Calculation of typical running time of a branch-and-bound algorithm for the vertex-cover problem

Joni Pajarinen, Joni.Pajarinen@iki.fi

October 21, 2007

Alexander K. Hartmann and Martin Weigt, Phase Transitions in Combinatorial Optimization Problems, WILEY-VCH (2005)

Martin Weigt and Alexander K. Hartmann, Typical Solution Time for a Vertex-Covering Algorithm on Finite-Connectivity Random Graphs, Physical Review Letters, 86, 8 (2001)

Content

- Vertex-cover (VC) problem
- A branch-and-bound algorithm
- Experimental results
- First-moment method
- Analysis of first descent into the configuration tree
- Backtracking analysis
- Summary

Vertex-cover problem

- Cover vertices so that all edges connect to at least one covered vertex
- Graph: $G=(V, E)$
- Vertex-cover: $V_{v c} \subseteq V: i \in V_{v c} \vee j \in$ $V_{v c}, \forall(i, j) \in E$
- Minimum vertex-cover: $\arg \min \left|V_{v c}\right|$ $V_{v c}$
- $N=|V|, x N=$ size of the largest allowed vertex-cover

A branch-and-bound vertex-cover algorithm

- Vertice states: free, covered or uncovered. Start with free vertices
- Branch:

1. Cover a random free vertex, if free or uncovered neighbours exist
2. Backtrack if we exceed the vertex limit $x N$
3. Uncover the free vertex otherwise

- Bound: Don't mark a vertex with an uncovered neighbour uncovered

Figure 1: Experimental results for typical running time and the analytical solution. Graphs sampled from ensemble $\mathcal{G}(N, M) . \tau(x \mid c)=\lim _{N \rightarrow \infty} \frac{1}{N} \overline{\ln t_{b t}(\tilde{G}, \tilde{x})}$ is the normalized and averaged logarithm of running time. C and B are the exponential phases and A is the linear phase. Dynamic phase boundary $x_{b}(c)$ and the static phase boundary $x_{c}(c)$ are also shown.
Original figure is from Martin Weigt and Alexander K. Hartmann, Typical Solution Time for a Vertex-Covering Algorithm on Finite-Connectivity Random Graphs, Physical Review Letters, 86, 8 (2001).

Figure 2: Example configuration trees. The three sub figures A, B and C show examples of configuration trees in the three different phases. In sub figure A the black circle is an example solution in the easy recoverable phase, where only a straight or almost straight descent is necessary. The black circle in sub figure B is an example solution in the hard recoverable phase, where we have to backtrack to the circle pointed to by the arrow. In sub figure C , in the hard unrecoverable phase, we have to traverse the tree until we know a solution can't be found (to the long dashed line).

First-moment method

- Goal: a lower bound on $x_{c}(c)$
- In the thermodynamic limit $N \rightarrow \infty$ for $x_{1}<x_{c}(c)<x_{2}$, almost surely $\left|V_{v c}\right| \leq x_{2} N$ exists, but $\left|V_{v c}\right| \leq x_{1} N$ does not
- Use a fixed vertex and edge number ensemble $\mathcal{G}\left(N, \frac{c}{2} N\right)$
- Bound probability of a $x N \mathrm{VC}$ with the average number of VCs $G \in \mathcal{G}\left(N, \frac{c}{2} N\right)$
$P(G$ has VC of size $x N) \leq \overline{\text { Number of VCs of size } x N}$
$\Leftrightarrow P\left(\exists V_{v c}(G),\left|V_{v c}(G)\right|=x N\right) \leq \overline{\mathcal{N}_{v c}(G, x N)}$

First-moment method

- Number of potential vertex covers $V_{v c}^{*}$ is $\binom{N}{x N}$
- With probability $1-(1-x)^{2}=x(2-x), V_{v c}^{*}$ covers at least one vertex of an edge
- All edges must be covered

$$
\Rightarrow \overline{\mathcal{N}_{v c}(G, x N)}=\binom{N}{x N} \underbrace{[x(2-x)]}_{P(\text { edge covered })} \overbrace{\frac{c}{2} N}^{\# \text { edges }}
$$

First-moment method

- Approximation using Stirling's formula $\ln (N!) \simeq N \ln N-N$

$$
\begin{aligned}
& \overline{\mathcal{N}_{v c}(G, x N)}=\binom{N}{x N}[x(2-x)]^{\frac{c}{2} N}=\frac{N![x(2-x)]^{\frac{c}{2}} N}{(x N)![(1-x) N]!} \\
& =e^{\left\{\ln (N!)+\frac{c}{2} N \ln [x(2-x)]-\ln [(x N)!]-\ln [\{(1-x) N\}!]\right\}} \\
& \simeq e^{\left\{N\left[-x \ln x-(1-x) \ln (1-x)+\frac{c}{2} \ln \{x(2-x)\}\right]\right\}}
\end{aligned}
$$

First-moment method

- Exponent changes sign at $x_{a n}(c)<x_{c}(c)$

$$
\begin{aligned}
& 0=-x_{a n}(c) \ln x_{a n}(c)-\left(1-x_{a n}(c)\right) \ln \left(1-x_{a n}(c)\right)+ \\
& \frac{c}{2} \ln \left\{x_{a n}(c)\left(2-x_{a n}(c)\right)\right\}
\end{aligned}
$$

$$
x_{a n}(c)=1-2 \frac{\ln (c)}{c}+\mathcal{O}\left(\frac{\ln \{\ln (c)\}}{c}\right) \text {, for large average degree }
$$ c

- Precise asymptotic:
$x_{c}(c)=1-\frac{2}{c}(\ln (c)-\ln \{\ln (c)\}-\ln (2)+1)+o\left(c^{-1}\right)$
A. M. Frieze, Discr. Math., 81, 171 (1990)

Figure 3: $x_{a n}(c) \in[0,0.5]$ plotted using formula

$$
0=-x_{a n}(c) \ln x_{a n}(c)-\left(1-x_{a n}(c)\right) \ln \left(1-x_{a n}(c)\right)+\frac{c}{2} \ln \left\{x_{a n}(c)\left(2-x_{a n}(c)\right)\right\}
$$

Analysis of first descent into the configuration tree

- Consider covered vertices and edges as removed from graph
- Then at time step $T, G \in \mathcal{G}\left(N-T, \frac{c}{N}\right)$
- Average edge degree $c(T) \simeq(N-T) \frac{c}{N}=\left(1-\frac{T}{N}\right) c$
- Rescaled time $t=\frac{T}{N}, G \in \mathcal{G}\left((1-t) N, \frac{c}{N}\right)$
- For a single vertex at time t :

$$
\begin{aligned}
& P(\text { vertex is not isolated })=1-\underbrace{\left(1-\frac{c}{N}\right)}_{P(\text { no edge })} \overbrace{(1-t) N-1}^{\# \text { possible edge endpoints }} \\
& \simeq 1-e^{\{-(1-t) c\}}
\end{aligned}
$$

Analysis of first descent into the configuration tree

- Available covering marks at time t :

$$
\begin{aligned}
& X(t)=x N-N \int_{0}^{t} P(\text { vertex is not isolated }) d t^{\prime} \\
& =x N-N \int_{0}^{t}\left(1-e^{\{-(1-t) c\}}\right) d t^{\prime} \\
& =x N-N t+N \frac{e^{-(1-t) c}-e^{-c}}{c}
\end{aligned}
$$

- First descent trajectory:

$$
\begin{aligned}
& c(t)=(1-t) c \\
& x(t)=\frac{X(t)}{N(t)}=\frac{x-t}{1-t}+\frac{e^{-(1-t) c}-e^{-c}}{(1-t) c}
\end{aligned}
$$

Figure 4: First descent into the configuration tree. Dotted line is $x_{b}(c)$ and long dashed line is $x_{c}(c)$. The lines start at $c=2.0$ and at a certain x value.
Figure from Martin Weigt and Alexander K. Hartmann, Typical Solution Time for a Vertex-Covering Algorithm on Finite-Connectivity Random Graphs, Physical Review Letters, 86, 8 (2001)

Analysis of first descent into the configuration tree

- Using $x\left(t^{\prime}=1\right)=1$, we find the dynamical phase boundary $x_{b}(c)$:

$$
x_{b}(c)=1+\frac{e^{-c}-1}{c}
$$

Backtracking

- Backtracking analysis can be difficult, because of configuration tree traversal dependencies
- Consider number of nodes at each configuration tree level
- At time \tilde{t} the remaining covering marks $\tilde{x} \tilde{N}$ of the first descent are not enough
- (\tilde{x}, \tilde{c}) is the point, where $x_{c}(c)$ and the first descent cross (See figure 4)
- The uncoverable subtree $\tilde{G} \in \mathcal{G}\left(\tilde{N}, \frac{\tilde{C}}{\tilde{N}}\right)$ must be backtracked in exponential time

Backtracking

- Exponential solution times log-normal distributed for large N
- \Rightarrow Typical solution time $e^{N \tau(x, c)}$
- backtracking time $t_{b t}\left(G_{\tilde{N}, \frac{\tilde{c}}{N}}, \tilde{x}\right)$ for uncoverable $G_{\tilde{N}, \frac{\tilde{\tilde{N}}}{}}$
- quenched average $\tau(x, c)=\lim _{N \rightarrow \infty} \frac{1}{N} \ln \left[t_{b t}\left(G_{\tilde{N}, \frac{\tilde{e}}{N}}, \tilde{x}\right)\right]$
- Final result for the bounded algorithm:

$$
\tau(x, c) \simeq \max _{\kappa=\tilde{x}, \ldots, 1}\left[\frac{c}{\tilde{c}} \kappa s_{a n}\left(\frac{\tilde{x}}{\kappa}, \tilde{c} \kappa\right)\right]
$$

$$
s_{a n}\left(x^{*}, c^{*}\right)=-x^{*} \ln x^{*}-\left(1-x^{*}\right) \ln \left(1-x^{*}\right)+\frac{c^{*}}{2} \ln \left(x^{*}\left[2-x^{*}\right]\right)
$$

(See figure (1)

Summary

- Three different phases and two boundaries $x_{b}(c)$ and $x_{c}(c)$ observable in experiments
- First-moment method
- A lower bound on $x_{c}(c)$
- Using the average vertex cover amount as a bound
- First descent analysis shows where exponential solution times start occurring: dynamical phase boundary $x_{b}(c)$
- Backtracking analysis: calculate time to backtrack the largest subtree, get subtree root using first descent results and $x_{c}(c)$

