$ for technological nets and assortative ($r>0$) for social networks (Newman, PRE 67, 026126 (2003)).
- These nets also have quite often fat tails, thus power-law is good as a rough approximation (Dorogovtsev and Mendes, Advances in Physics 51, 1079 (2002)).
- So, solving for the VC of a real technological net should be easy with the leaf-removal algorithm.
- This is of importance since the deployment of a network traffic monitoring system that is capable of observing all edges is essentially a vertex cover.

Vertex cover on other graph ensembles: the effect of degree-degree correlations

From GnuMap by Gregory Bray

- Introduction
- Generalized correlated random graphs (GCRG's)
- Lattice gas on GCRG
- Numerics
- Applications
- Conclusions

Conclusions

- There is an analytical replica-symmetric solution for the size of the minimum vertex cover in correlated random nets with arbitrary degree distribution
- This comes in the form of a self-consistency equation; convergence of the iteration in different cases reveals if RS holds or not
- Testing for prototype networks, positive correlations tend to break the replica symmetry
- VC's on real networks have applications in network traffic monitoring, for instance

Vertex cover on other graph ensembles: the effect of degree-degree correlations

Thanks for attention

[^0]: ${ }^{\text {a }}$ Primary source: Alexei Vázquez and Martin Weigt, Computational complexity arising from degree correlations in networks, Physical Review E 67, 027101 (2003).

