Phase Transition in the Number Partitioning Problem

Leena Salmela

October 12th 2007

Outline

The Number Partitioning Problem (NPP)

Algorithms for NPP

Phase Transition in NPP

Outline

The Number Partitioning Problem (NPP)

Algorithms for NPP

Phase Transition in NPP

Number Partitioning Problem (NPP)

- Input: a list $a_{1}, a_{2}, \ldots, a_{N}$ of positive integers
- Partition: a subset $A \subset\{1, \ldots, N\}$
- Discrepancy of partition A :

$$
E(A)=\left|\sum_{i \in A} a_{i}-\sum_{i \notin A} a_{i}\right|
$$

- Minimize the discrepancy

NPP: Example

Multi-processor scheduling:

- 2 processors
- 5 tasks with runtimes $8,7,6,5,4$
- How to divide the jobs among the processors so that the tasks are completed as fast as possible?

NPP: Example

Multi-processor scheduling:

- 2 processors
- 5 tasks with runtimes $8,7,6,5,4$
- How to divide the jobs among the processors so that the tasks are completed as fast as possible?
- Processor 1 runs tasks with runtimes: 8,7

- Processor 2 runs tasks with runtimes: 6,5,4
- Discrepancy: $|8+7-6-5-4|=0$

Perfect Partitions

- Perfect partition:
- Discrepancy $E(A)=0$ if $\sum a_{i}$ even
- Discrepancy $E(A)=1$ if $\sum a_{i}$ odd
- The list $1,2,3,4,5,6$ has a perfect partition $A=\{2,3,5\}$ because $E(A)=|2+3+5-1-4-6|=1$.
- Not all lists have perfect partitions.

Variations of NPP

- Input can be a list of real numbers from the interval $[0,1]$
- Multiway NPP: Partitioning to more than 2 sets

- Balanced NPP: The sets must have the same cardinality

Properties of NPP

- NP-complete
- Poor quality of heuristic algorithms
- Average discrepancy of optimum partitions $O\left(\sqrt{N} \cdot 2^{-N}\right)$ (for real-valued NPP)
- Best heuristic algorithm yields average discrepancies $O\left(N^{-\alpha \log N}\right)$ (for real-valued NPP)
- The phase transition can be analyzed rigorously analytically. (S. Mertens: Phase Transition in the Number Partition Problem, Phys. Rev. Lett. 81, 4281 (1998))

Outline

The Number Partitioning Problem (NPP)

Algorithms for NPP

Phase Transition in NPP

The Greedy Algorithm

- Assign the largest unassigned number to the set with the smallest sum
- Iterate until all numbers are assigned
- Keeps the discrepancy small with every decision
- Yields average discrepancies $O(1 / N)$ (for real-valued NPP)
(S. Mertens: The Easiest Hard Problem: Number Partitioning, in:
A.G. Percus, G. Istrate, C. Moore, eds., Computational Complextity and Statistical Physics, Oxford University Press (2006), p. 125-139)
- Time complexity $O(N \log N)$ (sorting)

The Greedy Algorithm: An Example

Input: $\quad\{8,7,6,5,4\}$

The Greedy Algorithm: An Example

Input: $\quad\{8,7,6,5,4\}$

Iter 1: $\quad 8$ assigned to set 1 \{8\}\{\}

The Greedy Algorithm: An Example

Input: $\quad\{8,7,6,5,4\}$

Iter 1: 8 assigned to set 1 \{8\}\{\}
Iter 2: 7 assigned to set 2 \{8\}\{7\}

The Greedy Algorithm: An Example

Input: $\quad\{8,7,6,5,4\}$

Iter 1: 8 assigned to set 1 \{8\}\{\}
Iter 2: 7 assigned to set 2 \{8\}\{7\}
Iter 3: 6 assigned to set 2 $\{8\}\{7,6\}$

The Greedy Algorithm: An Example

Input: $\quad\{8,7,6,5,4\}$

Iter 1: 8 assigned to set 1 \{8\}\{\}
Iter 2: 7 assigned to set 2 \{8\}\{7\}
Iter 3: 6 assigned to set 2 $\{8\}\{7,6\}$
Iter 4: 5 assigned to set 1 $\{8,5\}\{7,6\}$

The Greedy Algorithm: An Example

Input: $\quad\{8,7,6,5,4\}$

Iter 1: 8 assigned to set 1 \{8\}\{\}
Iter 2: 7 assigned to set 2 \{8\}\{7\}
Iter 3: 6 assigned to set 2 $\{8\}\{7,6\}$
Iter 4: 5 assigned to set 1 $\{8,5\}\{7,6\}$
Iter 5: $\quad 4$ assigned to set 1 $\{8,5,4\}\{7,6\}$
Discrepancy: 4

The Differencing Algorithm by Karmarkar and Karp

- Key idea: Reduce the length of the number list
- Replace two largest numbers a_{i} and a_{j} by $\left|a_{i}-a_{j}\right|$
- Commit to placing the two largest numbers in different sets
- Repeat until only one number left
- The remaining number $=$ discrepancy
- Achieves better results than the greedy algorithm
- Yields average discrepancies $O\left(N^{-\alpha \log N}\right)$ with $\alpha=0.72$ (for real-valued NPP)
- Time complexity $O(N \log N)$ (sorting)

The Differencing Algorithm: An Example

Input: $\quad\{8,7,6,5,4\}$

The Differencing Algorithm: An Example

Input:
$\{8,7,6,5,4\}$
Iter 1: \quad Replace 8 and 7 by $|8-7|=1$
$\{6,5,4,1\}$

The Differencing Algorithm: An Example

Input:
$\{8,7,6,5,4\}$
Iter 1: \quad Replace 8 and 7 by $|8-7|=1$
$\{6,5,4,1\}$
Iter 2: \quad Replace 6 and 5 by $|6-5|=1$ $\{4,1,1\}$

The Differencing Algorithm: An Example

Input:
$\{8,7,6,5,4\}$
Iter 1: \quad Replace 8 and 7 by $|8-7|=1$
$\{6,5,4,1\}$
Iter 2: \quad Replace 6 and 5 by $|6-5|=1$ $\{4,1,1\}$
Iter 3: \quad Replace 4 and 1 by $|4-1|=3$
$\{3,1\}$

The Differencing Algorithm: An Example

Input:
$\{8,7,6,5,4\}$

Iter 1: \quad Replace 8 and 7 by $|8-7|=1$
$\{6,5,4,1\}$
Iter 2: \quad Replace 6 and 5 by $|6-5|=1$ $\{4,1,1\}$
Iter 3: \quad Replace 4 and 1 by $|4-1|=3$
$\{3,1\}$
Iter 4: \quad Replace 3 and 1 by $|3-1|=2$
\{2\}
Discrepancy: 2

The Differencing Algorithm: An Example

Input:
$\{8,7,6,5,4\}$

Iter 1:
Replace 8 and 7 by $|8-7|=1$
$\{7,5,4\}\{8,6\}$
$\{6,5,4,1\}$
Iter 2:
Replace 6 and 5 by $|6-5|=1$
$\{5,4\}\{6,1\}$ $\{4,1,1\}$
Iter 3:
Replace 4 and 1 by $|4-1|=3$
$\{4\}\{1,1\}$
$\{3,1\}$
Iter 4: \quad Replace 3 and 1 by $|3-1|=2$
$\{3\}\{1\}$
\{2\}
Discrepancy: 2

Complete Algorithms

- Complete greedy algorithm
- First try to put the largest number to the set with smaller sum.
- Then try to put it to the other set.
- I.e. search a tree of all 2^{N} possible partitions
- Complete differencing algorithm
- First try to put the two largest numbers a_{i} and a_{j} to different sets \Longrightarrow Replace them by $\left|a_{i}-a_{j}\right|$
- Then try to put them into the same set
\Longrightarrow Replace them by $a_{i}+a_{j}$

Complete Differencing Method: Example

Complete Differencing Method with Pruning

Pruning rules for the complete differencing method:

- If less than 5 numbers left, take the left branch
- If largest number \geq sum of the rest of the numbers, place the largest number in one set and the others in the other set
- If a perfect partition has been found, stop.

Complete Differencing Method with Pruning: Example

Outline

The Number Partitioning Problem (NPP)

Algorithms for NPP

Phase Transition in NPP

Parameterization of NPP Instance Ensemble

- NPP instance: N random numbers a_{i}
- $a_{i}<A$
- $A=2^{\kappa N} \Longrightarrow$ worst case complexity of any (known) algorithm exponential in N for all $\kappa>0$
- Typical complexity of NPP depends on κ

Phase Transition

- Instances: N random 20-bit integers
- $A=2^{20} \Longrightarrow \kappa=20 / N$
- Phase transition at $\kappa_{c} \approx 20 / 24 \approx 0.83$

(From: S. Mertens: The Easiest Hard Problem: Number Partitioning, in: A.G. Percus, G. Istrate, C. Moore, eds., Computational Complextity and Statistical Physics, Oxford University Press (2006), p. 125-139)

Pseudo Polynomiality of NPP

- $a_{i}<A$
- Discrepancy has at most NA different values
- The search space can be explored in time $O\left(N^{2} A\right)$
- A polynomial algorithm?

Pseudo Polynomiality of NPP

- $a_{i}<A$
- Discrepancy has at most NA different values
- The search space can be explored in time $O\left(N^{2} A\right)$
- A polynomial algorithm?
- Input size $O(N \log A)$
\Longrightarrow Running time is exponential in the size of the input!
- NP-hardness: input numbers allowed to be exponentially large in N
- If N is increased for constant A, NPP is eventually not NP-hard anymore

Analytical Results

(S. Mertens: Phase Transition in the Number Partition Problem, Phys. Rev. Lett. 81, 4281 (1998))

- Analyze the average number of perfect partitions $\Omega(0)$
- It can be shown that

$$
\log _{2} \Omega(0)=N\left(\kappa_{c}-\kappa\right)
$$

with

$$
\kappa_{c}=1-\frac{\log _{2} N}{2 N}-\frac{1}{2 N} \log _{2}\left(\frac{\pi}{6}\right)
$$

- $\kappa<\kappa_{c} \Longrightarrow$ Exponential number of perfect partitions \Longrightarrow Easy phase
$-\kappa>\kappa_{c} \Longrightarrow$ No perfect partitions \Longrightarrow Hard phase

Characteristics of the Easy Phase

- Exponential number of perfect partitions
- κ decreases \Longrightarrow the number of perfect partitions increases
- For small κ perfect partitions found by heuristic algorithms

Characteristics of the Hard Phase

- Exponentially small probability of perfect partitions \Longrightarrow optimum almost always unique
- Heuristic algorithms no better than blind search

Summary

- Number partitioning problem
- Two heuristic algorithms
- Greedy
- Differencing
- Phase transition in average complexity

Phase transition in probability of perfect partitions

- Easy phase where heuristic algorithms are effective
- Hard phase where heuristic algorithms are no better than blind search

Analytical Results - Proof

(S. Mertens: The Easiest Hard Problem: Number Partitioning, in: A.G. Percus, G. Istrate, C. Moore, eds., Computational Complextity and Statistical Physics, Oxford University Press (2006), p. 125-139)

- Code a partition A with binary variables $s_{i}= \pm 1$:
- $s_{i}=+1 \Longrightarrow i \in A$ and $s_{i}=-1 \Longrightarrow i \notin A$
- The cost function: $E=|D(s)|$ where

$$
D(s)=\sum_{i=1}^{N} a_{i} s_{i}
$$

- D can be interpreted as distance to the origin of a random walker in one dimension who takes steps to the right $\left(s_{i}=+1\right)$ or left $\left(s_{i}=-1\right)$ with random step sizes $\left(a_{i}\right)$.
- Average number of walks ending at D :

$$
\Omega(D)=\sum_{\left\{s_{i}\right\}}\left\langle\delta\left(D-\sum_{i=1}^{N} a_{i} s_{i}\right)\right\rangle
$$

Analytical Results - Proof (continued)

- For a fixed walk $\left\{s_{i}\right\}$ and large N the distance to the origin is Gaussian with mean

$$
\langle D\rangle=M\langle a\rangle
$$

and variance

$$
\left\langle D^{2}\right\rangle-\langle D\rangle^{2}=M^{2}\left(\left\langle a^{2}\right\rangle-\langle a\rangle^{2}\right)
$$

where $M=\sum_{j} s_{j}$.

- Averaging over the random walk $\left\{s_{i}\right\}$:

$$
\begin{gathered}
{[\langle D\rangle]=[M]\langle a\rangle=0} \\
{\left[\left\langle D^{2}\right\rangle\right]-[\langle D\rangle]^{2}=\left[M^{2}\right]\left\langle a^{2}\right\rangle=N\left\langle a^{2}\right\rangle}
\end{gathered}
$$

- The probability of ending the walk at distance D

$$
p(D)=\frac{1}{\sqrt{2 \pi N\left\langle a^{2}\right\rangle}} \exp \left(-\frac{D^{2}}{2 N\left\langle a^{2}\right\rangle}\right)
$$

Analytical Results - Proof (continued)

- Note: The walk ends at even (odd) numbers for $\sum a_{i}$ even (odd)
- Average number of walks ending at D

$$
\Omega(D)=2^{N} 2 p(D)=\frac{2^{N+1}}{\sqrt{2 \pi N\left\langle a^{2}\right\rangle}} \exp \left(-\frac{D^{2}}{2 N\left\langle a^{2}\right\rangle}\right)
$$

- Substituting

$$
\left\langle a^{2}\right\rangle=\frac{1}{3} 2^{2 \kappa N}\left(1-O\left(2^{-\kappa N}\right)\right)
$$

we get

$$
\log _{2} \Omega(0)=N\left(\kappa_{c}-\kappa\right)
$$

with

$$
\kappa_{c}=1-\frac{\log _{2} N}{2 N}-\frac{1}{2 N} \log _{2}\left(\frac{\pi}{6}\right)
$$

